
Chapter 4

ARMA AND VECTOR
AUTOREGRESSION
REPRESENTATIONS

4.1 Autocorrelation

The Wold representation of a univariate process {Xt : −∞ < t < ∞} provides

us with a description of how future values of Xt depend on its current and past

values (in the sense of linear projections). A useful description of this dependence is

autocorrelation. The j-th autocorrelation of a process (denoted by ρj) is defined as

the correlation between Xt and Xt−j:

Corr(Xt, Xt−j) =
Cov(Xt, Xt−j)√

V ar(Xt)
√

V ar(Xt−j)
.

In general, ρj depends on t. If the process is covariance stationary, ρj does not depend

on t, and is equal to its j-th autocovariance divided by its variance:

ρj =
γj
γ0

,(4.1)

where γj = Cov(Xt, Xt−j) is the j-th autocovariance, and γ0 = V ar(Xt). For covari-

ance stationary processes, γj = γ−j, hence ρj = ρ−j. When we view ρj as a function

of j, it is called the autocorrelation function. Note that ρ0 = 1 for any process by
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definition. For a white noise process, ρj = 0 for j ̸= 0. The autocorrelation function

is a population concept, and can be estimated by its sample counterpart as explained

in Chapter 5.

4.2 The Lag Operator

In order to study ARMA representations, it is convenient to use the lag operator,

denoted by the symbol L. When the operator is applied to a sequence {Xt : −∞ <

t < ∞} of real numbers, it results in a new sequence {Yt : −∞ < t < ∞}, where the

value of Y at date t is equal to the value X at date t− 1:

Yt = Xt−1,

and we write

LXt = Xt−1.(4.2)

When we apply the lag operator to a univariate stochastic process {Xt : −∞ < t <

∞}, the lag operator is applied to all sequences of real numbers {Xt(ω) : −∞ <

t < ∞} given by fixing the state of the world ω to generate a new stochastic process

{Xt : −∞ < t < ∞} that satisfies Xt−1(ω) = LXt(ω) for each ω.

When the lag operator is applied twice to a process {Xt : −∞ < t < ∞}, we

write L2Xt = Xt−2. In general, for any integer k > 0, LkXt = Xt−k. It is convenient

to define L0 = 1 as the identity operator that gives L0Xt = Xt, and to define L−k as

the operator that moves the sequence forward: L−kXt = Xt+k for any integer k > 0.

We define a p-th order polynomial in the lag operator B(L) = B0+B1L+B2L
2+

· · ·+BpL
p, where B1, · · · , Bp are real numbers, as the operator that yields

B(L)Xt = (B0 +B1L+B2L
2 + · · ·+BpL

p)Xt = B0Xt +B1Xt−1 + · · ·+BpXt−p.
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When an infinite sum B0Xt +B1Xt−1 +B2Xt−2 + · · · converges in some sense (such

as convergence in L2),(?????? Need to use other expressions instead of L2 because we

use L for the lag operator in this paragraph) we write B(L) = B0+B1L+B2L
2+· · · ,

Masao
needs to
check this!

and

B(L)Xt = (B0 +B1L+B2L
2 + · · · )Xt = B0Xt +B1Xt−1 +B2Xt−2 + · · · .

For a vector stochastic process {Xt : −∞ < t < ∞}, a polynomial in the lag

operator B0 +B1L+B2L
2 + · · ·+BpL

p for matrices B0, · · · ,Bp with real numbers

is used in the same way, so that

(B0 +B1L+B2L
2 + · · ·+BpL

p)Xt = B0Xt +B1Xt−1 + · · ·+BpXt−p.

Using the lag operator, Xt = Φ0et +Φ1et−1 + · · · can be expressed as

Xt = Φ(L)et,(4.3)

where Φ(L) = Φ0 +Φ1L+Φ2L
2 + · · · .

4.3 Moving Average Representation

If Xt is linearly regular and covariance stationary with mean µ, then it has a Moving

Average (MA) representation of the form Xt = µ+ Φ(L)et or

Xt = µ+ Φ0et + Φ1et−1 + Φ2et−2 + · · · ,(4.4)

where Φ0 = 1. If Φ(L) is a polynomial of infinite order, Xt is a moving average

process of infinite order (denoted MA(∞)). If Φ(L) is a polynomial of order q, Xt is

a moving average process of order q (denoted MA(q)). In this section, we study how

some properties of Xt depend on Φ(L).
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An MA(1) process Xt has a representation Xt = µ+ et + Φet−1 as in Example

2.8, where et is a white noise process that satisfies (2.10), and µ and Φ are constants.

