
Chapter 13

UNIT ROOT NONSTATIONARY
PROCESSES

This chapter concerns univariate stochastic processes. Since the seminal work of

Nelson and Plosser (1982), much theoretical and empirical research has been done in

the area of unit root nonstationarity. They found that the null hypothesis of unit root

nonstationarity was not rejected for many macroeconomic series. When one or more

variables of interest are unit root nonstationary, standard asymptotic distribution

theory does not apply to the econometric system involving these variables. The

spurious regression results discussed in Section 14.2 are concrete examples of this

type of problem.

When a variable is unit root nonstationary, it has a stochastic trend. If lin-

ear combinations of two or more unit root nonstationary variables do not contain

stochastic trends, then these variables are said to be cointegrated. Then the cointe-

grating vector, which eliminates the stochastic trends, can be estimated consistently

by regressions without the use of instrumental variables, even when no variables

are exogenous. If the cointegrating vector includes structural parameters, then the

econometrician can estimate these structural parameters without making exogeneity
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assumptions.1

The rest of this chapter is organized as follows. In Section 13.1, univariate unit

root econometrics is discussed. It begins with definitions of basic concepts such as

difference stationarity and trend stationarity. Then a decomposition of a difference

stationary variable into a deterministic trend, a stochastic trend, and a stationary

component is discussed. Spurious regression results, tests for the null of difference

stationarity, and tests for the null of stationarity are reviewed.

13.1 Definitions

Consider a univariate stochastic process, {xt : t = · · · ,−2,−1, 0, 1, 2, · · · }, which

is a sequence of random variables. Many macroeconomic variables tend to grow

over time, so that their distributions shift upward over time. Hence they are not

stationary. However, there are many possible forms of nonstationarity, and it is not

clear which form of nonstationarity is appropriate in representing macroeconomic

variables. It may be reasonable to assume that the growth rate or the first difference

of the (natural) log of a variable is stationary for many macroeconomic variables. Let

us now assume that the first difference of xt (∆xt = xt − xt−1) is stationary. Then xt

is either difference stationary or trend stationary. If xt is stationary after removing a

deterministic time trend, then xt is said to be trend stationary. Since ∆xt is assumed

to be stationary, xt has a linear time trend when xt is trend stationary:

xt = θ + µt+ ϵt,(13.1)

1Stock and Watson (1988), Diebold and Nerlove (1990), Campbell and Perron (1991), and Watson
(1994) are examples of surveys for unit root econometrics.
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where ϵt is stationary with mean zero.2 If ∆xt is stationary but xt is not trend

stationary, then xt is said to be difference stationary. Alternatively, it is called unit

root nonstationary or integrated of order one. The trend stationary and difference

stationary processes have different properties on their long-run variances. The long-

run variance of a stationary variable yt is defined by

ω2 =
∞∑

τ=−∞

E{[yt − E(yt)][yt−τ − E(yt)]}.(13.2)

After taking the first difference, a difference stationary process has a positive long-run

variance, while trend stationary process has a long-run variance of zero.

A special case of a difference stationary process is a random walk. If E(xt+1| xt,

xt−1, xt−2, · · · ) = xt and if E((∆xt+1)
2|xt, xt−1, xt−2, · · · ) is constant over time, then

xt is a random walk. In general, if xt is difference stationary, then ∆xt has nonzero

serial correlation; however, if xt is a random walk, then ∆xt does not have serial

correlation.

13.2 Decompositions

It is often convenient to decompose a difference stationary process into components

representing a deterministic trend, a stochastic trend, and a stationary component.

Let xt be a difference stationary process:

xt − xt−1 = µ+ ϵt(13.3)

for t ≥ 1 where ϵt is stationary with mean zero. Here µ is called a drift, which is the

2Note that ϵt is not assumed to be iid because serial correlation is allowed in a stationary process.
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mean of ∆xt. Then

xt = µ+ xt−1 + ϵt(13.4)

= 2µ+ xt−2 + ϵt−1 + ϵt

= 3µ+ xt−3 + ϵt−2 + ϵt−1 + ϵt

= · · ·

= µt+ x0 +
t∑

τ=1

ϵτ .

