
Chapter 6

ESTIMATION OF THE
LONG-RUN COVARIANCE
MATRIX

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymp-

totic standard errors for the OLS and linear IV estimators presented in Chapter 5.

Estimation of the long-run covariance matrix will be important for GMM estimators

introduced later in Chapter 9 and many of the estimation and testing methods for

nonstationary variables. Chapter 13 shows that an estimate of the long-run variance

of a random variable is also useful in estimating the importance of the random walk

component of some nonstationary random variables. This chapter discusses estima-

tion methods for the long-run covariance matrix.

Let {ut : −∞ < t < ∞} be a stationary and ergodic vector stochastic process

with mean zero. We will discuss estimation methods of the long-run covariance matrix

of ut:

Ω = lim
j→∞

j∑
−j

E(utu
′
t−j).(6.1)

Depending on the application, we take different variables as ut. When Ω is used

for the calculation of the asymptotic standard errors for the OLS estimator, we take
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ut = xt(yt − x′
tb0). For the calculation of the asymptotic standard errors for the

linear IV estimator, we take ut = zt(yt − x′
tb0). Because b0 is unknown, the sample

counterpart of ut, zt(yt − x′
tbT ), is used to estimate Ω where bT is a consistent

estimator for b0. For the application in Chapter 13, ut is a random variable such

as the first difference of the log real GNP minus its expected value, and the first

difference minus its estimated mean is used for the sample counterpart. Thus in

many applications, ut is unobservable and its sample counterpart is constructed from

a consistent estimator for a parameter vector. When ΩT is a consistent estimator

for Ω, Ω∗
T = f(T )ΩT is also a consistent estimator as long as limT→∞ f(T ) = 1 for

any real valued function f(T ). Therefore, we can consider various forms of f(T )

to improve small sample properties. If p parameters are estimated to compute the

sample counterpart of ut, then f(T ) = T
T−p

is a small sample degrees of freedom

adjustment that is often used for each ΩT presented in this chapter.1

6.1 Serially Uncorrelated Variables

This section treats the case where E(utu
′
t−τ ) = 0 for τ ̸= 0. Many rational ex-

pectations models imply this property. In this case, Ω = E(utu
′
t) can be esti-

mated by 1
T

∑T
t=1 utu

′
t. For linear IV estimators, this is White’s (1980) heteroskedas-

ticity consistent estimator. In this case, ut = zt(yt − x′
tbT ) and 1

T

∑T
t=1 utu

′
t =

1
T

∑T
t=1(yt − x′

tbT )
2ztz

′
t.

In some cases, conditional homoskedasticity is assumed in the economic model,

and an econometrician may wish to impose this property on the estimate for Ω =

E(e2t )E(ztz
′
t). Then 1

T

∑T
t=1(yt − x′

tbT )
2 1
T

∑T
t=1 ztz

′
t with a small sample degree of

1Some other forms of small sample adjustments have been used (see, e.g., Ferson and Foerster,
1994).
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freedom adjustment such as T
T−p

is used to estimate Ω.

6.2 Serially Correlated Variables

This section treats the case where the disturbance is serially correlated in the context

of time series analysis.

6.2.1 Unknown Order of Serial Correlation

In many applications, the order of serial correlation is unknown. The estimators of

the long-run covariance matrix in the presence of conditional heteroskedasticity and

autocorrelation are called Heteroskedasticity and Autocorrelation Consistent (HAC)

estimators.