The mean, variance, and autocovariance of this process are given in Example 2.8,

E(Xt) = µ, and its k-th autocorrelation is ρk =
Φ

1+Φ2 if |k| = 1, and ρk = 0 if |k| > 1.

An MA(q) process Xt satisfies

Xt = µ+ et + Φ1et−1 + · · ·+ Φqet−q,(4.5)

where et is a white noise process that satisfies (2.10), and µ and Φ1, · · · ,Φq are real

numbers. A moving average process is covariance stationary for any (Φ1, · · · ,Φq).
1

Using (2.10), we obtain the mean of an MA(q) process:

E(Xt) = µ,(4.6)

its variance:

γ0 = E[(Xt − µ)2] = σ2(1 + Φ2
1 + · · ·+ Φ2

q),(4.7)

and its j-th autocovariance:

γj = E[(Xt − µ)(Xt−j − µ)](4.8)

=

{
σ2(Φj + Φj+1Φ1 + · · ·+ ΦqΦq−j) for |j| ≤ q
0 for |j| > q

.

Hence the j-th autocorrelation of an MA(q) process is zero when |j| > q.

When a vector stochastic process {· · · ,X−2,X−1,X0,X1, · · · ,Xt, · · · } can be

written as

Xt = µ+Φ0et +Φ1et−1 + · · ·+Φqet−q,(4.9)

1We often impose conditions on (Φ1, · · · ,Φq) as we will discuss later in this chapter.
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for a white noise process et, then Xt has a q-th order (one-sided) moving average

(MA(q)) representation. For any Φ0, · · · ,Φq, a process with MA(q) representation is

covariance stationary. As q goes to infinity, an MA(∞) representation

Xt = µ+Φ0et +Φ1et−1 + · · ·(4.10)

is well defined and covariance stationary if
∑∞

j=0 |Φi
j|2 < ∞ for the i-th row of Φj,

Φi
j. In this case, Xt has a moving average representation of infinite order.

4.4 The Wold Representation

Let {· · · ,X−2,X−1,X0,X1, · · · ,Xt, · · · } be a covariance stationary n-dimensional

vector process with mean zero. Let Ht be the linear information set generated by

the current and past values of Xt.
2 We use the notation, Ê(y|Xt,Xt−1,Xt−2, · · · )

for Ê(y|Ht). Note that the information set grows larger over time and the sequence

{Ht : −∞ < t < ∞} is increasing in the sense that Ht ⊂ Ht+1 for all t. Let H−∞ be

the set of random variables that are in Ht for all t: H−∞ =
∩∞

n=1Ht−n. Then 0 = 0′Xt

is a member of Ht. Therefore, the constant zero is always a member of H−∞. The

stochastic process Xt is linearly regular if H−∞ contains only the constant zero when

H−∞ =
∩∞

n=1Ht−n, in which Ht is generated by the current and past values of Xt.

The stochastic process Xt is linearly deterministic if Ht = H−∞ for all t. For example,

if Xt is an n-dimensional vector of constants, then Xt is linearly deterministic.

We can now state the Wold decomposition theorem, which states that any

covariance stationary process can be decomposed into linearly regular and linearly

deterministic components:

2We only define the linear information set for a finite number of random variables. See Appendix
3.A for further explanation.
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Proposition 4.1 (The Wold Decomposition Theorem) Let {· · · ,X−1,X0,X1, · · · ,Xt, · · · }

be a covariance stationary vector process with mean zero. Then it can be written as

Xt =
∞∑
j=0

Φjet−j + gt,(4.11)

where Φ0 = In,
∑∞

j=0 |Φi
j|2 < ∞ for the i-th row of Φj, Φ

i
j, and

et = Xt − Ê(Xt|Xt−1,Xt−2,Xt−3, · · · )(4.12)

and

gt = Ê(Xt|H−∞).(4.13)

It can be shown that
∑∞

j=0Φjet−j is a linearly regular covariance stationary

process and gt is linearly deterministic. Hence if Xt is not linearly regular, it is

possible to remove gt and work with a linearly regular process as long as gt can be

estimated.