Hence

xt = µt+ x0
t ,(13.5)

where x0
t is

x0
t = x0 +

t∑
τ=1

ϵτ ,(13.6)

where x0 is an initial value. Relation (13.5) decomposes the difference stationary

process xt into a deterministic trend arising from drift µ, and the difference stationary

process without drift, x0
t .

Let us now consider Beveridge and Nelson (1981) decomposition, which further

decompose x0
t into a random walk component and a stationary component. Since

∆x0
t is covariance stationary, it has the Wold representation:

(1− L)x0
t = A(L)νt,(13.7)

where L is the lag operator, A(L) =
∑∞

τ=0AτL
τ , A0 = 1, νt = x0

t−Ê(x0
t |x0

t−1, x
0
t−2, · · · ),

and Ê(·|x0
t−1, x

0
t−2, · · · ) is the linear projection operator. Then

x0
t = zt + ct,(13.8)
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where

zt = zt−1 + A(1)νt,(13.9)

is the random walk component or a stochastic trend, and

ct = −{(
∞∑
τ=1

Aτ )νt + (
∞∑
τ=2

Aτ )νt−1 + (
∞∑
τ=3

Aτ )νt−2 + · · · }(13.10)

is the stationary component of xt. Thus a difference stationary process xt is decom-

posed into a deterministic trend, a stochastic trend, and a stationary component.

The variance of the random walk component, Var(∆zt), is equal to A(1)
2Var(νt),

which in turn is equal to the long-run variance of ∆xt and 2π times the spectral density

of ∆xt at frequency zero. If the long-run variance is zero, then xt = µt + ct, and xt

is trend stationary.

Cochrane (1988), among others, uses Var(∆zt)
Var(∆xt)

as a measure of the persistence of

xt. This measure is zero for trend stationary xt and is one for a random walk. He

estimates Var(∆zt) by
1
k
times the variance of k-differences of xt,

1
k
V ar(∆kxt), for a

large enough k. His estimator is essentially the same as the Bartlett estimator, which

was advocated by Newey and West (1987) in a different context. Any estimator of

the long-run variance or the spectral density at frequency zero can be used for the

purpose of estimating Cochrane’s measure of persistence.

13.3 Tests for the Null of Difference Stationarity

This section explains Dickey-Fuller (1979), Said-Dickey (1984), Phillips-Perron (1988),

and Park’s (1990) tests for the null of difference stationarity. More recent work to

improve small sample properties of tests includes Kahn and Ogaki (1990), Elliott,

Rothenberg, and Stock (1996), and Hansen (1993).
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13.3.1 Dickey-Fuller Tests

Dickey and Fuller (1979) propose to test for the null of a unit root in an AR(1)

model:3

xt = θ + µt+ αxt−1 + ϵt.(13.11)

where ϵt is NID. One of their tests is based on T (α̂−1), where T is the sample size and

α̂ is the OLS estimator for α in (13.11). Another test is based on the t-ratio for the

hypothesis α = 1. These test statistics do not have standard distributions. Depending

on whether or not a constant and a linear time trend are included, distributions of

these tests under the null are different.4 Fuller (1976, Tables 8.5.1 and 8.5.2) tabulates

critical values for Dickey-Fuller tests.

Whether or not a constant and a linear time trend should be included in the

regression depends on what type of alternative is appropriate. If the alternative

hypothesis is that xt is stationary with mean zero, then no deterministic terms should

be included. This alternative is not appropriate for most macroeconomic time series.

