
Chapter 5

STOCHASTIC REGRESSORS IN
LINEAR MODELS

This chapter introduces the conditional Gauss-Markov Theorem, asymptotic theory,

Monte Carlo, and Bootstrap as tools to evaluate estimators and tests. These tools are

illustrated in the form that is convenient for most applications of structural econo-

metrics for linear time series models in this chapter although they will be useful for

nonlinear models as explained in later chapters.

In most applications in macroeconomics, regressors are stochastic, and the

Gauss Markov Theorem for nonstochastic regressors do not apply. It is still pos-

sible to use the conditional Gauss Markov Theorem in some applications if a strict

version of the exogeneity assumption (which will be called the strict exogeneity as-

sumption) can be made to show that the OLS estimator is unbiased and efficient

conditional on the realization of the regressors. If a normality assumption is added,

it the estimator’s exact small sample distributions can be obtained.

In some applications such as those of dynamic cointegrating regression explained

in Chapter 14, the strict exogeneity assumption is typically made. So the conditional

Gauss Markov Theorem can be used. However, in many other time series applications,
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the strict exogeneity assumption is not attractive. If lagged dependent variables

are included in regressors, the assumption cannot be made because it causes logical

inconsistency. If the strict exogeneity assumption does not apply, then estimators are

biased.

In rational expectations models, stringent distributional assumptions, such as an

assumption that the disturbances are normally distributed, are unattractive. Without

such assumptions, however, it is not possible to obtain the exact distributions of esti-

mators in finite samples. For this reason, asymptotic theory describes the properties

of estimators as the sample size goes to infinity.

Many researchers use asymptotic theory at initial stages of an empirical research

project. Given the difficulties of obtaining the exact small sample distributions of

estimators in many applications, this utilization seems to be a sound strategy. If

the sample size is “large”, then asymptotic theory must be a good approximation of

the true properties of estimators. The problem is that no one knows how large the

sample size should be, because the answer depends on the nature of each application.

After the importance of a research project is established, small sample properties of

the estimators used in the project are often studied. For this purpose, Monte Carlo

experiments can be used.

When asymptotic theory gives poor approximations in small sample, Bootstrap

methods can be very useful. Bootstrap methods often give more accurate approxima-

tions of the exact small sample properties than asymptotic theory in applications to

cross sectional data. In time series applications, there are some difficult issues that

Bootstrap methods can have. This chapter explains such a difficulty that applied

researchers should be aware of.
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5.1 The Conditional Gauss Markov Theorem

In regressions (5.4????????) and (5.7???????), Xt is strictly exogenous in the time
Masao

needs to
check this!

series sense if E(et| · · · ,Xt+2,Xt+1,Xt,Xt−1,Xt−2, · · · ) = 0. This is a very restrictive

assumption that does not hold in all applications of cointegration discussed in Chapter

15. For example, E(et|Xt,Xt−1,Xt−2, · · · ) = 0 in some applications because et is a

forecast error. However, the forecast error is usually correlated with future values of

Xt. Hence the strict exogeneity assumption is violated. Nevertheless, as Choi and

Ogaki (1999) argue, it is useful to observe that the Gauss Markov theorem applies

to cointegrating regressions in order to understand small sample properties of various

estimators for cointegrating vectors. Moreover, this observation leads to a Generalized

Least Squares (GLS) correction to spurious regressions.

Let σ(X) be the smallest σ-field with respect to which the random variables in

X are measurable. We use the notation E[Z|σ(X)] to denote the usual conditional

expectation of Z conditional on X as defined by Billingsley (1986) for a random

variable Z. E[Z|σ(X)] is a random variable, and E[Z|σ(X)](s) denotes the value

of the random variable at s in S (????? what is s?). It should be noted that the
Masao
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definition is given under the condition that Z is integrable, namely E(|Z|) < ∞.

This condition can be too restrictive when we define the conditional expectation of

the OLS estimator in some applications as we discuss later. ?????1
Masao

needs to
check this!

Masao
needs to

check this!

For this reason, we will also use a different concept of expectation conditional

on X that can be used when Z and vec(X) have probability density functions fZ(z)

1Loeve (1978) slightly relaxes this restriction by defining the conditional expectation for any
random variable whose expectation exists (but may not be finite) with an extension of the Radon-
Nikodym theorem. This definition can be used for E(·|σ(X)), but this slight relaxation does not
solve our problem which we describe later.?????
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and fX(vec(x)), respectively. In this case, if fX(vec(x)) is positive, we define the

expectation of Z conditional on X(s) = x as

E[Z|X(s) = x] =

∫ ∞

−∞

fZ(z)

fX(vec(x))
dz.(5.1)

For this definition, we use the notation E[Z|X(s) = x]. This definition can only be

used when the probability density functions exist and fX(vec(x)) is positive, but the

advantage of this definition for our purpose is that the conditional expectation can be

defined even when E(Z) does not exist. For example let Z = Y
X

where Y and X are

independent random variables with a standard normal distribution. Then Z has the

Cauchy distribution, and E(Z) does not exist. Thus, E[Z|σ(X)] cannot be defined.2

However, we can define E[Z|X(s) = x] for all s in the probability space because the

density function of X is always positive.

In the special case in which both types of conditional expectations can be de-

fined, they coincide. More precisely, suppose that Z and vec(X) have probability

density functions, that the probability density function of vec(X) is always positive,

and that Z is integrable. Then E[Z|σ(X)](s) = E[Z|X(s)] with probability one.

Let y = (y1, y2, · · · , yT )′ be a T × 1 vector of random variables, and e =

(e1, e2, · · · , eT )′ be a T × 1 vector of random variables. We are concerned with a

linear model of the form:

Assumption 5.1 y = Xb0 + e,

where b0 is a K × 1 vector of real numbers. We assume that the expectation of e

conditional on X is zero:

2It should be noted that we cannot argue that E(Z) = E(E( YX |σ(X))) = E(E(Y |σ(X))
X ) = 0 even

though 1
X is measurable in σ(X) because E( YX |σ(X)) is not defined.
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Assumption 5.2 E[e|σ(X)] = 0.

Since E[e|σ(X)] is only defined when each element of e is integrable, Assumption 5.2

implicitly assumes that E(e) exists and is finite. It also implies E(e) = 0 because

of the law of iterated expectations. Given E(e) = 0, a sufficient condition for As-

sumption 5.2 is that X is statistically independent of e. Since Assumption 5.2 does

not imply that X is statistically independent of e, Assumption 5.2 is weaker than the

assumption of the independent stochastic regressors. With the next assumption, we

assume that e is conditionally homoskedastic and et is not serially correlated:

Assumption 5.3 E[ee′|σ(X)] = σ2IT .

Let G = {s in S : X(s)′X(s) is nonsingular}. Since the determinant of a matrix

is a continuous function of the elements of a matrix, G is a member of the σ-field

F?????.
Masao

needs to
check this!

For any s in G, the OLS estimator is

bT = (X′X)−1X′y.(5.2)

From Assumption 5.1, bT = b0 + (X′X)−1X′e. Hence the conditional Gauss-Markov

theorem can be proved when the expectation of (X′X)−1X′e and (X′X)−1X′ee′X(X′X)−1

can be defined. For this purpose, we consider the following two alternative assump-

tions:

Assumption 5.4 E[(X′X)−1X′ee′X(X′X)−1] exists and is finite.

Assumption 5.4′ e and vec(X) have probability density functions, and the proba-

bility density functions of vec(X) are positive for all s in G.
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A sufficient condition for Assumption 5.4 is that the distributions of X and e

have finite supports. Under Assumption 5.4, E[(X′X)−1X′e] also exists and is finite.

Hence E(bT |σ(X)) can be defined. From Assumptions 5.1-5.3, E(bT |σ(X)) = b0 +

E[(X′X)−1X′e|σ(X)] = b0 for s in G with probability Pr(G). Under Assumptions

5.1-5.4, E[(bT−b0)
′(bT−b0)|σ(X)] can be defined, and E[(bT−b0)

′(bT−b0)|σ(X)] =

E[(X′X)−1X′ee′X(X′X)−1|σ(X)] = (X′X)−1X′E[ee′|σ(X)]X(X′X)−1 = σ2(X′X)−1

for s in G with probability Pr(G). The problem with Assumption 5.4 is that it is

not easy to verify Assumption 5.4 for many distributions of X and et that are often

used in applications and Monte Carlo studies.

Under Assumptions 5.1-5.3 and 5.4′, E[bT |X(s)] = b0 and E[(bT − b0)
′(bT −

b0)|X(s)] = σ2(X(s)′X(s))−1 for any s in G.

Corresponding with Assumption 5.4 and 5.4′, we consider two definitions of the

conditional version of the Best Linear Unbiased Estimator (BLUE). Given a set H in

the σ-field F , the Best Linear Unbiased Estimator (BLUE) conditional on σ(X) in H

is defined as follows. An estimator bT for b0 is the BLUE conditional on σ(X) in H

if (1) bT is linear conditional on σ(X), namely, bT can be written as bT = Ay where

A is a K × T matrix, and each element of A is measurable σ(X); (2) bT is unbiased

conditional on σ(X) in G, namely, E(bT |σ(X)) = b0 for s in H with probability

Pr(H); (3) for any linear unbiased estimator b∗ conditional on X(s) = x for which

E(b∗b∗′) exists and is finite, E[(bT − b0)(bT − b0)
′|X(s) = x] ≤ E[(b∗ − b0)(b

∗ −

b0)
′|X(s) = x] in H with probability Pr(H), namely, E[(b∗ − b0)(b

∗ − b0)
′|X(s) =

x]−E[(bT −b0)(bT −b0)
′|X(s) = x] is a positive semidefinite matrix with probability

one for s in H with probability Pr(H).