Proposition 4.2 (The Wold Representation) Let {· · · ,X−1,X0,X1, · · · ,Xt, · · · } be

a linearly regular covariance stationary vector process with mean zero. Then it can

be written as

Xt =
∞∑
j=0

Φjet−j,(4.14)

where Φ0 = In,
∑∞

j=0 |Φi
j|2 < ∞ for the i-th row of Φj, Φ

i
j, and et is defined by

(4.12).

The Wold representation gives a unique MA representation when the MA inno-

vation et is restricted to the form given by Equation (4.12). There may exist infinitely
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many other MA representations when the MA innovation is not restricted to be given

by (4.12) as we will discuss below.

In many macroeconomic models, stochastic processes that we observe (real

GDP, interest rates, stock prices, etc.) are considered to be generated from the

nonlinear function of underlying shocks. In this sense, the processes in these models

are nonlinear, but Proposition 4.1 states that even a nonlinear stochastic process has

a linear moving average representation as long as it is linearly regular and covariance

stationary.

In order to give a sketch of a proof of the Wold Representation Theorem, con-

sider a linearly regular stochastic process {Xt}∞−∞ that may not be necessarily a linear

function of underlying shocks. Define ut = Xt − Ê(Xt|Ht−1), and
Youngsoo
needs to
check this!

Ut = {z|z = but for b ∈ R}(4.15)

where Ht is the linear information set generated by the current and past values of Xt.

Then, we have the following relationship

Ht = Ht−1 +Ut,(4.16)

and each element of Ht is orthogonal to each element of Ut. In this case,

Ê(h|Ht) = Ê(h|Ht−1 +Ut)(4.17)

= Ê(h|Ht−1) + Ê(h|Ut)

for any h. Because Ht−1 = Ht−2 +Ut−1, we have

Ht = Ht−2 +Ut +Ut−1,(4.18)

and by continuing this process, we have

Ht =
∞∑
j=0

Ut−j.(4.19)
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Therefore, Xt can be written as

Xt = Ê(Xt|Ht) = Ê(Xt|
∞∑
j=0

Ut−j) =
∞∑
j=0

Φjut−j,(4.20)

which is the Wold representation of Xt.

Example 4.1 Suppose that ut is a Gaussian white noise with variance of 1. Let

Xt = u2
t − 1. Then the Wold representation of Xt is Xt = et, where et = u2

t − 1.

In this example, Xt is a nonlinear transformation of a Gaussian white noise. The

shock that generates Xt, ut, is normally distributed. However, the innovation in

its Wold representation, et, is not normally distributed. Thus, the innovation in the

Wold representation of a process can have a different distribution from the underlying

shock that generates the process.

Even when the underlying shocks that generate processes are i.i.d., the innova-

tions in the Wold representation may not be i.i.d. as in the next example.

Example 4.2 Suppose that ut is an i.i.d Gaussian white noise with variance of 1, so

that E(u3
t ) = 0. Let Xt be generated by Xt = ut + Φ(u2

t−1 − 1). Then E(XtXt−1) =

E[utut−1 +Φu3
t−1 − Φut−1 +Φutu

2
t−2 − Φut +Φ2(u2

t−1 − 1)(u2
t−2 − 1)] = 0. Hence the

Wold representation of Xt is Xt = et, where et = ut + Φ(u2
t−1 − 1).

Note that the Wold representation innovation et in this example is serially un-

correlated, but not i.i.d. because et(= ut+Φu2
t−1) and et−1(= ut−1+Φu2

t−2) are related

nonlinearly through the Φu2
t−1 and ut−1 terms.

The Wold representation states that any linearly regular covariance stationary

process has an MA representation. Therefore, it is useful to estimate an MA rep-

resentation in order to study how linear projections of future variables depend on
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their current and past values. Higher order MA representations and vector MA rep-

resentations are hard to estimate, however, and it is often convenient to consider AR

representations and ARMA representations, which are closely related to MA repre-

sentations.

4.5 Autoregression Representation

A process Xt, which satisfies B(L)Xt = δ + et with B0 = 1 or

Xt +B1Xt−1 +B2Xt−2 + · · · = δ + et

for a white noise process et, is an autoregression. If B(L) is a polynomial of infinite

order, Xt is an autoregression of infinite order (denoted AR(∞)). If B(L) is a poly-

nomial of order p, Xt is an autoregression of order p (denoted AR(p)). In this section,

we study how some properties of Xt depend on B(L).

