
Chapter 7

TESTING LINEAR
FORECASTING MODELS

Some economic models imply that a linear function of a variable Xt is a forecaster of

Yt+1 in the sense that

E(Yt+1|It) = a+ bXt,(7.1)

where a and b are constants, and It is an information set. Typically, It is the infor-

mation set available to economic agents at date t, and includes the current and past

values of Xt and Yt. Equation (7.1) is called a linear forecasting model. In some

cases, a linear function of a variable Xt is a forecaster of Yt+s :

E(Yt+s|It) = a+ bXt.(7.2)

If Yt+s is in It+s, (7.2) is a multi-period linear forecasting model. In this chapter, we

discuss some standard methods to test these linear forecasting models.

7.1 Forward Exchange Rates

In usual market transactions (called spot transactions), transactions are carried out

immediately. In forward contracts, two parties agree to carry out transactions at a
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specified future date. In foreign exchange forward contracts, a party agrees to deliver

specified units of a currency to another party who agrees to pay a specified price.

Let Ft,1 be the forward exchange rate at date t of a foreign currency to be

delivered at date t+1: at date t a contract is made in which Ft,1 units of the domestic

currency is promised to be paid when one unit of the foreign currency is delivered at

date t+1. Let St be the spot exchange rate at date t which is expressed as the price of

one unit of the foreign currency in terms of the domestic currency. Assume that the

domestic investors are risk neutral. For now, assume that risk neutrality is defined

about gambles involving the domestic currency. Given that preferences are defined

over goods rather than currencies, risk neutrality should be defined about gambles

involving goods. The assumption of risk neutrality over the domestic currency leads

to Siegel’s (1972) Paradox as discussed below. Under this assumption,

Ft,1 = E(St+1|It)(7.3)

should hold in equilibrium, where It is the information set available at date t. To see

this relation suppose that Ft,1 > E(St+1|It). Then the domestic investors’ expected

profit is positive when they sell the foreign currency with forward contracts. The sup-

ply of foreign currency will be infinite, and therefore equilibrium cannot be attained.

If Ft,1 < E(St+1|It), then the domestic investors’ expected profit is positive when they

buy the foreign currency with forward contracts.

Let Ft,s be the forward exchange rate at date t of a foreign currency to be

delivered at date t+s. Then with a similar argument,

Ft,s = E(St+s|It)(7.4)

should hold. Relation (7.4) is implied by the uncovered interest parity (UIP) if we
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assume the covered interest parity (CIP)1, and Relation (7.3) is a special case of UIP

when s = 1.

Given (7.4), a natural way to test UIP is to consider a regression

St+s = a+ bFt,s + et.(7.5)

Then (7.4) implies that E(et|It) = 0 when a = 0 and b = 1. Since Ft,s is in It, if St+s

and Ft,s are stationary, then the asymptotic theory of OLS in Chapter 5 applies to this

regression. In the data of exchange rates, it is often observed that the first difference

of ln(St+s), the first difference ln(Ft,s), and ln(St+s)− ln(Ft,s) appear to be stationary.

However, St+s and Ft,s do not appear to be stationary, hence the asymptotic theory

of Chapter 5 does not apply to (7.5). One solution found in the literature is to apply

cointegration to (7.5) or the log version of (7.5).2

We consider transforming the data to obtain a regression with stationary vari-

ables. For this purpose, we first take the natural log of both sides of (7.4) to obtain

an approximate relation

ln(Ft,s) = a+ E(ln(St+s)|It),(7.6)

where a is a constant. This relation is an approximation because the log of the

expected value of a random variable is not the expected value of the log of the variable.

The approximation error for (7.6) can be significant and may lead to the re-

jection of the model when the exchange rate is conditionally heteroskedastic even

when UIP holds. This problem may be serious because conditional heteroskedasticity

1CIP says that 1 + it+s =
Ft,s

St
(1 + i∗t,s) while UIP says that 1 + it+s =

E(St,s|It)
St

(1 + i∗t,s), where
it,s and i∗t,s are interest rates on domestic deposit and foreign deposit, respectively.