An estimator bT for b0 is the BLUE conditional on X(s) = x in H if (1) bT
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is linear conditional on X(s) in H, namely, bT can be written as bT = Ay where A

is a K × T matrix, and each element of A is measurable σ(X); (2) bT is unbiased

conditional on X(s) = x in H, namely, E(bT |X(s) = x) = b0 for any s in H; (3) for

any linear unbiased estimator b∗ conditional on X(s) = x for which E(b∗b∗′|X(s) =

x) exists and is finite, E[(bT−b0)(bT−b0)
′|X(s) = x] ≤ E[(b∗−b0)(b

∗−b0)
′|X(s) =

x] in H, namely, E[(b∗ −b0)(b
∗ − b0)

′|X(s) = x]−E[(bT − b0)(bT − b0)
′|X(s) = x]

is a positive semidefinite matrix for any s in H.

With these preparations, the following theorem can be stated:

Theorem 5.1 (The Conditional Gauss-Markov Theorem) Under Assumptions 5.1-

5.4, the OLS estimator is the BLUE conditional on σ(X) in G. Under Assumptions

5.1-5.3 and 5.4′, the OLS estimator is the BLUE conditional on X(s) = x in G.

The theorem can be proved by applying any of the standard proofs of the

(unconditional) Gauss-Markov theorem by replacing the unconditional expectation

with the appropriate conditional expectation.

Under Assumptions 5.1-5.4, the unconditional expectation and the uncondi-

tional covariance matrix of bT can be defined. With an additional assumption that

Pr(G) = 1 or

Assumption 5.5 X′X is nonsingular with probability one,

we obtain the following corollary of the theorem:

Proposition 5.1 Under Assumptions 5.1-5.5, the OLS estimator is unconditionally

unbiased and has the minimum unconditional covariance matrix among all linear

unbiased estimators conditional on σ(X).
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Proof Using the law of iterated expectations, E(bT ) = E{E[bT |σ(X)]} = E(b0) = b0, and
E[(bT − b0)(bT − b0)

′] = E{E[(bT − b0)(bT − b0)
′|σ(X)]} = σ2E[(X′X)−1]. For the minimum

covariance matrix part, let b∗ be another linear unbiased estimator conditional on σ(X). Then

E[(b∗ − b0)(b
∗ − b0)

′|σ(X)] = E[(bT − b0)(bT − b0)
′|σ(X)] + ∆,(5.3)

where ∆ is a positive semidefinite matrix with probability one. Then E[(b∗−b0)(b
∗−b0)

′]−E[(bT−
b0)(bT −b0)

′] = [E(b∗b∗′)−b0b
′
0]− [E(bTb

′
T )−b0b

′
0] = E[E(b∗b∗′|σ(X))−E[E(bTb

′
T |σ(X)] =

E(∆) is a positive semidefinite matrix. (?????)

Masao
needs to
check this!

A few remarks for this proposition are in order:

Remark 5.1 Assumption 5.4 cannot be replaced by Assumption 5.4′ for this propo-

sition. Under Assumption 5.4′, E(bT ) and E[(bT − b0)(bT − b0)
′] may not exist.

Remark 5.2 In this proposition, the covariance matrix of bT is σ2E[(X′X)−1], which

is different from σ2[E(X′X)]−1. This result may seem to contradict the standard

asymptotic theory, but it does not. Asymptotically, 1
T
X′X converges almost surely

to E[XtX
′
t] if Xt is stationary and ergodic. Hence the limit of the covariance matrix

of
√
T (bT − b0), σ

2E[{ 1
T
(X′X)}−1], is equal to the asymptotic covariance matrix,

σ2[E(XtX
′
t)]

−1.

5.2 Unconditional Distributions of Test Statistics

In order to study distributions of the t ratios and F test statistics, we need an

additional assumption:

Assumption 5.6 Conditional on X, e follows a multivariate normal distribution.

Given a 1×K vector of real numbers R, consider a random variable

NR =
R(bT − b0)

σ[R(X′X)−1R′]
1
2

(5.4)
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and the usual t ratio for Rb0

tR =
R(bT − b0)

σ̂[R(X′X)−1R′]
1
2

.(5.5)

Here σ̂ is the positive square root of σ̂2 = 1
T−K

(y−XbT )
′(y−XbT ). With the stan-

dard argument, NR and tR can be shown to follow the standard normal distribution

and Student’s t distribution with T −K degrees of freedom conditional on X, respec-

tively, under either Assumptions 5.1-5.6 or Assumptions 5.1-5.3, 5.4′, and 5.5-5.6.

The following proposition is useful in order to derive the unconditional distributions

of these statistics.

Proposition 5.2 If the probability density function of a random variable Z condi-

tional on a random vector Q does not depend on the values of Q, then the marginal

probability density function of Z is equal to the probability density function of Z

conditional on Q.

This proposition is obtained by integrating the probability density function condi-

tional on Q over all possible values of the random variables in Q. Since NR and

tR follow the standard normal and the Student’s t distribution conditional on X,

respectively, Proposition 5.2 implies the following proposition:

Proposition 5.3 Under the Assumptions 5.1-5.6, or under the Assumptions 5.1-5.3,

5.4′, and 5.5-5.6, NR is the standard normal random variable and tR is the Student’s

t random variable with T −K degrees of freedom.

Similarly, the usual F test statistics also follow (unconditional) F distributions.

These results are sometimes not well understood by econometricians. For example,

a standard textbook, Judge et al. (1985, p.164), states that “our usual test statistics
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do not hold in finite samples” on the grounds that bT ’s (unconditional) distribution

is not normal. It is true that bT is a nonlinear function of X and e, so it does not

follow a normal distribution even if X and e are both normally distributed. However,

the usual t and F test statistics have usual (unconditional) distributions as a result

of Proposition 5.2.

5.3 The Law of Large Numbers

If an estimator bT converges almost surely to a vector of parameters b0, then bT is

strongly consistent for b0. If an estimator bT converges in probability to a vector of

parameters b0, then bT is weakly consistent for b0.

Consider a univariate stationary stochastic process {Xt}. WhenXt is stationary,

E(Xt) does not depend on date t. Therefore, we often write E(X) instead of E(Xt).

Assume that E(|X|) is finite, and consider a sequence of random variables [YT : T ≥

1], where YT = 1
T

∑T
t=1Xt is the sample mean of X computed from a sample of size T .

In general, the sample mean does not converge to its unconditional expected value,

but converges almost surely to an expectation of X conditional on an information

set. For the sample mean to converge almost surely to its unconditional mean, we

require the series to be ergodic. A stationary process {Xt} is said to be ergodic if, for

any bounded functions f : Ri+1 7−→ R and g : Rj+1 7−→ R,

lim
T→∞

|E[f(Xt, · · · , Xt+i)g(Xt+T , · · · , Xt+T+j)]|(5.6)

= |E[f(Xt, · · · , Xt+i)]||E[g(Xt, · · · , Xt+j)]|.

Heuristically, a stationary process is ergodic if it is asymptotically independent: that

is, if (Xt, · · · , Xt+i) and (Xt+T , · · · , Xt+T+j) are approximately independent for large

enough T .
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Proposition 5.4 (The strong law of large numbers) If a stochastic process [Xt : t ≥

1] is stationary and ergodic, and if E(|X|) is finite, then 1
T

∑T
t=1Xt → E(X) almost

surely.

5.4 Convergence in Distribution and Central Limit

Theorem

This section explains a definition of convergence in distribution and presents some

central limit theorems. These central limit theorems are based on martingale differ-

ence sequences, and are useful in many applications of rational expectations models.

Central limit theorems establish that the sample mean scaled by T converges

in distribution to a normal distribution3 under various regularity conditions. The

following central limit theorem by Billingsley (1961) is useful for many applications

because we can apply it when economic models imply that a variable is a martingale

difference sequence.

Proposition 5.5 (Billingsley’s Central Limit Theorem) Suppose that et is a station-

ary and ergodic martingale difference sequence adapted to It, and that E(|e|2) < ∞.

Assume that It−1 ⊂ It for all t. Then

1√
T

T∑
t=1

et
D→ N(0, E(e2)).

If et is an i.i.d. white noise, then it is a stationary and ergodic martingale differ-

ence sequence adapted to It which is generated from {et, et−1, · · · }. Hence Billingsley’s

3In some central limit theorems, the limiting distribution is not normal.
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Central Limit Theorem is more general than the central limit theorems for i.i.d. pro-

cesses such as the Lindeberg- Levy theorem, which is usually explained in econometric

text books. However, Billingsley’s Central Limit Theorem cannot be applied to any

serially correlated series.

A generalization of the theorem to serially correlated series is due to Gordin

(1969):

Proposition 5.6 (Gordin’s Central Limit Theorem) Suppose that et is a univariate

stationary and ergodic process with mean zero and E(|e|2) < ∞, that E(et|et−j, et−j−1, · · · )

converges in mean square to 0 as j → ∞, and that

∞∑
j=0

[E(r2tj)]
1
2 < ∞,(5.7)

where

rtj = E(et|It−j)− E(et|It−j−1),(5.8)

where It is the information set generated from {et, et−1, · · · }. Then et’s autocovari-

ances are absolutely summable, and

1√
T

T∑
t=1

et
D→ N(0,Ω),(5.9)

where

Ω = lim
T→∞

T−1∑
j=−T+1

E(etet−j).(5.10)

When et is serially correlated, the sample mean scaled by T still converges to a normal

distribution, but the variance of the limiting normal distribution is affected by serial

correlation as in (5.10).
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In (5.10), Ω is called a long-run variance of et. Intuition behind the long-run

variance can be obtained by observing

E[(
1√
T

T∑
t=1

et)
2] =

T−1∑
j=−T+1

T − |j|
T

E(etet−j)(5.11)

and that the right hand side (5.11) is the Cesaro sum of
∑T−1

j=−T+1E(etet−j). Thus

when
∑T−1

j=−T+1E(etet−j) converges, its limit is equal to the limit of the right hand

side of (5.11) (Apostol, 1974).

Another expression for the long-run variance can be obtained from an MA

representation of et. Let et = Ψ(L)ut = Ψ0ut+Ψ1ut−1+ · · · be an MA representation.