Let Φ(τ) = E(utu
′
t−τ ). Many HAC estimators use the sample version of Φ(τ),

ΦT (τ) =
1

T

T∑
t=τ+1

utu
′
t−τ for 0 ≤ τ ≤ T − 1(6.2)

and ΦT (τ) = ΦT (−τ)′ for τ < 0. Given the data of u1, ...,uT , ΦT (τ) for a large

lag τ cannot be estimated with many observations. For example, we have only one

observation for ΦT (T − 1). Hence it is natural to put much less weight on ΦT (τ)

with large τ than on ΦT (τ) with small τ . The weights are described by a real valued

function called a kernel function. The kernel HAC estimators for Ω in the literature

have the form

ΩT =
T−1∑

τ=−T+1

k(
τ

ST

)ΦT (τ),(6.3)

where k(·) is a real-valued kernel, and ST is a band-width parameter.2 Examples of

2These terminologies follow Andrews (1991), and are somewhat different from those in kernel
estimations in other contexts.
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kernels that have been used by econometricians include the following:

k(x) =

{
1 for |x| ≤ 1 Truncated kernel,
0 otherwise

(6.4)

k(x) =

{
1− |x| for |x| ≤ 1 Bartlett kernel,
0 otherwise

k(x) =


1− 6x2 + 6|x|3 for |x| ≤ 1

2
Parzen kernel,

2(1− |x|)3 for 1
2
< |x| ≤ 1

0 otherwise

k(x) =
25

12π2x2
(
sin(6πx/5)

6πx/5
− cos(

6πx

5
)) QS kernel.

The estimators of Hansen (1982) and White (1984, p.152) use the truncated kernel;

the Newey and West (1987) estimator uses the Bartlett kernel; and the estimator

of Gallant (1987, p.533) uses the Parzen kernel. The estimators corresponding to

these kernels place zero weights on Φ(τ) for τ ≥ ST , so that ST − 1 is called the lag

truncation number. Andrews (1991) advocates an estimator which uses the Quadratic

Spectral (QS) kernel, which does not place zero weights on any Φ(τ) for |τ | ≤ T −1.3

One important problem is how to choose the bandwidth parameter ST . Andrews

(1991) provides formulas for the optimal choice of the bandwidth parameter, S∗
T , for

a variety of kernels. The S∗
T is optimal in the sense of minimizing the MSE for a given

positive semidefinite matrix W:4

S∗
T =


1.1447(α(1)T )

1
3 Bartlett kernel

2.6614(α(2)T )
1
5 Parzen kernel

1.3221(α(2)T )
1
5 QS kernel,

(6.5)

3Hansen (1992) relaxes an assumption made by these authors to show the consistency of the
kernel estimators.

4To be exact, the optimal bandwidth parameter minimizes the asymptotic truncated MSE. See
Andrews (1991).
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and

α(q) =
2(vecf (q))′Wvecf (q)

trW(I+Kpp)f (0) ⊗ f (0)
,(6.6)

f (q) =
1

2π

∞∑
j=−∞

|j|qΦ(τ),

where W is a p2 × p2 weight matrix and Kpp is the p
2 × p2 commutation matrix that

transforms vec(A) into vec(A′), i.e., Kpp =
∑p

i=1

∑p
j=1 eie

′
j⊗eje

′
i, where ei is the i-th

elementary p-vector. Here f (0) is the spectral density at frequency zero, and the long-

run covariance matrix Ω is equal to 2πf (0). Unfortunately, these formulas include the

unknown parameters we wish to estimate. This outcome presents a serious circular

problem.

Andrews proposes automatic bandwidth estimators in which these unknown

parameters are estimated from the data by a parameterized model. His method

involves two steps. The first step is to parameterize the model to estimate the law of

motion of ut. For example, we can use an AR(1) model for each element of ut or a

VAR(1) model for ut. The second step is to calculate the parameters for the optimal

bandwidth parameter from the estimated law of motion. For example, we calculate

the unknown parameters by assuming that the estimated AR(1) model is true. In

his Monte Carlo simulations, Andrew uses an AR(1) parameterization for each term

of the disturbance, which seems to work well in the models he considers. Newey and

West (1994) propose an alternative method based on truncated sums of the sample

autocovariances; this method avoids the use of any parametric model.