4.5.1 Autoregression of Order One

Consider a process Xt that satisfies

Xt = δ +BXt−1 + et for t ≥ 1,(4.21)

where et is a white noise process with variance σ2 and X0 is a random variable that

gives an initial condition for (4.21). Such a process is called an autoregression of order

1, denoted by AR(1). It is often convenient to consider (4.21) in a deviation-from-

the-mean form:

Xt − µ = B(Xt−1 − µ) + et for t ≥ 1,(4.22)
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where µ = δ
1−B

. Substituting (4.22) recursively, we obtain X1 − µ = B(X0 − µ) + e1

and X2 − µ = B(X1 − µ) + e2 = B2(X0 − µ) +Be1 + e2, so that

Xt − µ = Bt(X0 − µ) +Bt−1e1 +Bt−2e2 + · · ·+Bet−1 + et for t ≥ 1.(4.23)

In this way, Xt is defined for any real number B.

Suppose that X0 is uncorrelated with e1, e2, · · · . When the absolute value of B

is greater than or equal to one, then the variance of Xt increases over time. Hence

Xt cannot be covariance stationary. In macroeconomics, the case in which B = 1 is

of importance, and will be discussed in detail in Chapter 13.

Consider the case where the absolute value of B is less than one. In this case,

BtX0(ω) becomes negligible as t goes to infinity for a fixed ω. As seen in Example 2.9,

however, the process Xt is not covariance stationary in general. Whether or not Xt

is stationary depends upon the initial condition X0. In order to choose X0, consider

an MA process

Xt = µ+ et +Bet−1 +B2et−2 + · · · ,(4.24)

and choose the initial condition for the process Xt in (4.21) by

X0 = µ+ e0 +Be−1 +B2e−2 + · · · .(4.25)

When this particular initial condition is chosen, Xt is covariance stationary.

With the lag operator, (4.22) can be written as

(1−BL)(Xt − µ) = et.(4.26)

We define the inverse of (1−BL) as

(1−BL)−1 = 1 + BL+B2L2 +B3L3 + · · · ,(4.27)
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when the absolute value of B is less than one. When a process Xt has an MA

representation of the form (4.24), we write

Xt = µ+ (1−BL)−1et,(4.28)

which is the MA(∞) representation of an AR(1) process.

4.5.2 The p-th Order Autoregression

A p-th order autoregression satisfies

Xt = δ +B1Xt−1 +B2Xt−2 + · · ·+BpXt−p + et for t ≥ 1.(4.29)

The stability condition is that all the roots of

1−B1z −B2z
2 − · · · −Bpz

p = 0(4.30)

are larger than one in absolute value, or equivalently, all the roots of

zp −B1z
p−1 −B2z

p−2 − · · · −Bp = 0(4.31)

are smaller than one in absolute value.

Consider, for instance, the special case of a AR(1) process with B1 = 1 and

X0 = 0:

Xt = Xt−1 + et(4.32)

= e1 + e2 + · · ·+ et−1 + et for t ≥ 1,(4.33)

where E(Xt) = 0 and E(Xt−iXt−j) = σ2 for i = j. Note that V ar(X1) = σ2,

V ar(X2) = 2σ2, · · · , V ar(Xt) = tσ2. Since the variance of Xt varies over time, Xt is

nonstationary. Note also that its first difference is stationary since et(= Xt −Xt−1)
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is stationary. Such a process is called difference stationary. When a (possibly infinite

order) polynomial in the lag operator Φ(L) = Φ0 + Φ1L + Φ2L
2 + · · · is given, we

consider a complex valued function Φ(z−1) = Φ0 +Φ1z
−1 +Φ2z

−2 + · · · by replacing

the lag operator L by a complex number z. Consider a condition

Φ(z) = Φ0 + Φ1z + Φ2z
2 + · · · = 0.(4.34)

If a complex number zi satisfies the condition (4.34), then zi is a zero of Φ(z). We

also say that zi is a root of the equation Φ(z) = 0.

4.6 ARMA

An ARMA(p, q) process satisfies

Xt = δ +B1Xt−1 +B2Xt−2 + · · ·+BpXt−p + et + θ1et−1 + θ2et−2 + · · · .(4.35)

If B(1) = 1−B1 − · · · −Bp ̸= 1, we have the deviation-from-the-mean form

B(L)(Xt − µ) = θ(L)et,(4.36)

where µ = δ
B(1)

. We define the inverse of B(L) = B0 + B1L + . . . + BpL
p as the lag

polynomial B(L)−1 such that
Kyungho
needs to

check this!