2This solution is, however, problematic for the purpose of testing UIP as discussed in Chapter
14.
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is detected for most exchange rate series especially when high frequency data (e.g.,

weekly or daily) are used. To illustrate this point, assume that St+s is log normally

distributed conditional on It, then ln(E(St+s|It)) = E(ln(St+s)|It)+ 1
2
V ar(ln(St+s)|It).

Hence (7.6) is exact with a = 1
2
V ar(ln(St+s)) if ln(St+s) is conditionally ho-

moskedastic. However, if ln(St+s) is conditionally heteroskedastic, V ar(ln(St+s)|It) is

not constant. Hence (7.6) is an approximation, and the approximation error is more

important for data with stronger conditional heteroskedasticity effects.

Assuming that this approximation error is negligible, we consider a regression

ln(St+s)− ln(Ft,s) = a+X′
tb+ et,(7.7)

where Xt is a stationary random vector that is in It. Then (7.6) implies that b = 0

and E(et|It) = 0 (note that a ̸= 0 here). Assuming that ln(St+s) − ln(Ft,s) is sta-

tionary, the asymptotic theory in Chapter 5 applies to (7.7). For example, Xt is a

vector of lagged values of ln(St+s) − ln(Ft,s) : Xt = (ln(St) − ln(Ft−s,s), ln(St−1) −

ln(Ft−1−s,s), · · · , ln(St−k) − ln(Ft−k−s,s))
′. UIP can be tested by testing the null hy-

pothesis H0 : b = 0.

The assumption of risk neutrality over the domestic currency leads to Siegel’s

Paradox. Assume that foreign investors are risk neutral over their currency. Then

the same argument made for (7.3) for the domestic investors imply

1

Ft,1

= E(
1

St+1

|It).(7.8)

Since 1
X

is a convex function, (7.3) and (7.8) cannot hold at the same time. This

property is known as Siegel’s Paradox.3

3Because preferences are defined over goods, risk neutrality should be defined over goods. Siegel’s
Paradox is a result of defining risk neutrality over currencies. In order to illustrate this point, imagine
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7.2 The Euler Equation

Consider an economy with a single good, in which the current and past values of a

random vector Xt generate the information set It, which is available to the economic

agents. The random vector Ht = [X′
0,X

′
1, · · · ,X′

t]
′ summarizes It. Let Prob(Ht)

denote the probability of Ht. For simplicity, we assume that the economy ends at

date T , and that there exist N possible values of HT . With this notation, HT plays

the role of the state of the world s in Chapter 2, and Ht specifies the subset in the

partition of S at date t. The history notation is more convenient for the purpose of

this section to ensure that consumption is in the information available at date t.

We assume that the representative consumer maximizes the lifetime utility func-

tion

U =
T∑
t=0

∑
Ht

Prob(Ht)β
tu(Ct(Ht)),(7.9)

where β is a discount factor, u(·) is the utility function, and Ct(Ht) is the consumption

at date t with history Ht. As a bench mark case, we assume that there exists a

complete set of contingent security markets at date 0. Assuming that there are N

states of the world, and the contingent security for one unit of Ct(Ht) costs Pt(Ht)

in terms of the good at date 0, the lifetime budget constraint is

T∑
t=0

∑
Ht

Pt(Ht)Ct(Ht) =
T∑
t=0

∑
Ht

Pt(Ht)C
e
t (Ht),(7.10)

where Ce
t (Ht) is the endowment. Let λ be the Lagrange multiplier for the budget

constraint (7.10). Then the first order conditions for the consumer’s maximization

that there are two consumption goods in the world economy: a good purchased with the domestic
currency, and another good purchased with the foreign currency. The real version of (7.3), expressed
in terms of the domestic good, and the real version of (7.8), expressed in terms of the foreign good,
are not subject to Siegel’s Paradox (see, e.g. Frankel, 1979, 1980). Engel (1984) empirically tests the
absence of expected real profits from forward market speculation and shows that Siegel’s paradox is
not empirically important in this case.
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problem include

βtProb(Ht)mu(Ct(Ht)) = λPt(Ht),(7.11)

where mu(·) is the derivative of the utility function (marginal utility). Hence

βt+1Prob(Ht+1)mu(Ct+1(Ht+1))

βtProb(Ht)mu(Ct(Ht))
=

Pt+1(Ht+1)

Pt(Ht)
,(7.12)

which we call the state-by-state intertemporal first order condition. This type of

condition is useful in testing for complete risk sharing as we will discuss in Chapter

17.

