
Chapter 12

INTRODUCTION TO
BAYESIAN APPROACH

Over the last decade, Bayesian analysis has become an increasingly popular method

in economics. As you will see in this chapter, the Bayesian approach differs from the

classical frequentist approach in various aspects. The fundamental difference lies in

its probabilistic interpretation of the object of interest such as unknown parameters

and random events. In the Bayesian framework, unknown parameters are treated as

random variables while the observed data are treated as fixed. This interpretation

allows us to assign a probability distribution associated with the parameters upon

which Bayesian inferences are made.

This chapter introduces basic concepts and implementation of Bayesian analysis.

Next section explains probability density functions in Bayesian statistics, followed by

their application to generating point estimates and constructing Bayesian credible

intervals. We then discuss posterior odds ratio tests for hypothesis testing and model

comparison. Details of each topic can be found in DeJong and Dave (2007), Judge

et al(1985), and Zellner (1996). The appendix to this chapter explains simulation

methods that are widely used in the implementation of Bayesian analysis.

286



12.1. BAYES THEOREM 287

12.1 Bayes Theorem

Bayesian analysis centers around the representation of our uncertainty about the

object of interest such as true values of unknown parameters. A prior distribution

represents our initial knowledge or subjective beliefs about the unknown parameters

held prior to observing data. After the data has been observed, sample information is

incorporated into the prior to form a posterior distribution which assigns a probability

to alternative parameter values based on the information from the prior and the

data. Bayes’ theorem is a mathematical formula in probability theory that relates

the posterior distribution to the prior and the sample information represented by a

likelihood function.

Suppose we are interested in a vector of unknown parameters θ. Let p(θ) denote

a prior density function for θ, and y a vector of sample observations from a density

f(y|θ). A joint probability density for θ and y is given by

(12.1) P (θ,y) = p(θ)f(y|θ) = f(y)p(θ|y).

Rearranging the second equality in (12.1) yields a posterior density function for θ:

p(θ|y) = p(θ)f(y|θ)
f(y)

.

This result is Bayes’ theorem, showing how our prior knowledge p(θ) is combined

with sample information f(y|θ) to generate the posterior distribution. Since we are

interested in the distribution of θ, f(y) may be treated as a normalizing constant,

and p(θ|y) is in general analyzed up to constant proportionality:

(12.2) p(θ|y) ∝ p(θ)f(y|θ).
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Here, f(y|θ) is algebraically identical to a likelihood function l(θ|y), and (12.2) may

be expressed as p(θ|y) ∝ p(θ)l(θ|y); that is, the posterior distribution is proportional

to the product of the prior and the likelihood function. The posterior distribution

serves as an essential element of Bayesian inferences such as generating point esti-

mates, constructing confidence intervals, and conducting hypothesis testing which we

discuss in next sections.

12.2 Parameter Estimates

In general, Bayesian point estimates are obtained by specifying a loss function L(θ, θ̂)

which quantifies the consequences of choosing θ̂ when the true value is θ. An optimal

point estimate is the value θ̂ which minimizes the expected loss where the expectations

are with respect to the posterior distribution of θ:

min
θ̂
E
(
L(θ, θ̂)

)
= min

θ̂

∫
L(θ, θ̂)p(θ|y)dθ.

In the case of a quadratic loss function L(θ, θ̂) = (θ − θ̂)′Φ(θ − θ̂) where Φ is a

symmetric positive definite matrix, an optimal point estimate is given by the mean of

the posterior distribution. Alternatively, if the loss is measured by an absolute error

L(θ, θ̂) = |θ − θ̂|, then the median of the posterior distribution becomes an optimal

point estimate.

12.3 Bayesian Intervals and Regions

A Bayesian counterpart of a classical confidence interval is called a posterior credible

interval (or region if θ is a vector of parameters). For a scalar θ in a parameter space
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Ω, a 100 · (1− α) percent posterior credible interval is a subset S ⊂ Ω such that

(12.3) Pr(θ ∈ S|y) =
∫
S

p(θ|y)dθ = 1− α.

For any given α, the interval S satisfying (12.3) may not be unique. Of those satisfying

(12.3), a highest posterior density interval is obtained by imposing an additional

condition that the value of p(θ|y) at any θ inside S is at least as large as that

evaluated outside S; that is,

p(θi|y) ≥ p(θj|y) for all θi ∈ S and θj /∈ S,

which implies that the end points of the interval, say θ and θ, satisfy p(θ|y) = p(θ|y).

If the posterior density is unimodal, a highest posterior density interval is an interval

that satisfies (12.3) with a minimum distance between θ and θ.