B(L)−1B(L) = 1.(4.37)

As long as B0 ̸= 0, B(L)−1 exists always. However, B(L)−1εt may or may not be

defined. Provided that the p-th order polynomial B(z) satisfies stability conditions,

the ARMA(p, q) process yields the MA(∞) representation

Xt = µ+ Φ(L)et,(4.38)



4.7. FUNDAMENTAL INNOVATIONS 65

where Φ(L) = B(L)−1θ(L) = Φ0 + Φ1L+ θ2L
2 + · · · and

∑∞
j=0 |θj|2 ≤ ∞.

On the other hand, if θ(z) satisfies stability conditions that all roots of θ(z) = 0

lie outsize the unit circle, then θ(L) is invertible and the ARMA(p, q) process yields

the AR(∞) representation3

θ(L)−1B(L)Xt = δ∗ + et,(4.39)

where δ∗ = δ
θ(1)

. Therefore, if both B(z) and θ(z) satisfy stability conditions, then

the ARMA(p, q) process has both the MA(∞) and AR(∞) representations.

4.7 Fundamental Innovations

Let Xt be a covariance stationary vector process with mean zero that is linearly

regular. Then the Wold representation in (4.14) gives an MA representation. There

are infinitely many other MA representations.

Example 4.3 let ut be a white noise, and Xt = ut. Then Xt = ut is an MA

representation. Let u∗
t = ut+1. Then Xt = u∗

t−1 is another MA representation.

In this example, another MA representation is obtained by adopting a different dating

procedure for the innovation.

It is often convenient to restrict our attention to the MA representations for

which the information content of the current and past values of the innovations is the

same as that of the current and past values of Xt. Let

Xt =
∞∑
j=0

Φjut−j = Φ(L)ut(4.40)

3Without any loss of generality, we assume that there are no common roots of B(z) = 0 and
θ(z) = 0. In such a case, we can write the ARMA(p, q) process by the ARMA(p−m, q−m) process
that has no common roots, where m is the number of common roots. See Hayashi (2000, p. 382)
for further discussion.
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be an MA representation forXt. Let Ht be the linear information set generated by the

current and past values of Xt, and Hu
t be the linear information set generated by the

current and past values of ut. Then Ht ⊂ Hu
t because of (4.40). The innovation process

ut is said to be fundamental if Ht = Hu
t . The innovation in the Wold representation

is fundamental.

In Example 4.3, Xt = ut is a fundamental MA representation while Xt = u∗
t−1

is not. As a result of the dating procedure used for Xt = u∗
t−1, the information set

generated by the current and past values of u∗
t : {u∗

t , u
∗
t−1, · · · } is equal to Ht+1, and

is strictly larger than the information set generated by Ht.

The concept of fundamental innovations is closely related to the concept of

invertibility. If the MA representation (4.40) is invertible, then ut = Φ(L)−1Xt.

Therefore, Hu
t ⊂ Ht. Since (4.40) implies Ht ⊂ Hu

t , Ht = Hu
t . Thus if the MA

representation (4.40) is invertible, then ut is fundamental.

If all the roots of det[Φ(z)] = 0 lie outside the unit circle, thenΦ(L) is invertible,

and ut is fundamental. If all the roots of det[Φ(z)] = 0 lie on or outside the unit circle,

then Φ(L) may not be invertible, but ut is fundamental. Thus for fundamentalness,

we can allow some roots of det[Φ(z)] = 0 to lie on the unit circle.

In the univariate case, if Xt = Φ(L)ut and all the roots of Φ(z) = 0 lie on or

outside the unit circle, then ut is fundamental. For example, let Xt = ut + Φut−1. If

|Φ| < 1, then this MA representation is invertible, and ut is fundamental. If Φ = 1

or if Φ = −1, then this MA representation is not invertible, but ut is fundamental. If

|Φ| > 1, then ut is not fundamental.

The MA representations with fundamental innovations are useful; it is easier to

express projections of variables onto Ht with them than if they had non-fundamental
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innovations. For example, let Xt be a univariate process with an MA(1) represen-

tation: Xt = ut + Φut−1. It is natural to assume that economic agents observe

Xt, but not ut. Therefore, the economic agents’ forecast for Xt+1 can be mod-

eled as Ê(Xt+1|Ht) rather than Ê(Xt+1|Hu
t ). If |Φ| ≤ 1, ut is fundamental, and

Ê(Xt+1|Ht) = Ê(Xt+1|Hu
t ) = Φut. On the other hand, if |Φ| > 1, ut is not funda-

mental, and Ê(Xt+1|Ht) ̸= Ê(Xt+1|Hu
t ) = Φut, and there is no easy way to express

Ê(Xt+1|Ht).