Another issue is the choice of the kernel. One serious problem with the trun-

cated kernel is that the corresponding estimator is not guaranteed to be positive

semidefinite. Andrews (1991) shows that the QS kernel is an optimal kernel in the
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sense that it minimizes the asymptotic MSE among the kernel estimators that are

guaranteed to be positive semidefinite. His Monte Carlo simulations show that the

QS kernel and the Parzen kernel work better than the Bartlett kernel in most of the

models he considers. He also finds that even the estimators based on the QS kernel

and the Parzen kernel are not satisfactory in the sense that the standard errors cal-

culated from these estimators are not accurate in small samples when the amount of

autocorrelation is large.

Since the kernel HAC estimators do not seem satisfactory in many cases, An-

drews and Monahan (1992) propose an estimator based on VAR prewhitening. The

intuition behind this proposition is that the kernel HAC estimators only take care

of the MA components of ut and cannot handle the AR components well in small

samples. The first step in the VAR prewhitening method is to run a VAR of the form

ut = A1ut−1 +A2ut−2 + · · ·+Aput−p + vt.(6.7)

Note that the model (6.7) need not be a true model in any sense. The estimated

VAR is used to form an estimate vt and a kernel HAC estimator is applied to the

estimated vt to estimate the long-run variance of vt, Ω
∗
T . The estimator based on

the QS kernel with the automatic bandwidth parameter can be used to find vt for

example. Then the sample counterpart of the formula

Ω = [I−
p∑

τ=1

Aτ ]
−1Ω∗[I−

p∑
τ=1

A′
τ ]

−1(6.8)

is used to form an estimate of Ω. Andrews and Monahan use the VAR of order one

in their Monte Carlo simulations. Their results suggest that the prewhitened kernel

HAC estimator performs better than the non-prewhitened kernel HAC estimators for
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the purpose of calculating the standard errors of estimators.5

In a recent paper, den Haan and Levin (1996) propose a HAC estimator based

on (6.7) without using any kernel estimation, which is called the Vector Autoregres-

sion Heteroskedasticity and Autocorrelation Consistent (VARHAC) estimator. This

estimator has an advantage over any estimator that involves kernel estimation in that

the circular problem associated with estimating the optimal bandwidth parameter can

be avoided. For the VARHAC estimator, a usual method is to choose the order of

AR such as the AIC is applied to (6.7). Then the sample counterpart of (6.8) with

Ω∗ = E(vtv
′
t) is used to estimate Ω. Their Monte Carlo evidence indicates that

the VARHAC estimator performs better than the non-prewhitened and prewhitened

kernel estimators in many cases. On the other hand, Cochrane (1988) basically ar-

gues that kernel estimators are better than VARHAC estimators for his purpose of

estimating the random walk component as discussed in Chapter 13. Thus, it seems

necessary to compare VARHAC estimators with other estimators in different contexts

for various applications.

In sum, existing Monte Carlo evidence for estimation of Ω recommends VAR

prewhitening and either the QS or Parzen kernel estimator together with Andrews’

(1991) automatic bandwidth parameter if a kernel HAC estimator is to be utilized.

Though the QS kernel estimator may be preferred to the Parzen kernel estimator

because of its asymptotic optimality, it takes more time to calculate the QS kernel

estimators than the Parzen kernel estimators. This difference may be important

when estimation is repeated many times. The VARHAC estimator of den Haan and

Levin (1996) seems to have important advantages over estimators involving kernel

5Park and Ogaki’s (1991) Monte Carlo simulations suggest that the VAR prewhitening improves
estimators of Ω in the context of cointegrating regressions.
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estimation, even though it is a relatively new method, and has more Monte Carlo

evidence for various applications.

6.2.2 Known Order of Serial Correlation

In some applications, the order of serial correlation is known in the sense that the

economic model implies a particular order. Assume that the order of serial correlation

is known to be s.

In this case, there exist the zero restrictions on the autocovariances that Φ(τ) =

0 for |τ | > s. Imposing these zero restrictions on the estimator of Ω leads to a more

efficient estimator.6 Since Ω =
∑s

τ=−s Φ(τ) in this case, a natural estimator is

ΩT =
s∑

τ=−s

ΦT (τ),(6.9)

which is the truncated kernel estimator.