If the alternative hypothesis is that xt is stationary with unknown mean, then a

constant should be included. This alternative is appropriate for the time series that

exhibit no consistent tendency to grow (or shrink) over time. On the other hand, if

the alternative is that xt is trend stationary, then a constant and a linear time trend

should be included. This alternative is appropriate for the time series that exhibit

a consistent tendency to grow (or shrink) over time. When these test statistics are

3It should be noted that Dickey and Fuller’s (1981) joint tests with deterministic terms can have
significantly lower power than Dickey and Fuller’s (1979) one-tailed single unit root tests as explained
by Park (1989).

4If the data are demeaned prior to the regression, then the test statistics have the same distri-
butions as those from the regression with a constant in (13.11). If the data are detrended prior to
the regression, then the test statistics have the same distributions as those from the regression with
a constant and a linear time trend.
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negative and greater than the appropriate critical value in absolute value, then the

null of a unit root is rejected in favor of one of these alternatives.

Dickey-Fuller tests assume that the econometrician knows the order of autore-

gression. The following tests treat the case of unknown order of autoregression.

13.3.2 Said-Dickey Test

Said and Dickey (1984) extend the Dickey-Fuller’s t-ratio test to the case where the

order of autoregression is unknown. Consider an AR process of order p:

xt = θ + µt+ a1xt−1 + a2xt−2 + · · ·+ apxt−p + νt.(13.12)

We assume that this process’ autoregressive roots are less than or equal to one in

absolute value, and that there is at most one root whose absolute value is equal to

one. If there is a root with absolute value equal to one, then the root is assumed to

be one, so that the process is unit root nonstationary. It should be noted that the

null hypothesis that a1 = 1 in (13.12) does not have anything to do with the unit root

hypothesis if p > 1. The unit root hypothesis is concerned with the autoregressive

roots, and not with autoregressive coefficients. The first order autoregressive coeffi-

cient is equal to the autoregressive root only for an AR(1) process. For the purpose

of testing for a unit root, it is convenient to reparameterize (13.12) as follows:5

∆xt = θ + µt+ ρxt−1 + β1∆xt−1 + · · ·+ βp−1∆xt−p+1 + νt,(13.13)

where

ρ = −(1− a1 − a2 − · · · − ap),(13.14)

5For example, consider an AR(2) process. Rearranging (13.12) yields xt − xt−1 = θ + µt− (1−
a1 − a2)xt−1 − a2(xt−1 − xt−2) + νt. Therefore, we obtain ∆xt = θ + µt + ρxt−1 + β1∆xt−1 + νt,
where ρ = −(1− a1 − a2) and β1 = −a2.
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and

βi = −[ai+1 + ai+2 + · · ·+ ap] for i = 1, 2, · · · , p− 1.(13.15)

With this reparameterization, ∆xt has an invertible autoregressive representation

when ρ = 0. Hence xt is unit root nonstationary if and only if ρ = 0, and one can test

the null hypothesis of unit root nonstationarity by testing ρ = 0. Said and Dickey

show that the t-ratio for the hypothesis ρ = 0 has the same asymptotic distribution as

the Dickey-Fuller t-ratio test. Some authors call this test the augmented Dickey-Fuller

(ADF) test while others reserve the word ADF for the corresponding cointegration

test. A constant and a linear time trend are included or excluded according to the

appropriate alternative hypothesis as before.

In many applications, the Said-Dickey test results are very sensitive to the

choice of the order of autoregression, p. Ng and Perron (1995) analyze the choice of

truncation lag, and categorize the existing methods into two rules: rules of thumb

and data dependent rules. The former includes fixing p regardless of the sample size,

T , or choosing p as a fixed function of T according to

p = int{c( T

100
)
1
d},(13.16)

where c = 4, 12 and d = 4 are used in Schwert (1989). The latter includes information-

based rules such as Akaike information criterion (AIC) and Schwartz information

criterion (SIC) according to

Ip = logσ̂2
p + p

CT

T
,(13.17)

where σ̂2
p = 1

T

∑T
t=1 ν̂

2
t , and CT = 2 for AIC and CT = logT for SIC. Sequential tests

for the significance of the coefficients on lags also fall into this category. Based on
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Hall’s (1994) work, Campbell and Perron (1991) recommend starting with a reason-

ably large value of p that is chosen a priori and decrease p until the coefficient on

the last included lag is significant.6 Ng and Perron (1995) show that rules of thumb

are dominated by data dependent rules. They also show that general-to-specific se-

quential tests are better than information-based rules since the latter has severe size

distortion.