While a highest posterior density interval is identical to a 100 · (1− α) percent

confidence interval in the classical framework, their interpretations are different. A

classical confidence interval is a random interval which would contain a fix value θ

with probability (1−α) if we repeatedly draw samples from population and construct

an interval each time. On the other hand, a highest posterior density interval is a

fixed interval within which a random variable θ lies with probability (1− α).

12.4 Posterior Odds Ratio and Hypothesis Testing

Posterior distributions are also employed to assess relative plausibility of competing

hypotheses. We evaluate the relative plausibility with a ratio of posterior proba-

bilities associated with the hypotheses, called a posterior odds ratio. Unlike the

classical hypothesis testing, a posterior odds ratio test treats the competing hypothe-

ses symmetrically, and its conclusion is not designed to necessarily accept or reject
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the hypotheses. Instead, the test merely infers which hypothesis is more likely given

the priors and sample information.

Suppose we are interested in comparing two hypotheses, H0 and H1, with prior

probabilities p(H0) and p(H1). Let θi denote a parameter vector associated with

hypothesis Hi, i = 0, 1. For H0, the joint density function for y, θ0, H0 is,

p(y,θ0, H0) = f(y)p(θ0, H0|y)

= p(θ0, H0)f(y|θ0, H0)

or

p(θ0, H0|y) =
p(θ0, H0)f(y|θ0, H0)

f(y)

=
p(H0)h(θ0|H0)f(y|θ0, H0)

f(y)
,(12.4)

where h(θ0|H0) is the conditional prior distribution for θ0 given H0. The posterior

distribution of H0 can be obtained by integrating (12.4) with respect to θ0:

p(H0|y) =
p(H0)

∫
h(θ0|H0)f(y|θ0, H0)dθ0

f(y)
.

Given that p(H1|y) has been obtained in an analogous way, the posterior odds

ratio is,

p(H0|y)
p(H1|y)

=
p(H0)

p(H1)

∫
h(θ0|H0)f(y|θ0, H0)dθ0∫
h(θ1|H1)f(y|θ1, H1)dθ1

=
p(H0)

p(H1)

f(y|H0)

f(y|H1)
.(12.5)

The larger the value of this ratio, the more the test is in favor of H0.

The first term in (12.5), p(H0)/p(H1), is called a prior odds ratio, and the second

term f(y|H0)/f(y|H1) is the ratio of averaged likelihoods, called a Bayes factor. If
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we assume, prior to observing the data, that the two hypotheses are equally likely,

then the prior odds ratio is 1. In that case, the relative plausibility is determined by

the Bayes factor, and we can conveniently interpret its value using the following scale

developed by Jeffreys (1961):

Bayes factor Evidence in favor of H0

1:1 - 3:1 Very slight
3:1 - 10:1 Slight
10:1 - 100:1 Strong to very strong
100:1 - Decisive

Although the posterior odds ratio itself does not make an explicit conclusion about

accepting or rejecting one hypothesis with respect to the other, it is still possible to

make an explicit choice between the two, if necessary. In such cases, a loss function

is assumed to measure the consequences of choosing each hypothesis, and we accept

one which yields the lowest expected loss, with the expectation with respect to the

posterior probability of the hypothesis.

One useful application of a posterior odds ratio is the assessment of relative plau-

sibility of competing models which may not be nested (for empirical applications, see

Lubik and Schorfheide, 2007; Rabanal and Rubio-Ramirez, 2005). Its implementation

follows the same procedure as simple hypothesis testing, but now the probabilities

are conditional on the model specification, considering all possible parameter values

rather than the parameters used by the model. Suppose we are interested in compar-

ing two structural models M1 and M2 with an associated parameter vector θi and

prior probability p(Mi), i = 1, 2. Let y denote sample observations on variables in
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the model. As in (12.5), the posterior odds ratio is given by

p(M1|y)
p(M2|y)

=
p(M1)

p(M2)

∫
h(θ1|M1)f(y|θ1,M1)dθ1∫
h(θ2|M2)f(y|θ2,M2)dθ2

=
p(M1)

p(M2)

f(y|M1)

f(y|M2)
.

Again, if the two models are equally likely a priori, the prior odds ratio is 1, and the

Bayes factor can be interpreted according to Jeffreys’ scale.

Appendix

12.A Numerical Approximation Methods

As we have seen, calculating an explicit form of posterior distributions often involves

evaluation of high-dimensional integrals. In practice, the integrals of high-order func-

tions are increasingly difficult to solve analytically, and, as a result, the posterior

distribution may be intractable. To overcome this difficulty, numerical approxima-

tion methods are prominently used in the Bayesian analysis. This section explains

three leading simulation techniques popularly used in the literature: the Importance

Sampling, the Gibbs sampler and the Metropolis-Hastings algorithm. The latter two

are in the class of the Markov chain Monte Carlo methods.