Then E(etet−j) = (ΨjΨ0+Ψj+1Ψ1+Ψj+2Ψ2+ · · · )E(u2
t ), and Ω = {(Ψ2

0+Ψ2
1+Ψ2

2+

· · · ) + 2(Ψ1Ψ0 +Ψ2Ψ1 +Ψ3Ψ2 + · · · ) + 2(Ψ2Ψ0 +Ψ3Ψ1 +Ψ4Ψ2 + · · · ) + · · · }E(u2
t ) =

(Ψ0 +Ψ1 +Ψ2 + · · · )2E(u2
t ). Hence

Ω = Ψ(1)2E(u2
t ).(5.12)

In the next example, we consider a multi-period forecasting model. For this

model, it is easy to show that Gordin’s Theorem is applicable to the serially correlated

forecast error.

Example 5.1 (The Multi-Period Forecasting Model) Suppose that It is an informa-

tion set generated by {Yt,Yt−1,Yt−2, · · · }, where Yt is a stationary and ergodic

vector stochastic process. In typical applications, economic agents are assumed to

use current and past values of Yt to generate their information set. Let Xt be a

stationary and ergodic random variable in the information set It with E(|Xt|2) < ∞.

We consider an s-period ahead forecast of Xt, E(Xt+s|It), and the forecast error,

et = Xt+s − E(Xt+s|It).
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It is easy to verify that all the conditions for Gordin’s Theorem are satisfied for

et. Moreover, because E(et|It) = 0 and et is in the information set It+s, E(etet−j) =

E(E(etet−j|It)) = E(et−jE(et|It)) = 0 for j ≥ s. Hence Ω = limj→∞
∑j

−j E(etet−j) =∑s−1
j=−s+1E(etet−j).

Hansen (1985) generalized Gordin’s Central Limit Theorem to vector processes.

In this book, we call the generalized theorem Gordin and Hansen’s Central Limit

Theorem.

Proposition 5.7 (Gordin and Hansen’s Central Limit Theorem) Suppose that et is

a vector stationary and ergodic process with mean zero and finite second moments,

that E(et|et−j, et−j−1, · · · ) converges in mean square to 0 as j → ∞, and that

∞∑
j=0

[E(r′tjrtj)]
1
2 < ∞,(5.13)

where

rtj = E(et|It−j)− E(et|It−j−1),(5.14)

where It is the information set generated from {et, et−1, · · · }. Then et’s autocovari-

ances are absolutely summable, and

1√
T

T∑
t=1

et
D→ N(0,Ω)

where

Ω = lim
T→∞

T−1∑
j=−T+1

E(ete
′
t−j).(5.15)
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The matrix Ω in Equation (5.15) is called the long-run covariance matrix of et.

As in the univariate case, another expression for the long-run covariance can be

obtained from an MA representation of et. Let et = Ψ(L)ut = Ψ0ut +Ψ1ut−1 + · · ·

be an MA representation. Then E(ete
′
t−j) = (Ψj +Ψj+1 +Ψj+2 + · · · )E(utu

′
t)(Ψ0 +

Ψ1+Ψ2+ · · · )′, and Ω = (Ψ0+Ψ1+Ψ2+ · · · )E(utu
′
t)(Ψ0+Ψ1+Ψ2+ · · · )′. Hence

Ω = Ψ(1)E(utu
′
t)Ψ(1)′.(5.16)

In the next example, Gordin and Hansen’s Central Limit Theorem is applied to

a serially correlated vector process:

Example 5.2 Continuing Example 5.1, let Zt be a random vector with finite second

moments in the information set It. Define ft = Ztet. Then E(ft|It) = E(Ztet|It) =

E(ZtE(et|It)) = 0. In empirical work, it is often necessary to apply a central limit

theorem to a random vector such as ft. It is easy to verify that all conditions for

Gordin and Hansen’s Theorem are satisfied for ft. Moreover, E(ft|It) = 0 and ft is

in the information set It+s, thus E(ftf
′
t−j) = E(E(ftf

′
t−j|It)) = E(E(ft|It)f ′t−j) = 0 for

j ≥ s. Hence Ω = limj→∞
∑j

−j E(ftf
′
t−j) =

∑s−1
j=−s+1 E(ftf

′
t−j).

We assumed that the process is stationary and ergodic for the law of large

numbers and central limit theorems. In most applications, this ergodic stationarity

assumption is general enough. However, in some applications, such an assumption

may not be convenient. For example, suppose that data of a process of interest shows

an initial rapid growth and then stabilizes. It is not attractive to assume eargodic

stationarity because the expected value of the process seems initially rising. In such

cases, we can use an alternative assumption that the process is mixing. Mixing can

be regarded as an asymptotic independence. For stationary and ergodic processes,
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we used the concept of martingale difference sequence for central limit theorems. For

mixing processes, the corresponding concept is mixingale processes. The concepts of

mixing and mixingale are explained in Appendix A.

5.5 Consistency and Asymptotic Distributions of

OLS Estimators

Consider a linear model,

yt = x′
tb0 + et,(5.17)

where yt and et are stationary and ergodic random variables, and xt is a p-dimensional

stationary and ergodic random vector. We assume that the orthogonality conditions

E(xtet) = 0(5.18)

are satisfied, and that E(xtx
′
t) is nonsingular.

4 Imagine that we observe a sample of

(yt,x
′
t) of size T . Proposition 5.4 shows that 1

T

∑T
t=1 xtx

′
t converges to E(xtx

′
t) almost

surely. Hence with probability one,
∑T

t=1 xtx
′
t(s) is nonsingular for large enough T ,

and the Ordinary Least Squares (OLS) estimator for (5.17) can be written as

bT = (
T∑
t=1

xtx
′
t)

−1(
T∑
t=1

xtyt).(5.19)

In order to apply the Law of Large Numbers to show that the OLS estimator is

strongly consistent, rewrite (5.19) from (5.17) after scaling each element of the right

side by T :

bT − b0 = (
1

T

T∑
t=1

xtx
′
t)

−1(
1

T

T∑
t=1

(xtet)).(5.20)

4Appendix 3.A explains why these types of conditions are called orthogonality conditions.
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Applying Proposition 5.4, we obtain

bT − b0 → [E(xtx
′
t)]

−1(E(xtet)) = 0 almost surely.(5.21)

Hence the OLS estimator, bT , is a strongly consistent estimator. In order to obtain

the asymptotic distribution of the OLS estimator, we make an additional assumption

that a central limit theorem applies to xtet. In particular, assuming that Gordin

and Hansen’s Martingale Approximation Central Limit Theorem is applicable, we

multiply both sides of (5.20) by the square root of T :

√
T (bT − b0) = (

1

T

T∑
t=1

xtx
′
t)

−1(
1√
T

T∑
t=1

(xtet)).(5.22)

Therefore,

√
T (bT − b0)

D→ N(0, [E(xtx
′
t)]

−1Ω[E(xtx
′
t)]

−1)(5.23)

where Ω is the long-run covariance matrix of xtet:

Ω =
∞∑

j=−∞

E(etet−jxtx
′
t−j).(5.24)

5.6 Consistency and Asymptotic Distributions of

IV Estimators

Consider the linear model (5.17) for which the orthogonality conditions (5.18) are not

satisfied. In this case, we try to find a p-dimensional stationary and ergodic random

vector zt, which satisfies two types of conditions: the orthogonality condition

E(ztet) = 0,(5.25)

and the relevance condition that E(ztx
′
t) is nonsingular. We define the Linear Instru-

mental Variable (IV) estimator as

bT = (
T∑
t=1

ztx
′
t)

−1

T∑
t=1

ztyt.(5.26)
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Then

bT − b0 = (
1

T

T∑
t=1

ztx
′
t)

−1(
1

T

T∑
t=1

ztet).(5.27)

Applying Proposition 5.4, we obtain

bT − b0 → [E(ztx
′
t)]

−1(E(ztet)) = 0 almost surely.(5.28)

Hence the linear IV estimator, bT , is a strongly consistent estimator. Assuming that

the Vector Martingale Approximation Central Limit Theorem is applicable to ztet,

√
T (bT − b0)

D→ N(0, [E(ztx
′
t)]

−1Ω[E(ztx
′
t)]

−1)(5.29)

where Ω is the long-run covariance matrix of ztet:

Ω =
∞∑

j=−∞

E(etet−jztz
′
t−j).(5.30)

5.7 Nonlinear Functions of Estimators

In many applications of linear models, we are interested in nonlinear functions of b0,

say a(b0). This section explains the delta method, which is a convenient method to

derive asymptotic properties of a(bT ) as an estimator for b0 where bT is a weakly

consistent estimator for b0. In many applications, bT is an OLS estimator or a linear

IV estimator. Later????? in this book we will use the proof of the delta method
Masao
needs to
check this!

to prove the asymptotic normality of the GMM estimator. (????? a not bold, f is

better?) Masao
needs to
check this!

Proposition 5.8 Suppose that {bT} is a sequence of p-dimensional random vectors

such that
√
T (bT −b0)

D→ z for a random vector z. If a(·) : Rp 7−→ Rr is continuously

differentiable at b, then

√
T [a(bT )− a(b0)]

D→ d(b0)z,
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where d(b0) = ∂a(b)
∂b′ |b=b0 denotes the r × p matrix of first derivatives evaluated at

b0. In particular, if z ∼ N(0,Σ), then

√
T [a(bT )− a(b0)]

D→ N(0,d(b0)Σd(b0)
′).

Proof ????????????

Masao
needs to

check this!

5.8 Remarks on Asymptotic Theory

When we use asymptotic theory, we do not have to make restrictive assumptions

that the disturbances are normally distributed. Serial correlation and conditional

heteroskedasticity can be easily taken into account as long as we can estimate the

long-run covariance matrix (which is the topic of the next chapter).