13.3.3 Phillips-Perron Tests

Phillips (1987) and Phillips and Perron (1988) use a nonparametric method to correct

for serial correlation of ϵt. Their modification of the Dickey-Fuller T (α̂ − 1) test is

called Z(α) test, while their modification of the Dickey-Fuller t-ratio test is called Z(t)

test. These corrections are based on a nonparametric estimate of the long run variance

of ϵt. See Chapter 6 for a discussion of nonparametric estimation methods. Phillips-

Perron tests are constructed so that they have the same asymptotic distributions as

corresponding Dickey-Fuller tests.

An advantage of the Phillips-Perron tests over the Said-Dickey test is that they

tend to be more powerful as shown in the Monte Carlo experiments of Phillips and

Perron. A drawback of the Phillips-Perron tests is that they are subject to more

severe size distortions than the Said-Dickey test (see Monte Carlo results of Phillips

and Perron, 1988; Schwert, 1989). Size distortion exists when the actual size of a test

in small samples is very different from the size of the test indicated by asymptotic

theory. Such differences are due to approximations involved in the asymptotic theory.

6According to Hall (1994), compared to general-to-specific rules, specific-to-general rules are not
generally asymptotically valid.
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Table 13.1: Critical Values of Park’s J(p, q) Tests for the Null of Difference Station-
arity

Size J(0,3) J(1,5) J(2,6) J(3,8) J(4,10) J(5,11)
.010 .1118 .1228 .0886 .1093 .1348 .1157
.025 .2072 .1977 .1409 .1684 .1974 .1652
.050 .3385 .2950 .2050 .2394 .2660 .2210
.100 .5773 .4520 .3101 .3425 .3642 .3076
.150 .8042 .5959 .4034 .4299 .4516 .3800
.200 .9243 .7326 .4968 .5177 .5335 .4470

Source: Park and Choi’s (1988) Table 1-B.

13.3.4 Park’s J Tests

Park’s (1990) J tests based on a variable addition method were originally proposed by

Park and Choi (1988). These tests are based on spurious regression results. Consider

a regression

xt =

p∑
τ=0

µτ t
τ +

q∑
τ=p+1

µτ t
τ + ηt.(13.18)

Here the maintained hypothesis is that xt possesses the deterministic time polynomials

up to the order of p (typically, p is zero or one). The additional time polynomials are

spurious time trends. Let F (p, q) be the standard Wald test statistic (without any

correction for serial correlation of ηt ) for the null hypothesis µp+1 = · · · = µq = 0.

Under the null hypothesis that ηt is unit root nonstationary, spurious regression results

imply that F (p, q) explodes, but 1
T
F (p, q) has an asymptotic distribution. The J(p, q)

test is defined as 1
T
F (p, q). The null hypothesis of difference stationarity is rejected

against the alternative of trend stationarity when J(p, q) is small because J(p, q)

converges to zero under the alternative hypothesis of trend stationarity. Part of

Park and Choi’s table of critical values for J tests are reproduced in Table 13.1 for

convenience.

The J(p, q) tests do not require the estimation of the long-run variance of ηt,
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and thus have an advantage over the Said-Dickey and Phillips-Perron tests in that

neither the order of autoregression nor the lag truncation number need to be chosen.

Park and Choi’s Monte Carlo experiments show that J tests have relatively stable

sizes and are not dominated by Said-Dickey and Phillips-Perron tests in terms of

size-adjusted power.

