
Chapter 3

FORECASTING

3.1 Projections

In macroeconomics, forecasting is important in many ways. For structural macroeco-

nomic models, we usually need to specify the forecasting rules that economic agents

are using and the information set used by them to forecast future economic variables.

Taking the conditional expectation is one way to model forecasting. This method

generally requires nonlinear forecasting rules which are difficult to estimate. For the

purpose of testing the models and parameter estimation, it is sometimes possible for

an econometrician to use a simpler forecasting rule and a smaller information set.

In this section, we study projections as a forecasting method. Projections are

used to explain the Wold representation, which forms a basis for studying linear and

nonlinear stochastic processes.

3.1.1 Definitions and Properties of Projections

In this chapter, we consider random variables with finite second moments unless

otherwise noted. We consider the problem of forecasting y, using a set H of random

variables. Typically, y is a future random variable such as the growth rate of the

Gross Domestic Product (GDP) or the growth rate of a stock price, and H contains
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34 CHAPTER 3. FORECASTING

current and past economic variables that are observed by economic agents and/or

econometricians. Let us denote a forecast of y based on H by yf , so that the forecasting

error is y− yf . In most economic applications, we choose the forecast, yf , so that yf

minimizes

E[(y − yf )2].(3.1)

In other words, yf is in H, and for all h in H,

E[(y − yf )2] ≤ E[(y − h)2].(3.2)

The expression (3.1) is called the mean squared error associated with the forecast, yf .

When two random variables h1 and h2 satisfy

E(h1h2) = 0,(3.3)

they are said to be orthogonal to each other. When either h1 or h2 has mean zero,

orthogonality means that they are uncorrelated. The concept of orthogonality is

closely related to the problem of minimizing the mean squared error. Under certain

conditions on H, the Classical Projection Theorem (see, e.g., Luenberger, 1969) states

that there exists a unique random variable yf in H that minimizes the mean squared

error, and that yf is the minimizer if and only if the forecasting error is orthogonal

to all members of H:

E((y − yf )h) = 0(3.4)

for all h in H; this is called the orthogonality condition. When such a forecast exists,

we call the forecast, yf , a projection of y onto H, and denote it by Ê(y|H). When

Y is a random vector with finite second moments, we apply the projection to each

element of Y and write Ê(Y|H).
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Some properties of projections are very important:

Proposition 3.1 (Properties of Projections)

(a) Projections are linear: Ê(aX + bY |H) = aÊ(X|H) + bÊ(Y |H) for any random

variables, X and Y , with finite variance and constants, a and b.

(b) If a random variable Z is in the information set H, then

Ê(ZY |H) = ZÊ(Y |H).

(c) The Law of Iterated Projections: If the information set H is smaller than the

information set G (H ⊂ G), then

Ê(Y |H) = Ê[Ê(Y |G)|H].

3.1.2 Linear Projections and Conditional Expectations

The meaning of projection depends on how the information set H used for the pro-

jection is constructed. Let X be a p× 1 vector of random variables with finite second

moments. Let H = {h is a random variable such that h = X′b for some p-dimensional

vector of real numbers b}. Since Ê(y|H) is also a member of H, there exists b0 such

that

Ê(y|H) = X′b0.(3.5)

In this sense, Ê(y|H) uses a linear forecasting rule. When we use an information set

such as H, which only allows for linear forecasting rules, the projection based on such

an information set is called a linear projection. We write Ê(y|H) = Ê(y|X).
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Let HN = {h is a random variable with a finite variance such that h = f(X)

for a function f}.1 In this case, there exists a function f0(·) such that

Ê(y|HN) = f0(X).(3.6)

In this sense, Ê(y|HN) allows for a nonlinear forecasting rule. It can be shown that

Ê(y|HN) = E(y|X).(3.7)

Hence the projection and conditional expectation coincide when we allow for nonlinear

forecasting rules. For this reason, the projections we use in this book are linear

projections unless otherwise noted.