The first order condition (7.12) does not necessarily hold when markets are

incomplete. We derive the asset pricing equation and Euler equation, which can be

shown to hold for some incomplete market models, from this first order condition.

For this purpose, imagine that a security pays off Dt+1(Ht+1) units of the good at

date t+1 when the history Ht+1 is realized. Let Vt(Ht) be the price of the security

in terms of the good at date t when the history Ht is realized. Then an arbitrage

condition gives

Vt(Ht) =

∑
Ht+1|Ht

Pt+1(Ht+1)Dt+1(Ht+1)

Pt(Ht)
,(7.13)

where the summation in the numerator sums up allHt+1’s that followHt. The numer-

ator is the price of the security in terms of the good at date 0, and the denominator

is the price of the good at date t, so that the security price is expressed in terms of

the good at date t. Substituting (7.12) into (7.13) yields

Vt(Ht) =

∑
Ht+1|Ht

β prob(Ht+1)mut+1Dt+1(Ht+1)

prob(Ht)mut

,(7.14)

where mut denotes mu(Ct(Ht)). Noting that Prob(Ht+1)
Prob(Ht)

is the probability of Ht+1
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conditional on Ht, we can rewrite (7.14) as

Vt =
E(β mut+1Dt+1|It)

mut

,(7.15)

which we call the asset pricing equation.

Dividing both sides of the asset pricing equation (7.15) by Vt yields

E(β mut+1Rt+1|It)
mut

= 1,(7.16)

which is called the Euler equation where Rt+1 =
Dt+1

Vt
is the real gross asset return. It

should be noted that the asset pricing equation and the Euler equation hold for any

asset while the state-by-state intertemporal first order condition only holds for the

contingent securities since Pt(Ht) in (7.12) is the price of contingent security rather

than any other security.

7.3 The Martingale Model of Consumption

Consider a bond that pays one unit of the good at date t+1 without any uncertainty,

which we call the real risk free bond. Let Rf
t+1 be the real gross asset return on the

real risk free bond. Then Rf
t+1 − 1 is the real interest rate. Assume that the real

interest rate is constant, and that βRf
t+1 = 1. Then the Euler equation (7.16) implies

E(mut+1|It) = mut.(7.17)

Therefore, under these assumptions, the marginal utility is a martingale adapted to It.

This implication is testable when the intra-period utility function is parameterized,

so that mut is related to consumption.

Hall (1978) assumes that the intra-period utility function is quadratic:

u(Ct) = −α(Ct − γ)2,(7.18)
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where α and γ are positive constants. Then mut = −2α(Ct − γ), and (7.17) implies

E(Ct+1|It) = Ct.(7.19)

Thus Euler equation implies that consumption is a martingale adapted to It. There-

fore, this model is called the martingale model of consumption. With an additional

assumption that consumption is conditionally homoskedastic, (7.19) implies that con-

sumption is a random walk. For this reason, some authors prefer to call this model

the random walk model of consumption.

This martingale (or random walk) hypothesis can be tested by applying OLS to

Ct+1 − Ct = a+X′
tb+ et(7.20)

where Xt is a stationary random vector which is in It. Then (7.19) implies that a = 0,

b = 0, and E(et|It) = 0.

7.4 The Linearized Euler Equation

It should be noted that the random walk model of consumption is derived under the

assumptions of a quadratic utility function and a constant real interest rate. These

assumptions are not attractive. There exists some evidence that real interest rates

are not even stationary (see, Rose, 1988). The quadratic utility function has an

implication that both absolute and relative risk aversion coefficients increase with

consumption. The intertemporal elasticity of substitution is the reciprocal of the

relative risk aversion coefficient for the time-separable expected utility function, and

the quadratic utility function implies that the elasticity decreases as consumption

increases. These implications are counterintuitive to most people upon introspection,

and there is empirical evidence against them (see Chapter 17????????).
Masao

needs to
check this!
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Most researchers agree that the isoelastic utility function,

u(C) =
1

1− α
[C1−α − 1]

is more reasonable than the quadratic utility function. For this utility function, the

relative risk aversion coefficient is α (a constant), and the absolute risk aversion

coefficient decreases with consumption. The intertemporal elasticity of substitution

is 1
α
. With this utility function, mut = C−α

t , and (7.16) implies

E(βRt+1C
−α
t+1|It) = C−α

t .(7.21)