13.4 Testing the Null of Stationarity

In some cases, it is useful to test the null of stationarity (or trend stationarity) rather

than the null of difference stationarity. For example, if an econometrician plans to

apply econometric theory that assumes stationarity, a natural procedure is to test

the null of stationarity rather than test the null of difference stationarity. Tests for

the null of stationarity will also lead to tests for the null of cointegration as will be

discussed in Chapter 14. However, most of the tests in the unit root literature take

the null of a unit root rather than the null of stationarity. Only recently, Fukushige,

Hatanaka, and Koto (1994), Kahn and Ogaki (1992), Kwiatkowski, Phillips, Schmidt,

and Shin (1992), Bierens and Guo (1993), and Choi and Ahn (1999) among others

have developed tests for the null of stationarity.

Park’s (1990) G tests for the null of stationarity were first developed by Park

and Choi’s (1988). These tests, which have been used in empirical work by several

researchers, are based on the same spurious regression results as Park’s J tests. With

the notations in Section 13.3.4, G(p, q) = F (p, q) σ̂
2

ω̂2 , where σ̂2 = 1
T

∑T
t=1 η̂t

2, ω̂2

is an estimate of the long-run variance of ηt, and η̂t is the estimated residual in

regression (13.18). Under the null that xt is stationary after removing the maintained

deterministic time terms of time polynomial of order p, the G(p, q) test statistic has
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asymptotic chi-square distribution with the q − p degrees of freedom. Under the

alternative hypothesis that xt is difference stationary (after removing the maintained

deterministic terms), the G(p, q) statistic diverges to infinity. This result is due to the

spurious regression result that time polynomials tend to mimic a stochastic trend.

Unlike Park’s J tests, Park’s G tests require estimation of the long-run variance.

Kahn and Ogaki’s (1992) Monte Carlo experiments on Park’s G tests suggest that it

is advisable to use relatively small q when the sample size is small and not to use the

prewhitening method discussed in Section 6.2.

13.5 Near Observational Equivalence

Most of the tests described in sections 13.3 and 13.4 seek to discriminate between

difference stationary and trend stationary processes. In the finite samples that we

observe, there is a conceptual difficulty with this task. In finite samples, any difference

stationary process can be approximated arbitrarily well by a series of trend station-

ary processes. This evaluation can be done by driving the dominant autoregressive

root of trend stationary processes to one from below. After all, it is very difficult

to discriminate between the dominant autoregressive root of 0.999 and that of one.

This type of problem exists for virtually any hypothesis testing. Hypothesis testing

for unit root nonstationarity is special because the opposite is also true: any trend

stationary process can be approximated arbitrarily well by a series of difference sta-

tionary processes. This approximation can be done by driving the long-run variance

of the first difference of difference stationary processes to zero. Some authors call

this problem the near observational equivalence problem (see, e.g., Cochrane, 1988;

Campbell and Perron, 1991; Christiano and Eichenbaum, 1991; Blough, 1992; Faust,
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1996).

13.6 Asymptotics for Unit Root Processes

This Appendix explains asymptotic theory for unit root proceeses. Many of the results

depend on the Functional Central Limit Theorem (FCLT) explained in Appendix 5.B.

13.6.1 Continuous Mapping Theorem

Theorem 13.1 Let h : R → R be a measurable function with discontinuity points

confined to a set D where P (D) = 0. If Xn ⇒ X, then h(Xn) ⇒ h(X).

It is instructive to illustrate how the CMT can be used in the AR(1) model

when β = 1:

yt = βyt−1 + εt.

Consider the sampling error of the OLS estimator,

n(β̂ − 1) =

1

n

∑n
t=2 yt−1εt

1

n2

∑n
t=2 y

2
t−1

.

Asymptotic properties of the denominator can be established by the FCLT and the

CMT. Let Wn(r) =
y[nr]√
n
. Note that the denominator can be written

1

n2

n∑
t=2

y2t−1 =
1

n

n∑
t=2

(
yt−1√
n

)2

=

∫ 1

0

[Wn(r)]
2 dr.