An important special case is when y and X are jointly normally distributed.

In this case, the expectation of y conditional on X is a linear function of X. Hence

the linear projection of y onto the information set generated by X is equal to the

expectation of y conditional on X.

When it is necessary to distinguish the information set I generated by X for

conditional expectations introduced in Chapter 2 and the information set H generated

by X for linear projections, H will be called the linear information set generated by

X. (????? Unclear! from Billy)
Masao

needs to
check this!

Linear projections are important because it is easy to estimate them in many

applications. Note that the orthogonality condition states that

E[(y −X′b0)h] = 0(3.8)

for any h in H. Since each element of X is in H, using the i-th element Xi for h, we

obtain

E[(y −X′b0)Xi] = 0(3.9)

1As in Proposition 2.2, we require that the function f is measurable.
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for i = 1, 2, · · · , p, or

E[X(y −X′b0)] = 0.(3.10)

Therefore

E(Xy) = E(XX′)b0.(3.11)

Assuming that E(XX′) is nonsingular, we obtain

b0 = E(XX′)−1E(Xy)(3.12)

and

Ê(y|H) = X′b0,(3.13)

where H is the linear information set generated by X. As we will discuss, if X and y

are strictly stationary, Ordinary Least Squares (OLS) can be used to estimate b0.

Following examples show differences between conditional expectation and linear

projection.
Youngsoo
needs to
check this!

Example 3.1 Let X and Y be random variables with non-zero mean. The linear

projection of Y on X is

Ê(Y |1, X) = a+ bX.(3.14)

Then, from (3.12) and E(Y ) = a+ bE(X) we have

b =
E(XY )

E(X2)
=

Cov(X,Y )

V ar(X)
(3.15)

a = E(Y )− bE(X).(3.16)
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Note that the linear projection is a population regression; that is, a and b are defined

by population moments. corresponding sample moments can be used to estimate â

and b̂.

Example 3.2 Let X be a standard Normal random variable, and Y = X2. Note

that Y is χ(1) random variable and E(Y ) = 1. The linear projection of Y on X is

Ê(Y |1, X) = a+ bX = 1.(3.17)

This is becasue from Example 3.1, we have

b =
E(XY )

E(X2)
=

E(X3)

V ar(X)
= 0(3.18)

and

a = E(Y ) = E(X2) = 1.(3.19)

Note that E(X3) = 0 because the distribution of X is symmetric. Whereas the

conditional expectation of Y on X is2

E(Y |X) = X2.(3.20)

Example 3.3 Let X0 be a standard Normal random variable, and ε1 be a Normal

random variable with mean 0 and variance σ2. Assume that X0 and ε are independent

each other. Define X1 = a+ bX0 + cX2
0 + ε1. Then, the unconditional expectation of

X1, the linear projection and the conditional expectation ofX1 onX0 are, respectively,

E(X1) = E(a+ bX0 + cX2
0 + ε1) = a+ c,(3.21)

2Note that since X0 = 1, 1 is always in the information set for conditional expectation. However,
1 may not be in the linear information set.
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Ê(X1|1, X0) = Ê(a+ bX0 + cX2
0 + ε1|1, X0)(3.22)

= a+ bX0 + c.

Note that Ê(X2
0 |1, X0) = 1 by (3.17).

E(X1|X0) = a+ bX0 + cX2
0 .(3.23)

3.2 Some Applications of Conditional Expectations

and Projections

This section presents some applications of conditional expectations and projections in

order to illustrate their use in macroeconomics. More explanations of some of these

applications and presentations of other applications will be given in later chapters.

In this chapter, all random variables are assumed to have finite second moments.