It is a common mistake to think that the linearity of the formula for the long-

run covariance matrix means a linearity assumption for the process of xtet (for the

OLS estimator) or ztet (for the IV estimator). It should be noted that we did not

assume that xtet or ztet was generated by linear functions (i.e., a moving average

process in the terminology of Chapter 4) of independent white noise processes. Even

when xtet or ztet is generated from nonlinear functions of independent white noise

processes, the distributions based on the long-run covariance matrices give the correct

limiting distributions. This point is related to the Wold representation for nonlinear

processes discussed in Chapter 4. Even when ztet is generated as a nonlinear process,

as long as it is a linearly regular and covariance stationary process, it has the Wold

representation: ztet = Ψ(L)ut, and its long-run covariance matrix is given by (5.30).
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5.9 Monte Carlo Methods

This section gives an introduction to Monte Carlo methods. An important advanced

Monte Carlo method called the Markov Chain Monte Carlo (MCMC)5 will be ex-

plained in Chapter 12 for the Bayesian Approach. The MCMC method is a very

powerful numerical integration method that can be used for both the Bayesian statis-

tics and the Classical statistics even though most applications of the method so fare

have been in the Bayesian statistics. Asymptotic theory is used to obtain approxima-

tions of the exact finite sample properties of estimators and test statistics. In many

time series applications, the exact finite sample properties cannot be obtained. For

example, in a regression with lagged dependent variables, we can assume neither that

the regressor is nonrandom nor that the error term is strictly exogenous in the time

series sense. In many applications with financial variables, the assumption that the

error term in a regression is normal is inappropriate because many authors have found

evidence against normality for several financial variables. Asymptotic theory gives

accurate approximations when the sample size is “large,” but exactly how “large” is

enough depends on each application. One method to study the quality of asymptotic

approximations is the Monte Carlo simulations.

5.9.1 Random Number Generators

In relatively simple Monte Carlo studies, data are generated with computer pro-

grams called pseudo-random number generators. These programs generate sequences

of values that appear to be draws from a specified probability distribution. Mod-

ern pseudo-random generators are accurate enough that we can ignore the fact that

5It is important to the extent that its emergence is called the MCMC revolution.
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numbers generated are not exactly independent draws from a specified probability

distribution for most purposes.6 Hence in the rest of this appendix, phrases such as

“values that appear to be” are often suppressed.

Recall that when a probability space Ω is given, the whole history of a stochastic

process {et(s)}Nt=1 is determined when a point in the probability space s is given. For

a random number generator, we use a number called the starting seed to determine

s. Then the random number generator automatically updates the seed each time

a number is generated. It should be noted that the same sequence of numbers is

generated whenever the same starting seed is given to a random number generator.

Generated random numbers are used to generate samples. From actual data,

we obtain only one sample, but in Monte Carlo studies, we can obtain many samples

from generated random numbers. Each time a sample is generated, we compute esti-

mators or test statistics of interest. After replicating many samples, we can estimate

small sample properties of the estimators or test statistics by studying the generated

distributions of these variables and compare them with predictions of asymptotic

theory.

Most programs offer random number generators for the uniform distribution

and the standard normal distribution. One can produce random numbers with other

distributions by transforming generated random numbers. See the Appendix for more

explanations.

6One exception is that a pseudo-random number generator ultimately cycles back to the initial
value generated and repeats the sequence when too many numbers are generated. Most modern
pseudo-random number generators cycle back after millions of values are drawn, and this tendency
is not a problem for most Monte Carlo studies. However, in some studies in which millions or billions
of values are needed, there can be a serious problem.
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5.9.2 Estimators

When a researcher applies an estimator to actual data without the normality assump-

tion, asymptotic theory is used as a guide of small sample properties of the estimator.

In some cases, asymptotic theory does not give a good approximation of the exact

finite sample properties. A Monte Carlo study can be used to estimate the true finite

sample properties. For example, the mean, median, and standard deviation of the

realized values of the estimator over generated samples can be computed and reported

as estimates of the true values of these statistics. For example, N independent sam-

ples are created and an estimate bi (i ≥ 1) for a parameter b0 is calculated for the

i-th sample. Then the expected value of the estimator E(bi) can be estimated by its

mean over the samples: 1
N

∑N
i=1 bi. By the strong law of large numbers, the mean

converges almost surely to the expected value.

Other properties can also be reported, depending on the purpose of the study.

For example, Nelson and Startz (1990) report estimated 1%, 5%, 10%, 50%, 90%,

and 99% fractiles for an IV estimator and compared them with fractiles implied by

the asymptotic distribution. This influential paper uses Monte Carlo simulations to

study the small sample properties of IV estimator and its t-ratio when instruments

are poor in the sense that the relevance condition is barely satisfied.

When the deviation from the normal distribution is of interest, the skewness

and kurtosis are often estimated and reported. The skewness of a variable Y with

mean µ is

E(Y − µ)3

[V ar(Y )]
3
2

.(5.31)

A variable with negative skewness is more likely to be far below the mean than it is



92 CHAPTER 5. STOCHASTIC REGRESSORS

to be far above, and conversely a variable with positive skewness is more likely to be

far above the mean than it is to be below. If Y has a symmetric distribution such as

a normal distribution, then the skewness is zero. The kurtosis of Y is

E(Y − µ)4

[V ar(Y )]2
.(5.32)

If Y is normally distributed, the kurtosis is 3. If the kurtosis of Y exceeds 3, then its

distribution has more mass in the tails than the normal distribution with the same

variance.

5.9.3 Tests

When a researcher applies a test to actual data without the normality assumption,

asymptotic theory is typically used. For example, the critical value of 1.96 is used

for a test statistic with the asymptotic normal distribution for the significance level

of 5%. The significance level and critical value based on the asymptotic distribution

are called the nominal significance level and the nominal critical value, respectively.

The probability of rejecting the null hypothesis when it is true is called the size of the

test. Since the asymptotic distribution is not exactly equal to the exact distribution

of the test statistic, the true size of the test based on the nominal critical value is

usually either larger or smaller than the nominal significance level. This property is

called the size distortion. If the true size is larger than the nominal significance level,

the test overrejects the null hypothesis and is said to be liberal. If the true size is

smaller than the nominal significance level, the test underrejects the null hypothesis

and is said to be conservative. Using the distribution of the test statistic produced

by a Monte Carlo simulation, one can estimate the true critical value.

The power of the test is the probability of rejecting the null hypothesis when
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the alternative hypothesis is true. In Monte Carlo studies, two versions of the power

can be reported for each point of the alternative hypothesis: the power based on the

nominal critical value and the power based on the estimated true critical value. The

latter is called the size corrected power. The power based on the nominal critical

value is also of interest because it is the probability of rejecting the null hypothesis

in practice if asymptotic theory is used. On the other hand, the size corrected power

is more appropriate for the purpose of comparing tests. For example, a liberal test

tends to have a higher power based on the nominal critical value than a conservative

test. However, we cannot conclude the liberal test is better from this observation

because the probability of Type I error is not equal for the two tests.

5.10 Bootstrap

When the asymptotic distribution of a random variable such as a parameter esti-

mate and test statistic is unknown or unreliable, an estimation method called the

bootstrap is used as an alternative to the asymptotic theory. The bootstrap esti-

mates the unknown underlying probability distribution of interest using a known

distribution function generated by a random sampling procedure. In this sense, the

bootstrap distribution treats the random sample as if it is a good representation of

the population. Under mild regularity conditions and with the sample sizes typically

encountered in applied work, this method can provide as accurate an approximation

as that obtained from the asymptotic theory. Moreover, often in cross-sectional appli-

cations, the bootstrap approximations can achieve the level of accuracy comparable

to higher-order asymptotic approximations. When the bootstrap improves upon first-

order asymptotic approximations, it is said to benefit from asymptotic refinements.
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Asymptotic refinements are an important feature of the bootstrap in reducing or

eliminating finite-sample bias of an estimator or finite-sample errors in the rejection

probabilities of statistical tests. For these reasons, since its introduction by Efron

(1979), the bootstrap has become a practical and increasingly popular tool in applied

econometrics.7

To illustrate how the bootstrap is implemented in a simple setting, suppose you

have a random sample {x1, x2, ..., xT} of an i.i.d. random variable x with cumulative

distribution function (CDF) F0. Let QT = QT (x1, x2, ..., xT ) denote the statistic of

interest, and GT (q, F0) ≡ Pr(QT ≤ q) the exact, finite-sample CDF of QT . Because

F0 is usually unknown in applications, the bootstrap method replaces F0 with its

estimator FT , and approximates GT (q, F0) by the bootstrap distribution GT (q, FT )

based on which you can make inferences about QT .

There are two possible specifications of FT . The nonparametric bootstrap uses

the empirical distribution function of the data as FT . The other approach, the para-

metric bootstrap, uses a parametric estimator of F0 as FT . For instance, if x is

assumed to be normally distributed with mean µ and variance σ2, then FT is defined

as N(µ̂, σ̂2) where µ̂ and σ̂2 are consistent estimates of µ and σ2, respectively.

In most applications, GT (q, FT ) cannot be evaluated analytically, but is approx-

imated using a Monte Carlo simulation. The steps for this procedure are as follows.

1. Draw a bootstrap sample of size T , X∗ = {x∗
1, x

∗
2, ..., x

∗
T}, from the distribution

corresponding to FT randomly. For the nonparametric bootstrap, the obser-

vations are resampled from the original data set with replacement, with each

point in the sample having the equal probability 1/T of being drawn. Clearly,

7See, e.g., Jeong and Maddala (1993) and Horowitz (2001) for survey and details of different
bootstrap methods and their theoretical justification.
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some of the original data points may be included in X∗ once or more than once,

while others may not be included at all. For the parametric bootstrap, X∗ is

generated using a random number generator.

2. Using X∗, compute the bootstrap statistic Q∗
T,1 ≡ QT (x

∗
1, x

∗
2, ..., x

∗
T ).

3. Repeat steps 1 and 2 B times to obtain observations {Q∗
T,1, ..., Q

∗
T,B}.

4. The bootstrap distribution GT (q, FT ) is estimated by G∗
T (q, FT ) = Pr(Q∗

T ≤ q)

putting mass 1/B at each point of {Q∗
T,1, ..., Q

∗
T,B}.

The resulting bootstrap distribution G∗
T (q, FT ) is then used to compute p-values or

confidence intervals, and make inferences about QT which is computed in conventional

ways.