Since Wn(r) ⇒ W (r) and the integral is the continuous function of Wn(r), by the

above theorem, ∫ 1

0

[Wn(r)]
2 dr ⇒

∫ 1

0

[W (r)]2 dr.
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13.6.2 Dickey-Fuller test with serially uncorrelated distur-
bances

We consider two cases for DF tests with the null: when the true process is a random

walk with or without a drift, and when the equation is estimated with or without a

trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a random walk

Suppose that the data are generated by a random walk without drift

yt = yt−1 + ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Consider a

regression equation

∆yt = α + ρyt−1 + ϵt

= x′
tβ + ϵt,

where xt = (1, yt−1)
′, and β = (α, ρ)′. Define a scaling matrix

ST =

[ √
T 0
0 T

]
and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtϵt

]}

=

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1 [
T− 1

2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt

]
,

where under the null of ∆yt = ϵt[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]
L−→

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]
and[

T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt

]
L−→

[
σW (1)

σ2
∫
WdW

]
.
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Thus, we get

[
T

1
2 α̂
T ρ̂

]
L−→

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]−1 [
σW (1)

σ2
∫
WdW

]
L−→

[
σ 0
0 1

] [
1

∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
.

In particular,

T ρ̂
L−→

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
=

∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which is the DF ρ test. Note that the coefficients on ∆yt−i follow a normal distribution

asymptotically so that the usual test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1

L−→ σ2

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ 1[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.

Therefore, we get the DF t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→
[∫

WdW −W (1)
∫
W (r)dr

]
/
[∫

W (r)2dr − (
∫
W (r)dr)2

]{
1/

[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.
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The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, suppose that the data are generated by a random walk with or without a drift

yt = µ+ yt−1 + ϵt.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 + ϵt.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation

using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1)) + ϵt

= (1− ρ)µ+ (δ + ρµ)t+ ρξt−1 + ϵt

= α+ τt+ ρξt−1 + ϵt

= x′
tβ + ϵt,

where xt = (1, t, ξt−1)
′, and β = (α, τ, ρ)′. Define a scaling matrix

ST =

 √
T 0 0

0 3
√
T 0

0 0 T


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1 {
S−1
T

[
T∑
i=1

xtϵt

]}

=

 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

−1  T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt

 ,



13.6. ASYMPTOTICS FOR UNIT ROOT PROCESSES 317

where under the null of ∆ξt = ϵt 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

 L−→

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

 and

 T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt

 L−→

 σW (1)
σ
∫
rdW

σ2
∫
WdW

 .

Due to the block diagonal property, we can write T
1
2 α̂

T
3
2 τ̂

T ρ̂

 L−→

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

−1  σW (1)
σ
∫
rdW

σ2
∫
WdW


L−→

 σ 0 0
0 σ 0
0 0 1

 1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 .

In particular,

T ρ̂
L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 ,

which is the DF ρ test.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

−1

L−→ σ2

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.
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Therefore, we get the DF t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW


[

0 0 1
]  1 1

2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.

13.6.3 Said-Dickey test with serially correlated disturbances

We consider two cases for Said-Dickey tests with the null: when the true process is

a random walk with or without a drift, and when the equation is estimated with or

without a trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a unit root process without a drift

Consider a DGP:

a(L)yt = ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Let

a(L) = a(1)L+ b(L)(1− L),

where b(L) = 1−
∑p−1

i=1 biL
i and bi = −

∑p
j=i+1 ai, and rearrange the equation

b(L)∆yt = −a(1)yt−1 + ϵt or

∆yt = ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt,

where ρ = −a(1) = −1 +
∑p

i=1 ai. Note that the assumption of a single unit root in

the DGP implies ρ = 0. Under the null, we get an MA representation

∆yt = c(L)ϵt

= ut
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where c(L) = b(L)−1 = 1 +
∑∞

i=1 ciL
i.