3.2.1 Volatility Tests

Many rational expectations models imply

Xt = E(Yt|It)(3.24)

for economic variablesXt and Yt. HereXt is in the information set It which is available

to the economic agents at date t while Yt is not. A testable implication of (3.24) can

be obtained by comparing the volatility of Xt with that of Yt. Relation (3.24) implies

Yt = Xt + ϵt(3.25)

where ϵt = Yt − E(Yt|It) is the forecast error. Since E(ϵt|It) = 0,

E(ϵtht) = 0(3.26)
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for any random variable ht that is in It. We can interpret (3.26) as an orthogonality

condition. The forecast error must be uncorrelated with any variable in the infor-

mation set. Since Xt is in It, (3.26) implies E(ϵtXt) = 0. Therefore, from (3.25) we

obtain

E(Y 2
t ) = E(X2

t ) + E(ϵ2t ).(3.27)

Since (3.24) implies that E(Xt) = E(Yt), (3.27) implies

V ar(Yt) = V ar(Xt) + E(ϵ2t ).(3.28)

Since E(ϵ2t ) ≥ 0, we conclude

V ar(Yt) ≥ V ar(Xt).(3.29)

Thus, if Xt forecasts Yt, Xt must be less volatile than Yt. Various volatility tests have

been developed to test this implication of (3.24).

LeRoy and Porter (1981) and Shiller (1981) started to apply volatility tests to

the present value model of stock prices. Let pt be the real stock price (after the

dividend is paid) in period t and dt be the real dividend paid to the owner of the

stock at the beginning of period t. Then the no-arbitrage condition is

pt = E[b(pt+1 + dt+1)|It],(3.30)

where b is the constant real discount rate, and It is the information set available

to economic agents in period t. Solving (3.30) forward and imposing the no bubble

condition,3 we obtain the present value formula:

pt = E(
∞∑
i=1

bidt+i|It).(3.31)

3It rules out the exploding solution of the difference equation
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Applying the volatility test, we conclude that the variance of
∑∞

i=1 b
idt+i is

greater than or equal to the variance of pt. One way to test this is to directly

estimate these variances and compare them. However,
∑∞

i=1 b
idt+i involves infinitely

many data points for the dividend. When we have data for the stock price and

dividend for t = 1, · · · , T , we use (3.31) to obtain

pt = E(
T−t∑
i=1

bidt+i + bT−tpT |It).(3.32)

Let Yt =
∑T−t

i=1 bidt+i + bT−tpT . Then we have data on Yt from t = 1 to t = T when

we choose a reasonable number for the discount rate b. We can estimate the variance

of pt and the variance of Yt, and compare them to form a test statistic.4

3.2.2 Parameterizing Expectations

As discussed in Section 3.1, conditional expectations allow for nonlinear forecasting

rules. For example, consider E(Y |I) for a random variable Y and an information set

I generated from a random variable X. Then E(Y |I) can be written as a function of

X : E(Y |I) = f(X). The function f(·) can be nonlinear here. In most applications

involving nonlinear forecasting rules, the functional form of f(·) is not known. In

order to simulate rational expectations models, it is often necessary to have a method

to estimate f(·).

Marcet’s (1989) parameterizing expectations method (also see den Haan and

Marcet, 1990) is based on the fact that the conditional expectation is a projection, and

thus minimizes the mean square error. We take a class of functions that approximate

any function. For example, take a class of polynomial functions and let fN(X) =

a0 + a1X + a2X
2 + · · ·+ aNX

N . We choose a0, · · · , aN to minimize the mean square

4There are some problems with this procedure. One problem is nonstationarity of pt and Yt. For
more detailed explanation of volatility tests, see Campbell, Lo, and MacKinlay (1997).
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error, E[(Y −fN(X))2]. Intuitively, fN(·) should approximate f(X) for a large enough

N . This method is used to simulate economic models with rational expectations.