With an assumption that Rt and Ct are jointly log normally distributed conditional

on It, we obtain

E(ln(Rt+1)− α ln(Ct+1)|It) = − ln(β)− 1

2
V ar(ln(Rt+1C

−α
t+1)|It)− α ln(Ct).(7.22)

Further assuming that ln(Rt+1C
−α
t+1) is conditionally homoskedastic with respect to

It, we obtain the linearized version of the Euler equation (7.21):

E(ln(Rt+1)− α ln(Ct+1)|It) = b− α ln(Ct),(7.23)

where b = − ln(β) − 1
2
V ar(ln(Rt+1C

−α
t+1)|It) is a constant. Note that the linearized

Euler equation (7.23) holds for any asset return under the stated assumptions.

With an additional assumption that the real interest rate is constant as in

Section 7.3, we can obtain a result similar to the random walk hypothesis. In this

case, (7.23) implies

E(ln(Ct+1)|It) = c+ ln(Ct),(7.24)

where c = − b
α
+ 1

α
ln(Rt+1). As in the previous section, we can test this model by

applying OLS to

ln(Ct+1)− ln(Ct) = c+X′
tb+ et(7.25)
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where Xt is a stationary random vector which is in It. Equation (7.24) implies that

b = 0, and E(et|It) = 0.

The linearized Euler equation (7.23) has been used by many researchers without

the additional assumption of the constant real interest rate. Hansen and Singleton

(1983) apply the maximum likelihood estimation method to (7.23). Hall (1988) esti-

mates the intertemporal elasticity of substitution from

ln(Ct+1)− ln(Ct) = d+
1

α
ln(Rt+1) + et.(7.26)

Equation (7.23) implies that d = − b
α
and E(et|It) = 0. Since ln(Rt+1) is not in It,

OLS cannot be applied to (7.26). Any stationary variable in It, however, can be used

as an instrumental variable for (7.26). Hansen and Singleton (1996) also apply an IV

method to (7.23).

7.5 Optimal Taxation

The method to derive the martingale property of consumption can be applied to

other optimization problems. A good example is the optimal taxation model tested

by Barro (1981), Sahasakul (1986), Kingston (1984), Mankiw (1987), and Bizer and

Durlauf (1990) among others.

Assume that the government minimizes the following quadratic cost function at

date t:

Et

∞∑
j=0

βj(c0τt+j +
c1
2
τ 2t+j),(7.27)

subject to the budget constraint

Bt+1 = R[Bt + gt − τt], Bt bounded for all t(7.28)
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by choosing {τt+j, Bt+j}∞j=0. Here {gt}∞t=j is a stochastic process describing the ratio

of government spending to GDP, τt is the tax collected as a percentage of GDP, Bt is

the real value of a one-period risk free bond to be repaid at date t+1 as a percentage

of GDP, and R is the gross real interest rate, which is assumed to be constant. We

assume that βR = 1.

The Euler equation for the maximization problem is

E(τt+1|It) = τt.(7.29)

As in the consumption case, this martingale hypothesis can be tested by applying

OLS to

τt+1 − τt = a+X′
tb+ et,(7.30)

where Xt is a stationary random vector which is in It. Then (7.29) implies that

a = 0, b = 0, and E(et|It) = 0. Barro (1981), Kingston (1984), and Mankiw (1987)

have found that movements of U.S. tax rates over time are roughly consistent with

the martingale hypothesis. On the other hand, Sahasakul (1986) reports that U.S.

tax rates are predictably related to wars and recessions, which is evidence against

the martingale hypothesis. Bizer and Durlauf (1990) report evidence against the

hypothesis based on a frequency- domain based test (see Section 16.3??????? below).
Masao
needs to
check this!

7.6 Tests of Forecast Accuracy

Tests of forecast accuracy can be used to test economic models. A prominent example

is tests for exchange rate models in the literature that started by Meese and Rogoff

(1983) who compared predictions of exchange rate models with predictions of the

random walk model.
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7.6.1 The Monetary Model of Exchange Rates

A multi-period forecasting formulation in Mark (1995) is motivated by the the mone-

tary model of the monetary model of Frenkel (1976), Mussa (1976), and Bilson (1978).