12.A.1 Importance Sampling

The idea behind the importance sampling is to obtain sample draws {θi} from some

known distribution and assign weights to each draw so that the limiting distribution

of the weighted sample converges to the target distribution.

Suppose we are interested in evaluating

(12.A.1) E[h(θ)] =

∫
h(θ)f(θ)dθ
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but f(θ) is not available as a sampling distribution. Let I(θ|µ) denote a known dis-

tribution from which {θi} can be obtained. This distribution is called the importance

sampler and µ represents its parameterization. Equation (12.A.1) can be rewritten

as

E[h(θ)] =

∫
h(θ)

f(θ)

I(θ)
I(θ)dθ

=

∫
h(θ)w(θ)I(θ)dθ.(12.A.2)

where w(θ) ≡ f(θ)/I(θ). In (12.A.2), w(θ) serves to mitigate the direct influence of

I(θ|µ) on θi by assigning the weight or “importance” of different points in the sample

space.

After a sample {θi}Ni=1 has been obtained from I(θ) rather than f(θ) for some

large N , E[h(θ)] is approximated by the sample mean:

ĥ =
1

N

N∑
i=1

h(θi)w(θi).

Geweke (1989) outlines criteria for choosing an importance sampler and formal

diagnostics for the adequacy of a chosen sampler. Poor samplers tend to assign weights

on only a small fraction of the sample rather than being approximately uniform,

requiring a large number of draws to achieve convergence.

12.A.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are iterative sampling schemes to gen-

erate sample draws {xi} with the Markov property:

Pr(xi+1|xi, xi−1, xi−2, · · · ) = Pr(xi+1|xi) for all i

where i indexes the Monte Carlo draws. These computer-intensive algorithms are

particularly powerful in approximating multi-dimensional integrals with high accu-
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racy. This section explains two widely used methods to simulate Markov chains: the

Gibbs sampler and the Metropolis-Hastings algorithm. Further details are provided

by Casella and George (1992) for the Gibbs sampler and Chib and Greenberg (1995)

for the Metropolis-Hastings algorithm.

The Gibbs Sampler

Consider a q-dimensional vector of parameters θ that is partitioned into k blocks,

θ = (θ1,θ2, · · · ,θk), k ≤ q. Suppose we wish to obtain the marginal distribution of

the ith block:

P (θi|x) =
∫

· · ·
∫
P (θ1, · · · ,θk|y)dθ1, · · · , dθi−1dθi+1 · · · dθk

when the joint density P (θ|y) is intractable. We assume that, for all i, the con-

ditional posterior probability density for θi, P (θi|y,θ−i), is available as a sampling

distribution where θ−i denotes all components of θ excluding θi. The Gibbs sampler

generates a Markov chain of random variables θ
(1)
i , · · · ,θ(N)

i ∼ P (θi|y) by sampling

from P (θi|y,θ−i).

The algorithm is initiated with some starting values θ(0) =
(
θ
(0)
1 ,θ

(0)
2 , · · · ,θ(0)

k

)
,

and the subsequent sampling proceeds as follows.

(i) Draw a random observation θ
(1)
1 from P (θ1|y,θ(0)

2 ,θ
(0)
3 , · · · ,θ(0)

k ).

(ii) Draw a random observation θ
(1)
2 from P (θ2|y,θ(1)

1 ,θ
(0)
3 , · · · ,θ(0)

k ).

...

(iii) Draw a random observation θ
(1)
k from P (θk|y,θ(1)

1 ,θ
(1)
2 , · · · ,θ(1)

k−1).

(iv) Return to step 1 and draw θ
(2)
1 from P (θ1|y,θ(1)

2 ,θ
(1)
3 , · · · ,θ(1)

k ), and so on.

Repeating this process N times generates a Markov chain of length N , {θ(j)}Nj=1.
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The effect of the fixed starting values θ(0) is eliminated by discarding some iter-

ations at the beginning of the chain, a practice called a burn-in. With the remaining

m observations, P (θi|y) is approximated by

P̂ (θi|x) =
1

m

m∑
j=1

P (θi|y,θ(j)
−i ).

Alternatively, Gelfand and Smith (1990) suggest generating s independent Markov

chains of length N and using the final value θ(N) from each sequence. Other ap-

proaches to exploiting convergence are discussed in Casella and George (1992).