4.8 The Spectral Density

Consider a covariance stationary process Yt such that Yt − E(Yt) is linearly regular.

Then Yt−E(Yt) = b(L)et =
∑∞

j=0 bjet−j for a square summable {bj} and a white noise

process et such that E(e2t ) = 1 and E(etes) = 0 for t ̸= s. Its k-th autocovariance

Φ(k) = E[(Yt−E(Yt))(Yt−k−E(Yt−k)
′] does not depend on date t. For a real number

r, define

exp(ir) = cos(r) + i sin(r),(4.41)

where i =
√
−1. The spectral density of Yt, f(λ) is defined by

f(λ) = (
∞∑
j=0

bj exp(−iλj))(
∞∑
j=0

bj exp(iλj)).(4.42)

Then

f(λ) =
1

2π

∞∑
k=−∞

Φ(k) exp(iλk)(4.43)

for a real number λ (−π < λ < π) when the autocovariances are absolutely summable.

The spectral density is a function of λ, which is called the frequency. Using the



68 CHAPTER 4. ARMA AND VAR

properties of the cos and sin functions and the fact that Φ(k) = Φ(−k), it can be

shown that

f(λ) =
1

2π
Φ(0) + 2

∞∑
k=1

Φ(k) cos(λk),(4.44)

where f(λ) = f(−λ) and f(λ) is nonnegative for all λ.

Equation (4.43) gives the spectral density from the autocovariances. When the

spectral density is given, the autocovariances can be calculated form the following

formula: ∫ π

−π

f(λ) exp(iλk)dλ = Φ(k).(4.45)

Thus the spectral density and the autocovariances contain the same information

about the process. In some applications, it is more convenient to examine the spectral

density than the autocovariances. For example, it requires infinite space to plot the

autocovariance for k = 0, 1, 2, · · · , whereas the spectral density can be concisely

plotted.

An interpretation of the spectral density is given by the special case of (4.45)

in which k = 0: ∫ π

−π

f(λ)dλ = Φ(0).(4.46)

This relationship suggests an intuitive interpretation that f(λ) is the contribution of

the frequency λ to the variance of Yt.

This intuition can be formalized by the spectral representation theorem which

states that any covariance stationary process Yt with absolutely summable autoco-

variances can be expressed in the form

Yt = µ+

∫ π

0

[α(λ) cos(λt) + δ(λ) sin(λt)]dλ,(4.47)
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where α(λ) and δ(λ) are random variables with mean zero for any λ in [0, π]. These

variables have the further properties that for any frequencies 0 < λ1 < λ2 < λ3 <

λ4 < π, the variable
∫ λ2

λ1
α(λ) is uncorrelated with

∫ λ4

λ3
α(λ), and the variable

∫ λ2

λ1
δ(λ)

is uncorrelated with
∫ λ4

λ3
δ(λ). For any 0 < λ1 < λ2 < π and 0 < λ3 < λ4 < π, the

variable
∫ λ2

λ1
α(λ) is uncorrelated with

∫ λ4

λ3
δ(λ). For such a process, the portion of the

variance due to cycles with frequency less than or equal to λ1 is given by

2

∫ λ1

0

f(λ)dλ.(4.48)

Exercises

4.1 Let ut be a white noise, and xt = ut + 0.8ut−1. Is xt covariance stationary? Is

ut fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past

ut’s. Is it possible to give an expression for Ê(xt|xt−1, xt−2, ...) in terms of past ut’s?

If so, give an expression. Explain your answers.

4.2 Let ut be a white noise, and xt = ut + 1.2ut−1. Is xt covariance stationary? Is

ut fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past

ut’s. Is it possible to give an expression for Ê(xt|xt−1, xt−2, · · · ) in terms of past ut’s?

If so, give an expression. Explain your answers.

4.3 Let ut be a white noise, and xt = ut + ut−1. Is xt covariance stationary? Is ut

fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past ut’s.

Is it possible to give an expression for Ê(xt|xt−1, xt−2, · · · ) in terms of past ut’s? If

so, give an expression. Explain your answers.
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