The monetary model implies the present value relationship

st = (1− β)E(
∞∑
i=1

βift+i|It).(7.31)

where st is the log exchange rate, ft = mt − m∗
t − γ(yt − y∗t ) where mt is the log

domestic money supply, yt is the log domestic income. We call ft fundamentals.

Here, γ is the income elasticity of money demand, β = α/(1 + α) where α is the

interest semi-elasticity of money demand. If ft is a driftless random walk, then the

present value relationship implies st = ft, and the log exchange rate is a random walk.

However, deviations from the log exchange rate from the fundamentals are known to

be persistent. These considerations motivated Mark to investigate the projection of

the k-period-ahead change in the log exchange rate on its current deviation from the

fundamental value

st+k − st = a+ bXt + e1t,(7.32)

where Xt = ft − st and e1t is a forecast error. On the other hand, if the log exchange

rate is a driftless random walk, a = b = 0, then

st+k − st = e2t,(7.33)

where e2t be the forecast error of the random walk model. Tests described in this

section compare forecast accuracy based on the differences in mean squared prediction
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errors (MSPEs) from these two models. Unlike the previous works that had found that

the economic model does not improve forecast accuracy over the random walk model,

Mark (1995) found evidence in favor of the economic model for long-horizon changes

(large values of k). However, Kilian (1999) pointed out problems with Mark’s (1995)

bootstrap procedure. With a corrected bootstrap procedure, Kilian found no evidence

of increased long-horizon predictability. In panel data that combine time series of 19

industrialized countries, Mark and Sul (2001) found evidence of increased long-horizon

predictability. Thus the evidence is mixed for the monetary model compared with

the random walk model.

Engel and West (2005) showed analytically that in present value models such

as Equation (7.31), the log exchange rate manifests near-random walk behavior if the

first difference of fundamentals is stationary and β is near one. Their result helps

explain that fundamentals provide little help in predicting changes in the log exchange

rates.

7.7 The Taylor Rule Model of Exchange Rates

Many recent papers have explored various aspects of exchange rate models with the

Taylor Rule (see, e.g., Mark, 2005; Engel and West, 2005, 2006; Clarida and Waldman,

2008; Kim and Ogaki, 2009). Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008) and

Molodtsova and Papell (2009) find strong evidence of exchange rate predictability

using the Taylor rule model. In this model, under the assumption that uncovered

interest parity holds, exchange rate movements are related to the differential of short-

term nominal interest rates between two countries. In each country, the nominal

interest rate is in turn set by the central bank that follows a policy rule proposed
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by Taylor (1993). According to Taylor’s original specification, the home central bank

adjusts the nominal interest rate in response to changes in the domestic inflation and

output gap:

ĩt = πt + ϕ(πt − π̃) + γyt + r̃,

where ĩt is the target rate of the short-term nominal interest rate, πt is inflation, π̃

is the inflation target, yt is the output gap, and r̃ is the equilibrium level of the real

interest rate. The Taylor rule for small open economies may include the real exchange

rate st (Clarida, Gaĺı, and Gertler, 1998):

(7.34) ĩt = πt + ϕ(πt − π̃) + γyt + δst + r̃.

Empirical studies (e.g., Clarida, Gaĺı, and Gertler, 1998, 2000) find that central banks

engage in interest rate smoothing so that the observed nominal rate it is a partial

adjustment of its lagged value and the target rate:

(7.35) it = (1− ρ)̃it + ρit−1 + vt.

Suppose the foreign central bank follows an analogous policy rule:

(7.36) i∗t = (1− ρ∗)̃i∗t + ρ∗i∗t−1 + v∗t .

Taking the difference between the policy reaction function of home country (7.35)

and that of foreign country (7.36) yields the interest rate differential:

(7.37) it − i∗t = β + βππt − β∗
ππ

∗
t + βyyt − β∗

yy
∗
t + βsst + β∗

sst + ρit−1 − ρ∗i∗t−1 + ηt,

where ηt = vt − v∗t , β = (r̃ − ϕπ̃)(1 − ρ), βπ = (1 + ϕ)(1 − ρ), βy = γ(1 − ρ), and

βs = δ(1− ρ). Analogous definitions apply for foreign coefficients denoted by a star.