In order for the bootstrap distribution GT (·, FT ) to be an adequate estimator of

GT (·, F0), it must be consistent. That is, GT (·, FT ) must converge in probability to

the asymptotic CDF of QT , G∞(·, F0), as T → ∞. Essentially, the conditions for the

consistency of GT (·, FT ) require that FT is a consistent estimator of F0, and GT (·, F )

is continuous in F in an appropriate sense. It then follows that GT (·, FT ) approaches

GT (·, F0) for a sufficiently large sample size.8

Although these conditions are likely to be satisfied in many cases of interest in

econometrics, they can be violated in some applications. For instance, for the heavy-

tailed distributions of Athreya (1987) or the unit root AR(1) model of Basawa, Mallik,

McCormick, Reeves, and Taylor (1991), the standard bootstrap method results in

poor approximations to the asymptotic distribution of interest. Thus, although the

8For a precise definition of consistency, see Appendix A. For conditions for consistency and a
detailed discussion on consistency, see Section 2.1 of Horowitz (2001).
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bootstrap methods serve as an attractive alternative to the asymptotic theory in many

applications, it must be borne in mind that, just as with any econometric methods,

they, too, cannot be used blindly.

The following example illustrates an application of the bootstrap to an autore-

gressive (AR) model, and shows why it requires a non-standard procedure. Consider

the AR process of order 1 with an intercept and time trend,

xt = θ + µt+ αxt−1 + ϵt for 1 ≤ t ≤ T,

where ϵt is i.i.d., |α| < 1, and x0 is a random variable with a stationary distribution

so that xt is stationary. Let α̂ be the ordinary least square (OLS) estimator of the

autoregressive root α. The usual asymptotic theory indicates that T 1/2(α̂ − α) con-

verges in distribution to a normal random variable with zero mean. On the contrary,

the OLS estimator is significantly downward biased, and the exact, finite-sample dis-

tribution of α is asymmetric and has fatter tails than the normal distribution.9 In

this case, if ϵt is i.i.d. and normally distributed, then the exact, finite-sample CDF

of α̂ only depends on α, and can be computed numerically using Andrews’ (1993)

procedure without relying on Monte Carlo or bootstrap simulations. The deviations

from the prediction of the asymptotic theory are considerable especially when α is

close to one. For example, for the sample size of 60, the OLS estimator has down-

ward median-biases of 0.08, 0.09, and 0.15 when α is 0.7, 0.85, and 0.99, respectively.

Clearly, using the asymptotic distribution leads to an inaccurate approximation to

the exact, finite-sample distribution of α̂ and hence results in misleading inferences.10

9It should be noted that the strict exogeneity assumption is violated because of the lagged
dependent variable. Hence the argument for the conditional Gauss-Markov theorem cannot be
applied.

10An alternative asymptotic theory called the local-to-unity asymptotic theory can be applied in
this case as in Chan and Wei (1987) and Phillips (1987)
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If ϵt is not i.i.d. or normally distributed, the exact, finite-sample distribution is es-

timated using bootstrap methods. Tables of the 0.05, 0.5, and 0.95 quantiles of α̂

can be found in Andrews (1993) for different sample sizes, AR specifications, and

distributions of ϵt.
11

An important characteristic of the AR models with a near unit root is that the

asymptotic distribution of and hence quantile functions for the test statistic depend

on α. Nevertheless, the conventional bootstrap approximates quantile functions by

evaluating them at the point estimate α̂ and thereby making an implicit assumption

that these functions are constant, which is false in the AR models. Consequently, the

standard bootstrap confidence intervals fail to provide asymptotically correct coverage

probabilities.

Table 1 summarizes the 0.05, 0.5, and 0.95 true quantiles of the nonstudentized

test statistic ST (α) = α̂ − α for the sample sizes of 40 and 150 over the values of α

from 0.70 to 1, assuming that the errors are i.i.d. and normally distributed.12

Table 1

T=40 T=150
α q0.05 q0.5 q0.95 q0.05 q0.5 q0.95

0.70 -0.390 -0.118 0.071 -0.144 -0.029 0.062
0.80 -0.403 -0.135 0.038 -0.137 -0.031 0.045
0.85 -0.412 -0.146 0.019 -0.133 -0.033 0.035
0.90 -0.425 -0.160 -0.002 -0.129 -0.036 0.023
0.93 -0.436 -0.172 -0.017 -0.127 -0.038 0.015
0.97 -0.457 -0.194 -0.040 -0.127 -0.045 0.000
0.99 -0.472 -0.209 -0.055 -0.133 -0.052 -0.010
1.00 -0.481 -0.218 -0.065 -0.140 -0.060 -0.018

11For a probability p, the p quantile of a random variable X is the minimum value of x for which
Pr(X ≤ x) = p is satisfied.

12Following Andrews (1993), we restrict the parameter space to be α ∈ (−1, 1]. This assumption
is made in order to avoid the dependence of the distribution of the OLS estimator on the initial
condition.
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These values are computed from table 3 in Andrews (1993) by subtracting the true

value of α from the quantile values in the corresponding row. It is clear from the above

table that the quantile functions are varying for different values of α. An appropriate

bootstrap quantile function must therefore be a function of α rather than α̂:

q∗0.05(α) ≤ ST (α) ≤ q∗0.95(α),

such that

Pr(q∗0.05(α) ≤ ST (α) ≤ q∗0.95(α)) = 0.90.

The above statement is exact in the sense that once we know the exact finite distribu-

tion of the quantiles for a given α, then this set has the correct coverage probability.

The upper and lower bounds are thus given by

−q∗0.95(α) + α̂ ≤ α ≤ −q∗0.05(α) + α̂.

Table 1 can be used to compute the median-unbiased estimator and the two-

sided 90% and one-sided 95% confidence intervals for α. Because the grid of α values

is finite, interpolation may be necessary for the values of α in between those reported.

To see how the table can be used in applications, suppose you have the OLS estimate

α̂ of 0.781 and the sample size T of 40. The median-unbiased estimate of α is the

intersection of ST (α) and q∗0.5(α). That is, α is such that α̂− α = q∗0.5(α). According

to table 1, this occurs when α = 0.99 (0.781-0.99=-0.209). The lower and upper

bounds of the 90% confidence interval can be found in the same way. For the lower

bound, the endpoint is the value of α such that α̂ − α = q∗0.95(α). You see that

α + q∗0.95(α) = 0.771 for α = 0.7, and α + q∗0.95(α) = 0.838 for α = 0.8. Because

α̂ = 0.781, the lower bound must lie between 0.7 and 0.8. By interpolation, this is

0.715. The upper bound can be found by α̂ − α = q∗0.05(α). Because the parameter
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space is restricted to be α ∈ (−1, 1], any value of α̂ that is above 0.519 for T=40

and 0.860 for T=150 corresponds to the upper bound of 1. Thus, in this example,

α̂ > 0.519, and hence the upper bound of the confidence interval is 1.

This interval is equivalent to Hansen’s (1999) grid bootstrap for the case of the

i.i.d. Gaussian errors. He proposes a nonparametric bootstrap method for construct-

ing confidence intervals for α from bootstrap quantile functions of α, and reports that

it has improved performance over the standard bootstrap method when α is close to

one.

The condition under which the grid bootstrap confidence interval is first-order

accurate only requires that the nuisance parameters are consistently estimated, and

no restriction is imposed on the estimate of the parameter of interest. On the other

hand, the consistency of the standard bootstrap confidence interval requires that the

parameters are consistently estimated and the test statistic of the hypothesis has an

asymptotic distribution, where the convergence to the asymptotic distribution is lo-

cally uniform in the parameter space. Thus, the conditions for the grip bootstrap are

strictly less restrictive than those for the latter in the sense of first-order asymptotic

coverage, suggesting that the grid bootstrap is more broadly applicable.

Appendix

5.A Weakly dependence process

Weakly dependence process is a stochastic process where serial dependence exists,

but it is restricted suitably so that the limit theorems, such as LLN, CLT, and FCLT,

can be applied. There are many different types of weakly dependence processes
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depending on its degree of serial dependence. In this section, we review some of the

most commonly used ones in the nonstationary econometrics.

The reason why we study weakly dependence process for the nonstationary

econometrics is that the nonstationary econometrics is also time-series econometrics,

and in time-series econometrics, serial dependence exists in almost all applications.

Therefore, we want our asymptotic theories for the nonstationary econometrics can

also be applied to the data that has serial dependence.

5.A.1 Independent Process

Definition 5.A.1 A stochastic process {Xt}∞−∞ is said to be independent if P (A ∩

B) = P (A)P (B) for a pair of A ∈ Ft
−∞ and B ∈ F∞

t+m for all t and m.

Independence implies that there is no relatioship between Xt and Xt′ for any t ̸= t′,

therefore each observation can be treated as an observation from a random sample.

From the time series econometrics perspective, independence is the most stringent

restriction on the behavior of a stochastic process. It is difficult to find a case where

independence assumption is appropriate. However, it can be used as a benchmark

against which asymptotic theories of other dependent processes might be compared.

5.A.2 Mixing Process

The idea of independence that there is no relationship between any pair of Xt and

Xt′ is rather special, especially for time series data. However, it might be reasonable

to expect that the degree of dependence between Xt and Xt′ is decreasing as the time

t and t′ are getting farther separated from each other. We formalize this idea by

introducing the concept of mixing.
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Definition 5.A.2 A stochastic process {Xt}∞−∞ is said to be mixing (or regular) if,

for every B ∈ F,

sup
A∈Ft

−∞

|P (A ∩B)− P (A)P (B)| → 0 as t → −∞.

Mixing can be regarded as an asymptotic independence. Note that an independent

process is also mixing. An alternative definition of mixing can be described in terms

of remote event. Remote event is defined as an event contained in the remote σ-field,

F−∞ =
∩

t F
t
−∞.

Definition 5.A.3 A stochastic process {Xt}∞−∞ is said to be mixing (or regular) if

every remote event has probability 0 or 1.