Metropolis-Hastings Algorithm

The Gibbs sampler described above requires that the full conditional distribution

is available in a tractable form as a sampling distribution for θ(i). There are also

MCMC methods for the case in which it is unavailable. The best known of these is

the Metropolis-Hastings algorithm.

Suppose the target density P (θ|x) is not available as a sampling distribution,

but there is a known density g(θ|θ(i−1),µ), where
∫
g(θ|θ(i−1),µ)dθ = 1, from which

θ(i) can be obtained. The Metropolis-Hastings algorithm is initialized with a starting

value θ(0) and, given {θ(j)}i−1
j=1, θ

(i) is obtained as follows:

(i) Draw a random sample θ̃
(i)

from g(θ|θ(i−1),µ). This serves as a candidate

for θ(i).

(ii) Define the probability of accepting θ̃
(i)

for θ(i):

(12.A.3) π
(
θ̃
(i)|θ(i−1)

)
= min

(
1,

P (θ̃
(i)|x)

P (θ(i−1)|x)
g(θ(i−1)|θ(i−1),µ)

g(θ̃
(i)|θ(i−1),µ)

)
.

(iii) Draw a value δ from a uniform distribution on [0, 1].

(iv) If π(θ̃
(i)|θ(i−1)) > δ, set θ(i) = θ̃

(i)
; otherwise, discard θ̃

(i)
and draw a new

candidate.
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A sequence of accepted draws {θ(i)}Ni=1 is a Markov chain with transition prob-

ability λ(θ̃
(i)|θ̃(i−1)

) = π(θ̃
(i)|θ(i−1))g(θ̃

(i)|θ(i−1),µ) for i = 1, · · · , N and θ̃(i) ̸= θ̃(i−1).

Under mild regularity conditions, this converges in distribution to P (θ|x) as N in-

creases.

Note that the calculation of π(θ̃
(i)|θi−1) does not require knowledge about a

normalizing constant in P (·) or g(·) since they appear in both the numerator and the

denominator of (12.A.3) and simply cancel out. This is one of the attractive features

of this algorithm for approximating posterior distributions since they are often known

up to constant proportionality as in (12.2).

In application, the candidate-generating density g(θ|θ(i−1),µ) can be specified

in various ways. A random walk chain utilizes g(θ|θ(i−1),µ) = g1(θ − θ(i−1)|µ), and

θ̃
(i)

follows the process θ̃
(i)

= θ(i−1) + εi where εi ∼ g(ε) (Metropolis et al, 1953).

Choices for g1 include the multivariate normal and the multivariate-t densities. Alter-

natively, an independent chain draws a candidate independently of the last accepted

draw. This is implemented by choosing a density that is independent across all Monte

Carlo replications: g(θ|θ(i−1),µ) = g2(θ|µ) (Hastings, 1970). Another possibility is

an autoregressive chain. A vector autoregressive process of order 1 follows θ̃
(i)

=

a+B(θ(i−1)−1)+υi drawn from the density g(θ|θ(i−1),µ) = g(θ̃
(i)−a−B(θ(i−1)−1))

where a is a vector, B is a matrix, and υi ∼ g(υ) (Tierney, 1994).

12.B Application of the MCMC methods

In this section, we describe an application of the MCMC methods by nan Chen,

Watanabe, and Yabu (1990). They propose a new method of data augmentation

based on the Gibbs sampler to account for an endogeneity problem arising from the
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use of time-aggregated data. Their application considers the estimation of the effects

of foreign exchange interventions by a central bank.

Suppose the exchange rate movements and the central bank’s intervention in

the foreign exchange market can be represented by the following two-equation system:

st,h − st,h−1 = αIt,h + εt,h(12.B.4)

It,h = β(st,h−1 − st−1,h−1) + ηt,h(12.B.5)

for t = 1, · · · , T and h = 1, · · · , 24, where st,h is the log price of the domestic currency

per unit of the foreign currency at hour h of day t , It,h is the central bank’s purchase

of the domestic currency between h − 1 and h of day t, εt,h ∼ i.i.d.N(0, σ2
ε), and

ηt,h ∼ i.i.d.N(0, σ2
η). If st,h and It,h are both observable at the hourly frequency, we

can obtain unbiased estimates of α and β by estimating (12.B.4) and (12.B.5) by

OLS.

Suppose instead that It,h is not observable and only the daily sum of hourly

interventions It ≡
∑24

h=1 It,h is available. The above model can be transformed into a

daily-frequency model by summing up both sides of (12.B.4) and (12.B.5) over h:

st,24 − st−1,24 = αIt + εt(12.B.6)

It = β
24∑
h=1

(st,h−1 − st−1,h−1) + ηt(12.B.7)

where st,24 − st−1,24 =
∑24

h=1(st,h − st,h−1) and xt =
∑24

h=1 xt,h for x = {I, ε, η}.