Note that since st = −s∗t , we have βsst + β∗
sst.
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Assume that uncovered interest rate parity holds: ∆et+1 = it − i∗t where et is

the log of the nominal exchange rate defined as the domestic currency price of foreign

currency. Equating the UIP condition with the interest rate differential (7.37) yields

the Taylor rule model of exchange rates:

(7.38) ∆et+1 = β + βππt − β∗
ππ

∗
t + βyyt − β∗

yy
∗
t + βsst + β∗

sst + ρit−1 − ρ∗i∗t−1 + ηt.

Molodtsova and Papell (2009) evaluate out-of-sample forecasts of one-month-

ahead exchange rate movements using the Taylor-rule model for the monthly U.S.

exchange rates against 12 OECD countries. The data spans from March 1973 to

June 2006 (December 1998 for the European Monetary Union countries). The pre-

dictive performance of the model is evaluated using the CW test statistics for the

null hypothesis that the exchange rate follows a random walk against the alternative

hypothesis that it is predictable by the model (7.38).

They find that the Taylor rule model exhibits strong evidence of short-term

exchange rate predictability, especially when the real exchange rates are excluded

from equation (7.38). For that specification, the model outperforms the random walk

for 10 out of 12 currencies at the 10% significance level - four of them at the 1% level

and additional six at the 5% level - using one of the three output gap specifications

they consider (the linear trend, the quadratic trend, and the HP-filter). By contrast,

using the same dataset and the inference method, they find much less evidence of

exchange rate predictability with conventional models of exchange rates (the UIP

model of Clark and West, 2006; the monetary model of Mark, 1995; and the PPP

model of Mark and Sul, 2001). Even after combining the results from these three

models, they find statistically significant evidence of exchange rate predictability at

the 5% level for only 3 of the 12 currencies and for an additional currency at the 10%
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level.

7.7.1 Diebold and Mariano (1995)

One of the commonly used methods for testing forecast accuracy is the test of equal

accuracy proposed by Diebold and Mariano (1995, the DM test).

Consider two competing forecast series y1t and y2t of the time series yt, with

associated forecast errors e1t and e2t, t = 1, · · · , T , respectively. The DM test is

applicable to a wide variety of accuracy measures. Here, as in many applications, we

compare forecast accuracy based on the differences in mean squared prediction errors

(MSPEs) from the two series. In this case, the DM test evaluates the null hypothesis

that the population mean of the MSPE differences is 0, E(e21t − e22t) = 0, against the

alternative hypothesis E(e21t − e22t) ̸= 0.

Let d̄ denote the sample mean of the MSPE differential:

d̄ =
1

T

T∑
t=1

(e21t − e22t).

If the MSPE differential is covariance stationary and short memory, then
√
T d̄ is

asymptotically normally distributed with mean zero and variance 2πfd(0) where

fd(0) =
1
2π

∑∞
τ=−∞ γd(τ) is the spectral density of the MSPE differential at frequency

0, and γd(τ) = E[(e21t − e22t)(e
2
1t−τ − e22t−τ )] is the autocovariance of the MSPE differ-

ential. The DM statistic is given by

DM =
d̄√

2πf̂d(0)
T

,

where 2πf̂d(0) is a consistent estimator of 2πfd(0). It is obtained by a weighted sum

of the sample autocovariances,

2πf̂d(0) =

(T−1)∑
τ=−(T−1)

1

(
τ

S(T )

)
γ̂d(τ),



7.7. THE TAYLOR RULE MODEL OF EXCHANGE RATES 151

where 1(τ/S(T )) is the lag window, S(T ) is the truncation lag, and γ̂d(τ) =
1
T

∑T
t=|τ |+1(dt−

d̄)(dt−|τ | − d̄) with dt ≡ e21t − e22t. Diebold and Mariano (1995) suggest the use of the

uniform lag window,

1

(
τ

S(T )

)
=

{
1 for

∣∣∣ τ
S(T )

∣∣∣ ≤ 1,

0 otherwise

and the truncating lag S(T ) = (k − 1) since optimal k-step-ahead forecast errors are

at most (k − 1)-dependent.