3.2.3 Noise Ratio

In econometrics, we often test an economic model with test statistics whose probabil-

ity distributions are known under the null hypothesis that the model is true. Hansen’s

J test, which will be discussed in Chapter 9, is an example. Given that all economic

models are meant to be approximations, however, it seems desirable to measure how

good a model is in approximating reality. Durlauf and Hall (1990) and Durlauf and

Maccini (1995) propose such a measure called the noise ratio.5

Consider an economic model which states

E(g(Y)|I) = 0(3.33)

for an information set I and a function g(·) of a random vector Y. For example,

let S be the spot exchange rate of a currency in the next period, F be the forward

exchange rate observed today for the currency to be delivered in the next period,

g(S, F ) = S−F , and I be the information set available to the economic agents today.

Then under the assumption of risk neutral investors, we obtain (3.33).

Let ν = g(Y) − E(g(Y)|I). If the model is true, then g(Y) = ν. Since this

model is an approximation, however, g(Y) deviates from ν. Let N be the deviation:

N = g(Y) − ν, which is called the model noise. A natural measure of how well the

model approximates reality is V ar(N). Durlauf and Hall (1990) propose a method

to estimate a lower bound of V ar(N) using η = V ar(Ê(g(Y)|H)), where H is an

information set generated from some variables in I.6

5See Konuki (1999) for an application of the noise ratio to foreign exchange rate models.
6For example, in the forward exchange rate model mentioned above, some lagged values of S−F
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Using the law of iterated projections7, we have Ê(ν|H) = 0. Thus, Ê(g(Y)|H) =

Ê(N |H), and therefore η = V ar(Ê(N |H)). Because N = Ê(N |H) + (N − Ê(N |H)),

and the forecast error, N−Ê(N |H), is orthogonal to Ê(N |H), E(N2) = E[(Ê(N |H))2]+

E[(N−Ê(N |H))2]. Since E[(N−Ê(N |H))2] ≥ 0, E(N2) ≥ E[(Ê(N |H))2]. Therefore,

V ar(N) = E(N2) − (E(N))2 ≥ E[(Ê(N |H))2] − {E[Ê(N |H)]}2 = η.8 Thus η is a

lower bound of V ar(N).

In a sense, η is a sharp lower bound. Since we do not know much about the model

noise, N , it may or may not be in H. If N happens to be in H, then Ê(N |H) = N .

Therefore, in this case V ar(N) = η.

The noise ratio, NR, is defined by NR = η
V ar(g(Y))

. Since Ê(g(Y)|H) is orthog-

onal to g(Y)− Ê(g(Y)|H),

V ar(g(Y)) = η + V ar(g(Y)− Ê(g(Y)|H)).(3.34)

Therefore, the 0 ≤ NR ≤ 1.

Appendix

3.A Introduction to Hilbert Space

This Appendix explains Hilbert space techniques used in this book.9 Projections

explained in this chapter are defined in a Hilbert space. In Appendix B, we will

consider another Hilbert space, which provides the foundation for the lag operator

methods and the frequency domain analysis which are useful in macroeconomics and

time series econometrics.

and a constant can be used to generate a linear information set H.
7We assume that the second moment exists and is finite. Therefore, the conditional expectation

is a projection.
8Here, we assumed that the constants are included in H, so that E(S) = E[Ê(S|H)].
9All proofs of the results can be found in Luenberger (1969) or Hansen and Sargent (1991).
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A pre-Hilbert space is a vector space on which an inner product is defined.

The inner product is used to define a distance. If all Cauchy sequences of a pre-

Hilbert space converge, then it is said to be complete. A Hilbert space is a complete

pre-Hilbert space. One reason why a Hilbert space is useful is that the notion of

orthogonality can be defined with the inner product. Since a Hilbert space is complete,

we can prove that the limit of a sequence exists once we prove that the sequence is

Cauchy. For example, this technique can be used to prove that a projection can be

defined.

Section 3.A.1 reviews definitions regarding vector spaces. Section 3.A.2 gives

an introduction to Hilbert space.