Consider a regression equation

∆yt = α + ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt

= α + ρyt−1 + z′tb+ ϵt

= x′
tβ + ϵt,

where zt = (∆yt−1, · · · ,∆yt−p+1)
′, b = (b1, · · · , bp−1)

′, xt = (1, yt−1, z
′
t)

′, and β =

(α, ρ,b′)′. Define a scaling matrix

ST =

 √
T 0 0
0 T 0

0 0
√
T Ip−1


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1 {
S−1
T

[
T∑
i=1

xtϵt

]}

=

 1 T− 3
2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

−1  T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 ,

where under the null of ∆yt = ut 1 T− 3
2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

 L−→

 1 λ
∫
W (r)dr 0

· λ2
∫
W (r)2dr 0

0 0 V

 and

 T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 L−→

 σW (1)
σλ

∫
WdW
h

 .

Due to the block diagonal property, we can write[
T

1
2 α̂
T ρ̂

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1 [
σW (1)

σλ
∫
WdW

]
L−→

[
σ 0
0 σ

λ

] [
1

∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
and

T− 1
2 (b̂− b)

L−→ V−1h ∼ N(0, σ2V−1).
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In particular,

T ρ̂
L−→ σ

λ

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
.

From λ
σ
= c(1) = b(1)−1, we get the Said-Dickey ρ test

T ρ̂

1−
∑p−1

i=1 b̂i

L−→
∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which follows the same asymptotic distribution as the DF ρ test. Note that the

coefficients on ∆yt−i follow a normal distribution asymptotically so that the usual

test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

 1 T− 3
2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

−1

L−→ σ2

 1 λ
∫
W (r)dr 0

· λ2
∫
W (r)2dr 0

0 0 V

−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σ/λ[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.

Therefore, we get the Said-Dickey t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→
(σ/λ)

[∫
WdW −W (1)

∫
W (r)dr

]
/
[∫

W (r)2dr − (
∫
W (r)dr)2

]
(σ/λ)

{
1/

[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

,

which follows the same asymptotic distribution as the DF t test.
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The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, consider a DGP:

a(L)yt = µ+ ϵt

and rearrange the equation

b(L)∆yt = µ− a(1)yt−1 + ϵt or

∆yt = µ+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Under the null, we get an MA representation

∆yt = θ + c(L)ϵt

= θ + ut

where θ = c(1)µ.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation

using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1)) +

p−1∑
i=1

bi(∆ξt−i + µ) + ϵt

= (1− ρ+

p−1∑
i=1

bi)µ+ (δ + ρµ)t+ ρξt−1 + z′tb+ ϵt

= α + τt+ ρξt−1 + z′tb+ ϵt

= x′
tβ + ϵt,
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where zt = (∆ξt−1, · · · ,∆ξt−p+1)
′, b = (b1, · · · , bp−1)

′, xt = (1, t, ξt−1, z
′
t)

′, and β =

(α, τ, ρ,b′)′. Define a scaling matrix

ST =


√
T 0 0 0

0 3
√
T 0 0

0 0 T 0

0 0 0
√
T Ip−1


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1 {
S−1
T

[
T∑
i=1

xtϵt

]}

=


1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t


−1 

T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 ,

where under the null of ∆ξt = ut
1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t

 L−→


1 1

2
λ
∫
W (r)dr 0

· 1
3

λ
∫
rW (r)dr 0

· · λ2
∫
W (r)2dr 0

0 0 0 V

 and


T− 1

2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 L−→


σW (1)
σ
∫
rdW

σλ
∫
WdW
h

 .

Due to the block diagonal property, we can write T
1
2 α̂

T
3
2 τ̂

T ρ̂

 L−→

 1 1
2

λ
∫
W (r)dr

· 1
3

λ
∫
rW (r)dr

· · λ2
∫
W (r)2dr

−1  σW (1)
σ
∫
rdW

σλ
∫
WdW


L−→

 σ 0 0
0 σ 0
0 0 σ

λ

 1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 and

T− 1
2 (b̂− b)

L−→ V−1h ∼ N(0, σ2V−1).