7.7.2 Clark and West (2006) and Clark and West (2007)

Now suppose we wish to compare out-of-sample forecast accuracy of two nested mod-

els. One example as in the exchange rate forecasting literature above is the case where

a linear econometric model (model 2) is compared to a random walk model (model

1):

Model 1: yt = et

Model 2: yt = X
′

tβ + et,

where et in both models is a zero mean martingale difference which may be condi-

tionally heteroskedastic.

Let T +1 be the sample size of yt and Xt which is divided into two subsamples

T+1 = R+P . For illustration, suppose we are comparing one-period-ahead forecasts,

yt+1.
4 Model 2 is estimated using data prior to t to generate P predictions for yt+1,

t = R,R + 1, · · ·T . The out-of-sample MSPEs of the two models are,

Model 1: σ̂2
1 ≡ P−1

T∑
t=T−P+1

y2t+1,

Model 2: σ̂2
2 ≡ P−1

T∑
t=T−P+1

(yt+1 −X
′

t+1β̂t)
2.

4For multi-horizon predictions, see Clark and West (2006).
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Recall that the DM test is based on the assumption that the difference in sample

MSPEs from two models is asymptotically zero. However, Clark and West (2006)

and Clark and West (2007) show that this is not the case when the two models are

nested. To see this, write:

(7.39) σ̂2
1 − σ̂2

2 = 2

(
P−1

T∑
t=T−P+1

yt+1X
′

t+1β̂t

)
−

[
P−1

T∑
t=T−P+1

(X
′

t+1β̂t)
2

]
.

Under the null hypothesis of equal predictive accuracy, yt follows a martingale differ-

ence (β = 0) as in model 1. Therefore, yt+1 = et+1 and Eet+1X
′
t+1β̂t = 0, and thus

the first term in equation (16.11) is expected to be approximately zero. However, the

second term is −P−1
∑T

t=T−P+1(X
′
t+1β̂t)

2 < 0, and thus the MSPE from model 2 is

expected to be greater than that of model 1:

σ̂2
1 − σ̂2

2

p→ −E(X
′

t+1β̂t)
2 < 0.

The DM statistics, while appropriate for non-nested models, do not adjust for this

shift, and result in non-normal test statistics when the models are nested. Therefore,

hypothesis tests based on standard normal critical values are usually poorly sized,

failing to reject the null hypothesis when it should (McCracken, 2004; Clark and

McCracken, 2001, 2005). This is particularly problematic for tests of our-of-sample

predictability of financial data for which the null hypothesis is a random walk.

Clark and West (2006) and Clark and West (2007) propose an asymptotically

normal test for two nested models that properly adjusts the difference in MSPEs by a

consistent estimate of E(X
′
t+1β̂t)

2. This test is applicable when βt is estimated from

rolling regressions using data from t−R + 1 to t.5

5Clark and West (2007) consider a general parametric specification of the null model (model 1)
that is smaller than the alternative model (model 2). Thus, model 2 reduces to model 1 if some of
the parameters in model 2 are zero.
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The bias-adjusted difference of the sample mean MSPEs is given by,

f̄ ≡ σ̂2
1 −

[
σ̂2
2 − P−1

T∑
t=T−P+1

(X
′

t+1β̂t)
2

]
.

= P−1

T∑
t=T−P+1

f̂t+1.

where f̂t+1 ≡ y2t+1− [(yt+1−X
′
t+1β̂t)

2−(X
′
t+1β̂t)

2]. Under some mild conditions,
√
P f̄

is asymptotically normally distributed with mean zero and variance V ≡ 4E(yt+1X
′
t+1β̂t)

2.

The adjusted test statistic is

CW =
f̄√
V̂
P

,

where V̂ ≡ 4P−1
∑T

t=T−P+1(yt+1X
′
t+1β̂t)

2 = P−1
∑T

t=T−P+1(f̂t+1 − f̄)2 is a consistent

estimator of V . Clark and West (2006) present simulation results showing that in-

ferences of the CW statistics using normal critical values are properly sized. Note

that the alternative hypothesis of this test is that yt is linearly predictable (β ̸= 0)

as in model 2, implying that the population MSPE of model 2 is smaller than that of

model 1. Therefore, this test is one-sided, and the null hypothesis is rejected when

the CW test statistic is significantly positive.
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