3.A.1 Vector Spaces

Given a set of scalars K (either the real line, R, or the complex plane, C )10, a vector

space (or a linear space) X on K is a set of elements, called vectors, together with two

operations (addition and scalar multiplication) which satisfy the following conditions:

For any x,y, z in X and for any α, β in K , we require

x+ y = y + x (commutative law)(3.A.1)

(x+ y) + z = x+ (y + z) (associative law)(3.A.2)

There is a null vector 0 in X such that x+ 0 = x for all x in X .(3.A.3)

α(x+ y) = αx+ αy
(α + β)x = αx+ βx

}
(distributive laws)(3.A.4)

(αβ)x = α(βx) (associative law)(3.A.5)

0x = 0, 1x = x.(3.A.6)

10In general, an additive group X for which scalar multiplication satisfies (3.A.4)-(3.A.6) for any
field K is a vector space on K . In this book K is either the real line or the complex plane.



3.A. INTRODUCTION TO HILBERT SPACE 45

Using α = −1, we define x− y = x+ (−1)y. In this Appendix, we give examples of

vector spaces on R, but state results that are applicable when K = C . Examples of

vector spaces on C are given in Appendix B.

A nonempty subset H of a vector space X is called a (linear) subspace of X if

every vector of the form αx+ βy is in H whenever x and y are both in H and α and

β are in K . A subspace always contains the null vector 0, and satisfies conditions

(3.A.1)-(3.A.6). Hence a subspace is itself a vector space.

If a subset H of X is not a subspace, it is often convenient to construct the

smallest subspace containing H. For this purpose, we use linear combinations of

vectors in H. A linear combination of the vectors x1,x2, · · · ,xn is a sum of the form

α1x1 + α2x2 + · · · + αnxn where αi is a scalar (i = 1, · · · , n). The set consisting of

all vectors in X which are linear combinations of vectors in H is called the (linear)

subspace generated by H.

A normed vector space is a vector space X on which a norm is defined. The

norm is a real-valued function that maps each element of x in X into a real number

∥x∥, which satisfies

∥x∥ ≥ 0 for all x in X and ∥x∥ = 0 if and only if x = 0.(3.A.7)

∥x+ y∥ ≤ ∥x∥+ ∥y∥ (The triangle inequality)(3.A.8)

∥αx∥ = |α| ∥x∥ for all α in K and x in X .(3.A.9)

A norm can be used to define a metric d on X by d(x,y) = ∥x− y∥.

A sequence {xn}∞n=1 in a normed vector space converges to x0 if the sequence

{∥xn − x0∥}∞n=1 of real numbers converges to zero, which is denoted by xn → x0 or

limxn = x0. A sequence {xn}∞n=1 in a normed vector space is a Cauchy sequence if
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for any ϵ > 0, there exists an integer N such that ∥xn−xm∥ < ϵ for all n,m > N . In

a normed vector space, every convergent sequence is a Cauchy sequence. A space in

which every Cauchy sequence has a limit is said to be complete. A complete normed

vector space is called a Banach space.

Example 3.A.1 The real line, R, is a vector space on K = R with addition and

scalar multiplication defined in the usual way. When the norm of a real number is

defined as its absolute value, R is a Banach space.

Example 3.A.2 Vectors in the space consist of sequences of n real numbers, Rn,

which is a vector space on R when x+y for x = (x1, x2, · · · , xn)
′ and y = (y1, y2, · · · , yn)′

is defined by (x1+y1, x2+y2, · · · , xn+yn)
′ and αx for α in R is defined by (αx1, αx2, · · · , αxn)

′.

When we define a norm of x as ∥x∥ =
√∑n

i=1 x
2
i ,R

n is a Banach space.

3.A.2 Hilbert Space

A pre-Hilbert space is a vector space X on K for which an inner product is defined.

The inner product is a scalar-valued function that maps each element of (x,y) in

X × X into an element (x|y) in K , which satisfies

(x|y) = (y|x)(3.A.10)

(x+ z |y) = (x|y) + (z|y)(3.A.11)

(αx|y) = α(x|y)(3.A.12)

(x|x) ≥ 0 and (x|x) = 0 if and only if x = 0.(3.A.13)

for any x,y, z in X and α in K . The bar on the right side on (3.A.10) denotes

complex conjugation, which can be ignored if K is R. By (3.A.10), (x|x) is real for

each x even when K is C .