Since mixing is defined by remote events as in Definition 5.A.3, it can hardly

provide us with useful description of dependence between events that are widely

separated in time, but not in the remote events. Therefore, for a workable theory

we need the concepts of mixing coefficients. In this section, we introduce only two

most important mixing coefficients, α-mixing and ϕ-mixing although there are several

other different versions available. Let G and H be σ-subfields of F. The α-mixing

(strong mixing) coefficient is defined by

α(G,H) = sup
G∈G,H∈H

|P (G ∩H)− P (G)P (H)|,

the uniform mixing coefficient is defined by

ϕ(G,H) = sup
G∈G,H∈H;P (G)>0

|P (H|G)− P (H)|

Then, the sequence {Xt}∞−∞ is said to be α-mixing (or strong mixing) if

αm = sup
t

α(Ft
−∞,F∞

t+m) → 0 as m → ∞,
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similary, it is said to be ϕ-mixing (or uniform mixing) if

ϕm = sup
t

ϕ(Ft
−∞,F∞

t+m) → 0 as m → ∞

Note that if αm = 0 for all m, the sequence becomes independent. Measure of the

dependence can be based on the rate of convergence at which the mixing coefficients

tend to zero. The rate of convergence is quantified by that for some number φ >

0, αm(ϕm) → 0 sufficiently fast that

∞∑
m=1

α
1
φ
m < ∞ or

∞∑
m=1

ϕ
1
φ
m < ∞.

A sequence is said to be α-mixing (ϕ-mixing) of size −φ0 if αm = O(m−φ) (ϕm =

O(m−φ)) for some φ > φ0.

5.A.3 Martingale Difference Process

Independence and mixing are conditions for every event in F. Since sup is taken

over all the events in F, usually it is the most peculiar event that determines the

properties. However, in many case, those peculiar event that determine the properties

of a stochastic process may not be our main interest. Therefore, sometimes it is more

useful if we confine our attention to more restricted measure of dependence, and admit

more stochastic process into consideration. Martingale difference and mixingale are

two key concepts.

Definition 5.A.4 A stochastic process {Xt}∞−∞ is said to be a martingale difference

(m.d.) sequence if Xt is integrable and

E(Xt|Ft−1
−∞) = 0 a.s.
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Table 5.1: Dependence between Xt and Xt+m

For all m As m → ∞
Every events Independent ⇒ Mixing

⇓ ⇓
1-period ahead predictability Martingale Difference ⇒ Mixingale

This implies that {. . . , Xt−1} have no impact on the prediction of Xt. It can be

thought thatXt’s are independent each other in terms of one-period ahead predictabil-

ity.

5.A.4 Mixingale Process

Although martingale difference restrict our attention to more restricted measure of

dependence, namely predictability, it is still rather special in time series setting that

Xt has no prediction power on Xt+m at all. Similarly in mixing, it might be more

natural to expect that the degree of dependence between between Xt and Xt+m in

term of predictablity is getting smaller as the time m increases. Mixingale captures

this idea.

Definition 5.A.5 {Xt}∞−∞ is said to be an Lp-mixingale if

||E(Xt|Ft−m
−∞ )||p ≤ ζm → 0 as m → ∞

This is the most general dependence concept for that most of asymptotic theories go

through.

It can be said that mixingales are to mixing as matingale differences are to

independent. Table 1 summarize the relationship among these dependence concepts.
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5.A.5 Near-Epoch Dependent (NED) Process

Definition 5.A.6 Let {Vt}∞−∞ be a stochastic process on a probability space (S,F, P ).

Define σ-subfields Ft
s = σ(Vs, . . . , Vt). A stochastic process {Xt}∞−∞ is said to be Lp-

NED on {Vt}∞−∞ for p > 0, if for m ≥ 0,

||Xt − E(Xt)|Ft+m
t−m)||p ≤ dtν(m),

where dt is a sequence of positive constants, and ν(m) → 0 as m → ∞.

We say that Xt is NED of size −λ on the process Vt if ν(m) = O(m−λ−ε) for some

ε > 0. In the application, Vt usually is a mixing process.

The near-epoch dependence concept is most useful due to the following theorem

Theorem 5.2 Let {Vt}∞−∞ be α-mixing of size −a. If {Xt}∞−∞ is an Lr-bounded

zero-mean sequence and Lp-NED of size −b on Vt with constant {dt} for r > p ≥ 1,

then {Xt,F
t
−∞} is an Lp-mixingale of size −min

[
b, a(1

p
− 1

r
)
]
with constant ct <<

max||Xt||r, dt.

Theorem 5.3 Let {Vt}∞−∞ be ϕ-mixing of size −a. If {Xt}∞−∞ is an Lr-bounded

zero-mean sequence and Lp-NED of size −b on Vt with constant {dt} for r > p ≥ 1,

then {Xt,F
t
−∞} is an Lp-mixingale of size −min

[
b, a(1− 1

r
)
]
with constant ct <<

max [||Xt||r, dt].

5.B Functional Central Limit Theorem

The functional central limit theorem (FCLT) is a generalization of the central limit

theorem (CLT) to a stochastic process; in the CLT, a sequence of distributions of



5.B. FUNCTIONAL CENTRAL LIMIT THEOREM 105

random variables converges to its limit, meanwhile, in the FCLT, a sequence of dis-

tributions of stochastic processes converges to its limit.

To see the difference, consider a sequence of stationary random variables ut

where E(ut) = 0 and E(u2
t ) = σ2:

u1, u2, . . . , un.

From them, we can construct the following sequence of random variables:

Xn =
1√
n

n∑
t=1

ut.

Note that for every n, Xn is a well-defined random variable, therefore it has a dis-

tribution denoted by Fn(x). In the CLT, we are concerned about the limit of the

sequence of the distributions. What the CLT imply is that for every x where F∞(x)

is continuous, as n → ∞,

F1(x), F2(x), . . . , Fn(x), . . . → F∞(x)

where F∞(x) is a normal distribution.

From the sequence of ut’s, we can also construct the following sequence of ran-

dom function of r ∈ [0, 1]:

Xn(r) =
1√
n

[nr]∑
t=1

ut.

Although it is not a simple task to define the distributions of the random functions, by

abuse of notation, we can define Fn(x) be a distribution of Xn(r). Then, what we are

concerned about with the FCLT is limit of the sequence of the distributions, Fn(x).

What the FCLT imply is that for every x where F∞(x) is continuous, as n → ∞,

F1(x), F2(x), . . . , Fn(x), . . . → F∞(x).
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where F∞(x) is the distribution of the Wiener process. Formal definitions and theo-

rems are given in the subsequent sub-sections.

For the notational convenience, we introduce a triangular stochastic array. Ar-

ray notation is especially convenient when the points of a sample are subjected to scale

transformations, depending on the whole sample. A typical example is {{Xnt}nt=1}∞n=1

where Xnt =
Xt

n
. A triangular stochastic array is a doubly-indexed collection of ran-

dom variables, 

X11 X21 X31 . . .
X12 X22 X32 . . .
...

...
...

X1,k1

...
...

X2,k2

...
X3,k3

. . .


,

which is compactly written as {{Xmn}knm=1}∞n=1, where kn is an increasing integer

sequence.

5.B.1 Central Limit Theorem

Since the FCLT is a generalization of the CLT, we can understand the FCLT through

the comparison with the CLT. Therefore, we review the CLT first. In below, we

present two versions of the CLT: one for the martingale difference sequence, and the

other for NED functions of strong mixing processes.

Theorem 5.4 Let {Unt,Fnt} be a martingale difference array with finite uncondi-

tional variances {σ2
nt}, and

∑n
t=1 σ

2
nt = 1. Define Xn =

∑n
t=1 Unt. If the following

assumptions holds:

1.
∑n

t=1 U
2
nt

p−→ 1
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2. max1≤t≤n |Unt|
p−→ 0

then, Xn
d−→ N(0, 1).

It is instructive to apply the above theorem to the i.i.d. data, which is the

simplest case. Let u1, u2, . . . , ut, . . . be a i.i.d. sequence with E(ut) = 0 and E(u2
t ) =

σ2. Also, define Unt =
ut

σ
√
n
, and Fnt = σ(ut, ut−1, . . .). Then, Unt has the finite

unconditional variance

σ2
nt = E(U2

nt) = E

(
u2
t

σ2n

)
=

1

n
< ∞,

and its sum is equal to one

n∑
t=1

σ2
nt =

n∑
t=1

1

n
= 1

Also, it can be shown that two conditions are satisfied:

1.
∑n

t=1 U
2
nt =

∑n
t=1

u2
t

σ2n
=

1

n

∑n
t=1

(ut

σ

)2 p−→ 1 by the LLN.

2. max1≤t≤n |Unt| = max1≤t≤n

∣∣∣∣ ut

σ
√
n

∣∣∣∣ = ∣∣∣∣ ut

σ
√
n

∣∣∣∣ p−→ 0. Note that the last equality

holds because ut is identically distributed, and it converges to zero because any

random variable is finite.

Therefore, Xn =
∑n

t=1 Unt =
1√
n

∑n
t=1

ut

σ

d−→ N(0, 1).

Theorem 5.5 Let {{Unt}nt=1}∞n=1 be a triangular stochastic array, let {{Vnt}∞t=−∞}∞n=1

be a stochastic array, and let F t+m
n,t−m = σ(Vn,s, t − m ≤ s ≤ t + m). Define

Xn =
∑n

t=1 Unt. If the following assumptions holds:

1. Unt is F t
n,−∞/B-measurable, with E(Unt) = 0 and E(X2

n) = 1
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2. There exists a positive constant array {cnt} such that supn,t ||Unt/cnt||r < ∞ for

r > 2

3. Unt is L2-NED of size -1 on {Vnt}, which is α-mixing of size −r/(r − 2)

4. supn nM
2
n < ∞, where Mn = max1≤t≤n{cnt}

then, Xn
d−→ N(0, 1)

5.B.2 Functional Central Limit Theorem

In the FCLT, a sequence of distributions of stochastic processes converges to the limit.

In below, we present two versions of the FCLT: one for the martingale difference

sequence, and the other for NED functions of mixing processes.