This model, however, suffers from an endogeneity problem, and the OLS estimates

from (16.56) and (16.57) may be biased. To see this, consider a rise in εt,h. It

increases st,h − st,h−1 in (12.B.4) and It,h+1 in (12.B.5) for β > 0, and hence It and

εt are positively correlated. Alternatively, a rise in ηt,h increases It,h in (12.B.5) and
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appreciates the currency in (12.B.4) for α < 0, implying that
∑

(st,h − st,h−1) and ηt

are negatively correlated.

Recognizing this problem, nan Chen, Watanabe, and Yabu (1990) propose an

algorithm to obtain a posterior distribution of the parameters using the Gibbs sam-

pler. They first introduce an auxiliary variable It,h to substitute the unobserved

hourly interventions, and assume a flat distribution as the priors of α and β, and

distributions IG
(
υε
2
, δε

2

)
and IG

(
υη
2
, δη

2

)
for σ2

ε and σ2
η. The algorithm proceeds as

follows.1

(i) Generate α conditional on st,h, It,h, and σ2
ε . The posterior distribution is

α ∼ N(ϕs, ωs) where ϕs =
∑
It,h(st,h − st,h−1)/

∑
I2t,h and ωs = σ2

ε/
∑
I2t,h.

(ii) Generate β conditional on st,h, It,h, and σ2
η. The posterior distribution

is β ∼ N(ϕI , ωI) where ϕI =
∑
It,h(st,h−1 − st−1,h−1)/

∑
(st,h−1 − st−1,h−1)

2, and

ωI = σ2
η/
∑

(st,h−1 − st−1,h−1)
2.

(iii) Generate σ2
ε conditional on st,h, It,h, and α. The posterior distribution is

σ2
ε ∼ IG(υε+T

2
, δε+RRSs

2
) where RRSs =

∑
(st,h − st,h−1 − αIt,h)

2.

(iv) Generate σ2
η conditional on st,h, It,h, and β. The posterior distribution is

σ2
η ∼ IG(υη+T

2
, δη+RRSI

2
) where RRSI =

∑
(It,h − β(st,h−1 − st−1,h−1))

2.

(v) Generate It,h conditional on st,h, It, α, β, σ
2
ε , and σ

2
η. The posterior distri-

bution is derived as follows.

If It is unknown, the posterior distribution is given by (It,1, · · · , It,24)′ ∼ N(Ξt,Φ)

where Ξt = (ξt,1, · · · , ξt,24)′ and Φ = diag(ψ, · · · , ψ) with ψ = ( 1
σ2
η
+ α2

σ2
ε
)−1 and

ξt,h =
(
ψ 1

σ2
η

)
[β(st,h−1 − st−1,h−1)] +

(
ψα2

σ2
ε

)
[α−1(st,h − st,h−1)]. Since It is known,

consider the posterior distribution (It,1, · · · , It,23, It)′ ∼ N(Ξ∗
t ,Φ

∗) where Ξ∗
t = BΞt

1The summations indicate
∑

≡
∑T

t=1

∑24
h=1.
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and Φ∗ = BΦB′ with

(24×24)

B
=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 .
Partition Ξ∗

t and Φ∗ as follows:

Ξ∗
t =

 (23×1)

Ξ∗
t,1

(1×1)

Ξ∗
t,2

 ,Φ∗ =

 (23×23)

Φ∗
11

(23×1)

Φ∗
12

(1×23)

Φ∗
21

(1×1)

Φ∗
22

 .
The posterior distribution of (It,1 · · · , It,23) conditional on It is given by

(It,1 · · · , It,23|It)′ ∼ N(Ξ∗
t,1 +Φ∗

12(Φ
∗
22)

−1(It −Ξ∗
t,2),Φ

∗
11 −Φ∗

12(Φ
∗
22)

−1Φ∗
21).

After (It,1 · · · , It,23) has been generated from this posterior distribution, It,24 is ob-

tained from It,24 = It −
∑23

h=1 It,h.

Applying this method to the Japanese data, nan Chen, Watanabe, and Yabu

(1990) generate three Markov chains of the length 2,000 after discarding the first

2,000 draws in each chain as a burn-in phase. They obtain the point estimate of each

parameter using the mean of the generated posterior distribution, and find that the

effect of intervention is more than twice as large as the magnitude estimated by OLS

using daily observations, suggesting the quantitative significance of the endogeneity

problem.
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