3.A. INTRODUCTION TO HILBERT SPACE 47

A norm can be defined from an inner product by ∥x∥ =
√

(x|x). Thus a pre-

Hilbert space is a normed vector space. A complete pre-Hilbert space is called a

Hilbert space.

Example 3.A.3 When we define (x|y) =
∑n

i=1 xiyi, R
n is a Hilbert space on R.

The following Hilbert space of random variables with finite second moments is

the one we used in Chapter 3.

Example 3.A.4 Let (S,F, P rob) be a probability space. Let L2(Prob) = {h : h

is a (real-valued) random variable and E(|h|2) < ∞}. Then with an inner product

defined by (h1|h2) = E(h1h2), L
2(Prob) is a Hilbert space on R. If two different

random variables h1 and h2 satisfy E[(h1 − h2)
2] = 0, then h1 and h2 are the same

element in this space. If E[(h1 − h2)
2] = 0, then h1 = h2 with probability one. Hence

this definition does not cause problems for most purposes. In this space, the distance

is defined by the mean square, so the convergence in this space is the convergence in

mean square.

One reason why an inner product is useful is that we can define the notion of

orthogonality. In a Hilbert space, two vectors x and y are said to be orthogonal if

(x|y) = 0. A vector x is said to be orthogonal to a set H if x is orthogonal to each

element h in H. Some useful results concerning the inner product are:11

Proposition 3.A.1 (The Cauchy-Schwarz Inequality) For all x, y in a Hilbert space,

|(x|y)| ≤ ∥x∥ ∥y∥. Equality holds if and only if x = λy for some λ in K , or y = 0.

11These three propositions hold for a pre-Hilbert space. See Luenberger (1969, p.47 and p.49).
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Proposition 3.A.2 (Continuity of the Inner Product) Suppose that xn → x and

yn → y in a Hilbert space. Then (xn|yn) → (x|y).

Proposition 3.A.3 If x is orthogonal to y in a Hilbert space, then ∥x + y∥2 =

∥x∥2 + ∥y∥2.

Example 3.A.5 In L2(Prob), the Cauchy-Schwarz Inequality becomes |E(xy)| ≤√
E(x2)

√
E(y2) for any random variables with finite second moments. Proposition

3.A.3 states that if x and y satisfy E(xy) = 0, then E[(x+ y)2] = E(x2) + E(y2).

Projections can be defined on a Hilbert space due to the following result:

Proposition 3.A.4 (The Classical Projection Theorem) Let X be a Hilbert space

and H be a closed linear subspace of X . Corresponding to any vector x in X , there

is a unique vector h0 in H such that ∥x− h0∥ ≤ ∥x− h∥. Furthermore, a necessary

and sufficient condition that h0 in H be the unique minimizing vector is that x− h0

be orthogonal to H.

Given a closed linear space H, we define a function Ê(·|H) on X by Ê(x|H) = h0

where h0 is an element in H such that x − h0 is orthogonal to H. Ê(x|H) is the

projection of x onto H. The projection defined in Section 3.1 in L2(Prob) is one

example.

If a sequence {et}∞t=1 in a Hilbert space satisfies ∥et∥ = 1 for all t and (et|es) = 0

for all t ̸= s, then it is said to be an orthonormal sequence. We are concerned with

an infinite series of the form
∑∞

t=1 αtet. An infinite series of the form
∑∞

t=1 xt is

said to converge to the element x in a Hilbert space if the sequence of partial sums

sT =
∑T

t=1 xt converges to x. In that case we write x =
∑∞

t=1 xt. A necessary
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and sufficient condition for an infinite series of orthonormal sequence to converge in

Hilbert space is known (see Luenberger, 1969, p.59):

Proposition 3.A.5 Let {ej}∞j=1 be an orthonormal sequence in a Hilbert space X . A

series of the form
∑∞

j=1 αjej converges to an element x in X if and only if
∑∞

j=1 |αj|2 <

∞, and in that case we have αj = (x|ej).