Theorem 5.6 Let {Unt,Fnt} be a martingale difference array with finite uncondi-

tional variances {σ2
nt}, and

∑n
t=1 σ

2
nt = 1. Define Xn(r) =

∑[nr]
t=1 Unt for r ∈ [0, 1]. If

the following assumptions holds:

1.
∑n

t=1 U
2
nt

p−→ 1

2. max1≤t≤n |Unt|
p−→ 0

3. limn→∞
∑[nr]

t=1 σ
2
nt = r for all r ∈ [0, 1]

then, Xn ⇒ W (r)

Theorem 5.7 Let {{Unt}Kn
t=1}∞n=1 be a zero-mean stochastic array, {{cnt}Kn

t=1}∞n=1 be

an array of positive constants, and {Kn(r)}∞n=1 be a sequence of integer-valued, right-

continuous and increasing function of r ∈ [0, 1] with Kn(0) = 0 for all n and Kn(r)−

Kn(s) → ∞ as n → ∞ if r > s. Define XK
n (r) =

∑Kn(r)
t=1 Unt. If the following

assumptions hold:
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1. supn,t

∥∥∥Unt

cnt

∥∥∥
r
< ∞ for r > 2

2. Unt is L2-NED of size −γ ∈ [−1,−1
2
] with respect to the constants cnt on an

array {Vnt} which is α-mixing of size −r/(r − 2)

3. supr∈[0,1),δ∈(0,1−r]

{
lim supn→∞

v2n(r, δ)

δ

}
< ∞, where v2n(r, δ) =

∑Kn(r+δ)
t=Kn(r)+1 c

2
nt

4. max1≤i≤Kn(1) cnt = O(Kn(1)
γ−1), where γ is defined in (2)

5. E(XK
n (r)2) → r as n → ∞, for each r ∈ [0, 1]

then, XK
n (r) ⇒ W (r)

In Theorem 5.7, we use a general increasing function of r, Kn(r). It is instructive

to consider the standard case where Kn(r) = [nr] and Xn(r) =
1√
n

∑[nr]
t=1 ut. This

case is presented in the following theorem

Theorem 5.8 Let {ut} be a stochastic process with E(ut) = 0, uniformly Lr-bounded,

and L2-NED of size −1
2
on an α-mixing process of size −r/(r − 2) for r > 2. Define

Xn(r) =
1√
n

∑[nr]
t=1 ut. If the following assumption holds:

E

(
1√
n

n∑
t=1

ut

)2

→ σ2 < ∞

then, Xn(r) ⇒ W (r)

5.C Consistency of Bootstrap

Definition: Let PT denote the joint probability distribution of the sample {x1, x2, ..., xT}.

Let Φ denote the space of permitted distribution functions. The bootstrap estimator

GT (·, FT ) is consistent if for ε > 0 and F0 ∈ Φ,

lim
T→∞

PT

(
sup
q

|GT (q, FT )−G∞(q, F0)| > ε

)
= 0
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5.D Hansen’s (1999) Grid Bootstrap

A sample XT of size n is generated from a distribution GT (x|α, ν) = P (XT ≤ x|α, ν)

which depends on a parameter of interest α ∈ R and a nuisance parameter ν ∈ Ξ.

Denote by α̂ an estimate of α with standard error s(α̂). We assume that, for each

α, there is some estimator ν̂ ∈ Ξ of the nuisance parameter ν, which may or may

not depend on α. Let S(α) be a test statistic of the hypothesis H0 : α0 = α, and

FT (x|α, ν) = P (ST (α) ≤ x|α, ν) be a distribution function of S(α). Examples of

S(α) include the nonstudentized estimate b(α) = α̂ − α and the t-statistic t(α) =

(α̂−α)/s(α̂). The quantile function qT (θ|α, ν) is the θ quantile of the distribution of

ST (α), and satisfies

FT (qT (θ|α, ν)|α, ν) = θ.

qT (θ|α, ν) is approximated by the bootstrap quantile function q∗T (θ|α) = qT (θ|α, ν̂(α)),

which is evaluated at the estimate ν̂(α) and is thus random. The β-level grid-

bootstrap confidence interval for α is defined as the set

Cg = {α ∈ R : q∗T (θ1|α) ≤ ST (α) ≤ q∗T (θ2|α)}

where θ1 = 1− (1− β)/2 and θ2 = (1− β)/2; so β = θ2 − θ1.

In order to calculate Cg, we need to estimate the bootstrap quantile functions

q∗T (θ|α), which are generally unknown, by simulation as follows. For a given α, let

G∗
T (x|α) = GT (x|α, ν̂(α)) be the bootstrap distribution of the sample.

1. Generate random samples X∗
T from G∗

T (x|α) by simulation.

2. Using X∗
T , calculate the test statistic S∗

T (α).

3. Repeat steps 1 and 2 B times.
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4. Sort the B simulated test statistics S∗
T (α). The 100θ% order statistic q̂∗T (θ|α)

is the simulation estimate of q∗T (θ|α) as a function of α.

5. Pick a grid AG = [α1, ..., αG], and calculate q̂∗T (θ|α) at each α ∈ AG by simula-

tion.

6. For a given α, smooth the estimated function q̂∗T (θ|α) using the kernel estimate:

q̃∗n(θ|α) =

∑G
j=1K

(
α−αj

γ

)
q̂∗n(θ|αj)∑G

j=1 K
(

α−αj

γ

)
where K(z) is the Epanechnikov kernel K(z) = 3

4
(1− z2)I(|z| ≤ 1), and γ is a

bandwidth chosen by least-square cross-validation.

5.E Monte Carlo Methods with GAUSS

This appendix explains how Monte Carlo methods explained in this chapter are imple-

mented with GAUSS, that is explained in Appendix A. The concepts and programs

are similar in other computer languages such as MATLAb.

5.E.1 Random Number Generators

Most programs offer random number generators for the uniform distribution and the

standard normal distribution. For example,

y=RNDN(r,c);

in GAUSS generates r × c values that appear to be a realization of independent

standard normal random variables that will be stored in an r×c matrix. The starting

seed for RNDN can be given by a statement

RNDSEED n;
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where the value of the seed n must be in the range 0 < n < 231 − 1.

One can produce random numbers with other distributions by transforming

generated random numbers. The following examples are some of the transformations

that are often used.

Example 5.E.1 A χ2 random variable with d degrees of freedom can be created

from d independent random variables with the standard normal distribution. If ei ∼

N(0, 1), and if ei is independent from ej for j ̸= i, then
∑d

i=1 e
2
i follows the χ2

distribution with d degrees of freedom.

For example, in GAUSS one can generate a T × 1 vector with values that appear to

be a realization of an i.i.d. {x}Tt=1 of random variables with the χ2 distribution with

d degrees of freedom by the following program:

e=RNDN(T,d);

x=sumc((e^2)’);

Example 5.E.2 A random variable that follows the Student’s t distribution with d

degrees of freedom can be generated from d + 1 independent random variables with

the standard normal distribution. If ei ∼ N(0, 1), and if ei is independent from ej for

j ̸= i, then x = e1/
√∑d+1

i=2 e
2
i /d follows the t distribution with d degrees of freedom.

For example, in GAUSS one can generate a T × 1 vector with values that appear to

be a realization of an i.i.d. {x}Tt=1 of random variables with the t distribution with d

degrees of freedom by the following program:

e=RNDN(T,d+1);

c=sumc((e[.,2:d+1]^2)’);

x=e[.,1]./sqrt(c/d);
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Example 5.E.3 A K-dimensional random vector which follows N(0,Ψ) for any pos-

itive definite covariance matrix Ψ can be generated from K independent random

variables with the standard normal distribution. Let Ψ = PP′ be the Cholesky de-

composition of Ψ, in which P is a lower triangular matrix. If ei ∼ N(0, 1), and if ei is

independent from ej for j ̸= i, then X = Pe ∼ N(0,Ψ) where e = (e1, e2, · · · , eK)′.

For example, in GAUSS one can generate a T ×K matrix with values that appear to

be a realization of an i.i.d. {Xt}Tt=1 ofK-dimensional random vectors with theN(0, C)

distribution with the following program provided that the matrix C is already defined.

e=RNDN(T,K);

P=chol(C)’;

x=eP;

Note that the Cholesky decomposition in GAUSS gives an upper triangular matrix.

Thus, the above program transposes the matrix to a lower triangular matrix.

5.E.2 Estimators

5.E.3 A Pitfall in Monte Carlo Simulations

Common mistakes are made by many graduate students when they first use Monte

Carlo simulations. These mistakes happen when they repeatedly use a random num-

ber generator to conduct simulations. These mistakes are caused by updating seeds

arbitrarily in the middle of a simulation. Recall that once the starting seed is given,

a random number generator automatically updates the seed whenever it creates a

number. The way the seed is updated depends on the program.

The following example illustrates common mistakes in a simple form:

Example 5.E.4 A Monte Carlo Program with a Common Mistake (I)
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ss=3937841;

i=1;

vecm=zeros(100,1);

do until i>100;

RNDSEED ss;

y=RNDN(50,1);

m=meanc(y);

vecm[i]=m;

i=i+1;

endo;

In this example, the programmer is trying to create 100 samples of the sample mean

of a standard normal random variable y when the sample size is 50. However, exactly

the same data are generated 100 times because the same starting seed is given for

each replication inside the do-loop. This mistake is innocuous because it is easy to

detect. The following program contains a mistake which is harder to detect:

Example 5.E.5 A Monte Carlo Program with a Common Mistake (II)

ss=3937841;

i=1;

vecm=zeros(100,1);

do until i>100;

RNDSEED ss+i;

y=RNDN(50,1);

m=meanc(y);

vecm[i]=m;

i=i+1;

endo;

The problem is that the seed is updated in an arbitrary way in each sample by giving

a different starting seed. There is no guarantee that one sample is independent from

the others. A correct program would put the RNDSEED statement before the do

loop. For example, the RNDSEED statement inside the do loop should be removed

and the statement
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RNDSEED ss;

can be added after the first line.

In Monte Carlo simulations, it is also important to control the starting seed so

that the simulation results can be replicated. When you publish Monte Carlo results,

it is advisable to put enough information in the publication so that others can exactly

replicate the results.13 At the very least, a record of the information should be kept.