Hansen and Hodrick (1980) study a multi-period forecasting model that leads

to s ≥ 1. They use (6.9) with conditional homoskedasticity imposed (as discussed at

the end of Section 6.1 above). Their method of calculating the standard errors for

linear regressions is known as Hansen-Hodrick correction.

A possible problem with the estimator (6.9) is that ΩT is not guaranteed to be

positive semidefinite if s ≥ 1. In applications, researchers often encounter cases where

ΩT is invertible but is not positive semidefinite. If this happens, ΩT should not be

used to form the optimal GMM estimator (e.g., Newey and West, 1987). There exist

at least two ways to handle this problem. One way is to use Eichenbaum, Hansen,

and Singleton’s (1988) modified Durbin method. The first step of this method is

6In some applications, the order of serial correlation may be different for different terms of ut.
The econometrician may wish to impose these restrictions.
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to estimate the VAR (6.7) for a large p by solving the Yule Walker equations. The

second step is to estimate an MA(s) representation

ut = B1vt−1 + ...+Bsvt−s + et,(6.10)

by regressing the estimated ut on estimated lagged vt’s. Then the sample counterpart

of

Ω = (I+B1 + ...+Bs)E(ete
′
t)(I+B1 + ...+Bs)

′(6.11)

is used to form an estimate of Ω that imposes the zero restrictions. This method is

not reliable when the number of elements in ut is large relative to the sample size

because too many parameters in (6.7) need to be estimated. The number of elements

in ut need to be kept as small as possible when using this method.

Another method uses one of the kernel HAC estimators (or VAR prewhitened

kernel estimators if s is large) that is guaranteed to be positive semidefinite. When

employing this method, the zero restrictions should not be imposed even though Φ(τ)

is known to be zero for |τ | > s. In order to illustrate this method in a simple example,

consider the case where s = 1 and Newey and West’s (1987) Bartlett kernel estimator

is used. Then

ΩT =
ℓ∑

τ=−ℓ

ST − |τ |
ST

ΦT (τ),(6.12)

where ℓ = ST − 1 is the lag truncation number. If ℓ = 1 is used to impose the

zero restrictions, then ΩT converges to Φ(0)+ 1
2
Φ(1)+ 1

2
Φ(−1), which is not equal to

Ω = Φ(0)+Φ(1)+Φ(−1). Thus ℓ must increase as T increases to obtain a consistent

estimator. On the other hand, if ℓ > 1 is used and the zero restrictions are imposed

by setting ΦT (τ) in (6.6) equal to zero for |τ | > 1, then the resulting estimator is no

longer guaranteed to be positive semidefinite.
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In this chapter, we focused on consistent estimators for the long-run covariance

matrix. Recently, some researchers have pointed out that we may not need to have

consistent estimators for some purposes such as computing standard errors for regres-

sion estimators or computing Wald tests. For example, small sample properties of

Wald tests computed form inconsistent estimates of the long-run covariance matrix

may be better for some data generating processes. See Kiefer, Vogelsang, and Bunzel

(2000), Kiefer and Vogelsang (2002a,b), and Müller (2004).

Exercises

6.1 (The Multi-Period Forecasting Model) Suppose that It is an information set gen-

erated by {Yt,Yt−1,Yt−2, · · · }, whereYt is a stationary and ergodic vector stochastic

process. Economic agents are assumed to use current and past Yt to generate their

information set. Let Xt be a stationary and ergodic random variable in the informa-

tion set It with E(|Xt|2) < ∞. We consider a 3-period forecast of Xt, E(Xt+3|It), and

the forecast error, et = Xt+3 − E(Xt+3|It).

(a) Give an expression for the long-run variance of et. Which methods do you

suggest to use in order to estimate the long-run variance?

(b) Let Zt be a random vector with finite second moments in the information set It.

Define ft = Ztet Give an expression for the long covariance matrix of ft. Which

methods do you suggest to use in order to estimate the long-run variance?
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