Example 3.A.6 Applying the above proposition in L2(Prob), we obtain a necessary

and sufficient condition for an MA(∞) representation
∑∞

j=0 bjvt−j to converge for a

white noise process {vt−j}∞j=0 with E(v2t ) = σ2
v > 0. Define et =

vt
σv
, and αj = bjσv,

so that {et−j}∞j=0 is orthonormal because E(e2t ) = 1 and E(etes) = 0 for t ̸= s. From

the above proposition,
∑∞

j=1 bjvj =
∑∞

j=1 αjej converges in L2(Prob), if and only if∑∞
j=1 |αj|2 < ∞. Since

∑∞
j=1 |αj|2 < ∞ if and only if

∑∞
j=1 |bj|2 < ∞,

∑∞
j=1 bjvj

converges in mean square if and only if {bj}∞j=1 is square summable.

Given an orthonormal sequence {ej}∞j=1, we started from a square summable

sequence {αj} and constructed x =
∑∞

j=1 αjej in X in the above proposition. We

now start with a given x in X and consider a series

∞∑
j=1

(x|ej)ej.(3.A.14)

The series is called the Fourier series of x relative to {ej}∞j=1, and (x|ej) is called the

Fourier coefficient of x with respect to ej.

In general, x is not equal to its Fourier series. Given a subset H of a Hilbert

space, the closed subspace generated by H is the closure of the linear subspace gener-

ated by H. Let M be the closed subspace generated by {ej}∞j=1. If x is in M, then x

is equal to its Fourier series as implied by the next proposition:



50 CHAPTER 3. FORECASTING

Proposition 3.A.6 Let x be an element in a Hilbert space X and {ej}∞j=1 be an

orthonormal sequence in H. Then the Fourier series
∑∞

j=1(x|ej)ej converges to an

element x̂ in the closed subspace M generated by {ej}∞j=1. The difference vector x− x̂

is orthogonal to M .

This proposition shows that the Fourier series of x is the projection of x onto M :

Ê(x|M ) =
∑∞

j=1(x|ej)ej.12

Exercises

3.1 Let St be a spot exchange rate at time t and Ft be a forward exchange rate

observed at time t for delivery of one unit of a currency at t + 1. Assume that

Ft = E(St+1|It) where It is the information set available for the economic agents at t.

Prove that V ar(Ft) ≤ V ar(St+1).

3.2 Let in,t be the n year interest rate observed at time t. The expectations hypoth-

esis of the term structure of interest rates states that in,t = E(At|It) where

At =
1

n

n−1∑
τ=0

i1,t+τ ,(3.E.1)

where It is the information available at time t. Imagine that data on interest rates

clearly indicate that V ar(in,t) ≤ V ar(At). Does the data support the expectations

theory? Explain your answer.

3.3 Let pt be the real stock price, dt be the real dividend, and b be the constant ex

ante discount rate. Assume that pt and dt are stationary with zero mean and finite

12See Luenberger (1969, p.60).
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second moments. Let

pet =
∞∑
τ=1

bτE(dt+τ |It),(3.E.2)

where It is the information set available in period t that includes the present and past

values of pt and dt. Let Ê(·|Ht) be the linear projection onto an information set Ht.

Define the model noise Nt by

Nt = pt − pet .(3.E.3)

Let η = V ar(Ê(Nt|Ht)).

(a) Assume that Ht is generated by {dt}. Show that η ≤ V ar(Nt) for any noise Nt.

(b) Assume that Ht is generated by {dt, dt−1, dt−2}. Show that η ≤ V ar(Nt) for any

noise Nt.

3.4 Derive (3.34) in the text.
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