If no RNDSEED statement is given before the RNDN command is used, GAUSS will

take the starting seed from the computer clock. Then there is no way to exactly

replicate these Monte Carlo results.

5.E.4 An Example Program

This section describes basic Monte Carlo methods with an example program. In the

following example, the sample mean is calculated as an estimator for the expected

value of Xt, E(Xt), where Xt = µ+ et and et is drawn from the t distribution with 3

degrees of freedom. The t distribution with 3 degrees of freedom has thick tails and

large????? , outlying values have high probability. Hence the t distribution is often
Masao
needs to
check this!

considered a better distribution to describe some financial variables. Because Xt is

not normally distributed, the standard theory for the exact finite sample properties

cannot be applied. The example is concerned with the t test of the null hypothesis that

µ = 0. Because a random variable with the t distribution with 3 degrees of freedom

has zero mean and a finite second moment, asymptotic theory predicts that the t test

statistic of the sample mean divided by the estimated standard error approximately

follows the standard normal distribution.

13This information is also relevant because different computer specifications and different versions
of the program (such as GAUSS) can produce different results.
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Example 5.E.6 The program.

@MCMEAN.PRG @ @Monte Carlo Program for the sample mean@

@This example program is a GAUSS program to calculate

the empirical size and power of the t-test for H0: E(X)=0,

where X follows t-distribution with 3 degrees of freedom.

The power is calculate for the case when E(X)=0.2. @

RNDSEED 382974;

output file=mc.out reset;

tend=25; @the sample size@

nor=1000; @the number of replications@

df=3; @ d.f. for the t-distribution of X@

i=1;

tn=zeros(nor,1); @used to store t-values under H0@

ta=zeros(nor,1); @used to store t-values under H1@

do until i>nor;

nrv=RNDN(tend,df+1); @normal r.v.’s@

crv=nrv[.,2:df+1]^2; @chi square r.v.’s@

x0=nrv[.,1]./sqrt(sumc(crv’)/df); @t distribution: used under H0@

x1=x0+0.2; @used for H1@

mx0=meanc(x0);

mx1=meanc(x1);

sighat0=sqrt((x0-mx0)’(x0-mx0)/(tend-1)); @simgahat under H0@

sighat1=sqrt((x1-mx1)’(x1-mx1)/(tend-1)); @sigmahat under H1@

tn[i]=meanc(x0)*sqrt(tend)/sighat0; @t-value under H0@

ta[i]=meanc(x1)*sqrt(tend)/sighat1; @t-value under H1@

i=i+1;

endo;

? "***** When H0 is true *****";

? "The estimated size with the nominal critical value";

? meanc(abs(tn).>1.96);

? "The estimated true 5-percent critical value";

sorttn=sortc(abs(tn),1);

etcv=sorttn[int(nor*0.95)];

? etcv;

? "***** When H1 is true *****";

? "The estimated power with the nominal critical value";

? meanc(abs(ta).>1.96);

? "The estimated size corrected power";

? meanc(abs(ta).>etcv);



5.E. MONTE CARLO METHODS WITH GAUSS 117

output off;

Some features of the example are important. Before the do-loop of the replications,

the program set up an output file by

output file=mc.out;

Then to avoid the common mistake explained in 5.E.3, it makes the RNDNSEED

statement before the do-loop.

It is a good idea to minimize the content inside the do-loop to speed up repli-

cations. Everything that can be done outside the do-loop should be done there. For

example, the program defines variables to store the test results:

tn=zeros(nor,1);

ta=zeros(nor,1);

In GAUSS, the do-loop can be set up as follows:

i=1;

do until i>250;

... (Program for each replication)

i=i+1;

endo;

After the do-loop, the program calculates characteristics of the generated distributions

of test statistics under the null hypothesis and the alterative hypothesis such as the

frequency of rejecting the null with the nominal critical value.

Exercises

5.1 Show that all conditions of Gordin’s Central Limit Theorem are satisfied for et

in Example 5.1.
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5.2 Show that all conditions of Gordin and Hansen’s Central Limit Theorem are

satisfied for ft in Example 5.2.

5.3 Let et = Ψ(L)ut = Ψ0ut +Ψ1ut−1 + · · · be an MA representation. What is the

long-run variance of ft = (1− L)et?

5.4 Explain what it means to say that “a test under-rejects in small samples” (or “a

test is conservative”). When a test is conservative, which is greater, the true critical

value or the nominal critical value?

5.5 Consider the linear model

yt = x′
tβ + et.

where xt is a k-dimensional vector.

Let zt be a k × 1 vector of instrumental variables. We will adopt the following

set of assumptions:

(A1) (et,xt, zt)
∞
t=1 is a stationary and ergodic stochastic process.

(A2) ztet have finite second moments.

(A3) E(e2t |zt) = σ2, where σ is a constant.

(A4) E(et|It) = 0 for a sequence of information sets (It)
∞
t=1 which is increasing (i.e.,

It ⊂ It+1), zt and xt are in It, and yt is in It+1.

(A5) E(ztx
′
t) is nonsingular.

Note that E(et) = 0 is implied by (A4) if zt includes a constant.
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Note that many rational expectations models imply (A4). For the following

problems, prove the asymptotic properties of the instrumental variable (IV) estimator,

bIV , for β under (A1)-(A5). Use a central limit theorem and a strong law of large

numbers given in this chapter, and indicate which ones you are using and where you

are using them in your proof.

(a) Express the IV estimator bIV in terms of zt,xt, and yt(t = 1, . . . , T ) when

ΣT
t=1ztx

′
t is nonsingular.

(b) Let gt = ztet. Prove that gt is a martingale difference sequence.

(c) Prove that the IV estimator is consistent under (A1)-(A5).

(d) Prove that the IV estimator is asymptotically normally distributed. Derive the

formula of the covariance matrix of the asymptotic distribution.

(e) Explain what happens if yt is in It+2 in (A4).

5.6 Consider the linear model

yt = x′
tβ + ϵt,

where xt is a k-dimensional vector. Following Hayashi (2000), suppose that this model

satisfies the classical linear regression model assumptions for any sample size (n) as

follows:

(A1) Linearity: yt = x′
tβ + et.

(A2) Ergodic stationarity: {yt,xt} is jointly stationary and ergodic.

(A3) Predetermined regressors: E(etxt) = 0.
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(A4) Rank condition: E(xtx
′
t) is nonsingular (and hence finite).

(A5) xtet is a martingale difference sequence with finite second moments.

(A6) Finite fourth moments for regressors: E[(xitxjt)
2] exists and finite for all i, j

(= 1, 2, · · · , k).

(A7) Conditional homoskedasticity: E(e2t |xt) = σ2 > 0.

Further, assume that et is normally distributed conditional on X, where X is an n×k

matrix with x′
t in its t-th row. Let

tk =
bk − β̄k

SE(bk)
=

bk − β̄k√
s2[(X′X)−1]kk

be the t statistic for the null hypothesis βk = β̄k.

(a) Prove that tk converges in distribution to the standard normal distribution as

the sample size goes to infinity. You do not have to prove that s2 is consistent

σ2 for this question. You can assume that s2 is consistent.

(b) Based on the asymptotic result in (a), suppose that you set the nominal size to

be 5 percent and reject the null hypothesis when |tk| is greater than 1.96. Does

this test overreject or underreject. How do you know? Suppose that k = 3. Is

the actual size larger than 10 percent when n = 4. What if n = 8, 9, 10, 11?

Explain.

5.7 Consider the linear model

y = Xβ + e(5.E.1)
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Let k×1 matrix x′
t be the t-th row of the regressor matrix X. The model (5.E.1) can

be written as

yt = x′
tβ + et(5.E.2)

We will adopt the following set of assumptions:

(A1) (et,xt)
∞
i=t are independent and identically distributed (i.i.d.) random vectors.

(A2) xt and et have finite second moments.

(A3) E(e2t |xt) = σ2 which is a constant.

(A4) E(xtet) = 0 for all t ≥ 1

(A5) E(xtx
′
t) is nonsingular.

Note that E(et) = 0 is implied by (A4) if xt includes a constant.

Consider the model (5.E.1) with k = 1. Assume that xt follows N(0,1). Assume

that xt and et are independent. Under the null hypothesis H0, the true value of β is

0, so that yt = et.

Consider the standard t statistic,

t1 =
b− β

σ̂1

√
X′X)−1

(5.E.3)

where σ̂2
1 = (Y −Xb)′(Y −Xb)/(n− k). Consider another version of the t statistic

t2 =
b− β

σ̂2

√
X′X)−1

(5.E.4)

where σ̂2
2 = (Y−Xb)′(Y−Xb)/n. Note that both t1 and t2 converge in distribution

to a random variable with the standard normal distribution.

Consider two alternative assumptions for et.

(A6) et follows the t distribution with 4 degrees of freedom.

(A6′) et follows the standard normal distribution.
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Note that Assumptions 1.1 - 1.5 are satisfied with (A6′), so that t1has the exact t

distribution with n− k degrees of freedom.

Using GAUSS, conduct a Monte Carlo simulation with the sample size of 26

and 500 replications under Assumption (A6).

(a) Use the t1 in (5.E.3) to estimate

(i) the true size of the t test for H0 : β = 0 based on the nominal significance

level of 5% and the nominal critical value based on the standard normal

distribution are used.

(ii) the true size of the t test for H0 : β = 0 based on the nominal significance

level of 5% and the nominal critical value based on the t distribution with

25 degrees of freedom.

(iii) the true critical value of the t test for the 5% significance level,

(iv) the power of the test at β = 0.15 based on the nominal critical value,

(v) the size corrected power of the test.

(b) Use the t2 in (5.E.4) and repeat the exercises (a)− (e).

For the starting seed, use 3648xxxx, where xxxx is your birth date, such as 0912 for

September 12. Submit your program and output. For each t ratio, discuss whether it

is better to use the standard distribution or the t distribution critical values for this

application. Also discuss whether t1 or t2 is better for this application.
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