In particular,

T ρ̂
L−→ σ

λ

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 .
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From λ
σ
= c(1) = b(1)−1, we get the Said-Dickey ρ test

T ρ̂

1−
∑p−1

i=1 b̂i

L−→
[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 and

which follows the same asymptotic distribution as the DF ρ test. Note that the

coefficients on ∆yt−i follow a normal distribution asymptotically so that the usual

test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2


1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t


−1

L−→ σ2


1 1

2
λ
∫
W (r)dr 0

· 1
3

λ
∫
rW (r)dr 0

· · λ2
∫
W (r)2dr 0

0 0 0 V


−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σ

λ

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.

Therefore, we get the Said-Dickey t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW


[

0 0 1
]  1 1

2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

,

which follows the same asymptotic distribution as the DF t test.
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13.6.4 Phillips-Perron test

We consider two cases for PP tests with the null: when the true process is a random

walk with or without a drift, and when the equation is estimated with or without a

trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a unit root process without a drift

Consider a DGP:

a(L)yt = ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Let

a(L) = a(1)L+ b(L)(1− L),

where b(L) = 1−
∑p−1

i=1 biL
i and bi = −

∑p
j=i+1 ai, and rearrange the equation

b(L)∆yt = −a(1)yt−1 + ϵt or

∆yt = ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt,

where ρ = −a(1) = −1 +
∑p

i=1 ai. Note that the assumption of a single unit root in

the DGP implies ρ = 0. Under the null, we get an MA representation

∆yt = c(L)ϵt

= ut

where c(L) = b(L)−1 = 1 +
∑∞

i=1 ciL
i.

Consider a regression equation

∆yt = α+ ρyt−1 + ut

= x′
tβ + ut,



13.6. ASYMPTOTICS FOR UNIT ROOT PROCESSES 325

where xt = (1, yt−1)
′, β = (α, ρ)′, and ut is a regression error with mean zero and

variance σ2
u. Define a scaling matrix

ST =

[ √
T 0
0 T

]
and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtut

]}

=

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1 [
T− 1

2

∑T
i=1 ut

T−1
∑T

i=1 yt−1ut

]
,

where under the null of ∆yt = ut[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]
and[

T− 1
2

∑T
i=1 ut

T−1
∑T

i=1 yt−1ut

]
L−→

[
λW (1)

λ2
∫
WdW

]
+

[
0

1
2
(λ2 − γ0)

]
.

Thus,[
T

1
2 α̂
T ρ̂

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1{[
λW (1)

λ2
∫
WdW

]
+

[
0

1
2
(λ2 − γ0)

]}
.

In particular,

T ρ̂
L−→

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1{[
λW (1)

λ2
∫
WdW

]
+

[
0

λ2−γ0
2λ2

]}
=

∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

+
(λ2 − γ0)/2λ

2∫
W (r)2dr − (

∫
W (r)dr)2

Note that the second component can be consistently estimated by

T 2s2ρ̂
σ̂2
u

λ̂2 − γ̂0
2

because

T 2s2ρ̂
L−→ σ2

u/λ
2∫

W (r)2dr − (
∫
W (r)dr)2

.
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Accordingly, we get the PP ρ test

T ρ̂−
T 2s2ρ̂
σ̂2
u

λ̂2 − γ̂0
2

L−→
∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which follows the same asymptotic distribution as the DF ρ test.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2
u

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2
u

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1

L−→ σ2
u

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σu/λ[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

and the t-test follows

tρ̂ =
T ρ̂

Tsρ̂

L−→

{[∫
WdW −W (1)

∫
W (r)dr

]
+ λ2−γ0

2λ2

}
/
[∫

W (r)2dr − (
∫
W (r)dr)2

]
(σu/λ)

{
1/

[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→ λ

σu


∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

+
λ2−γ0
2λ2[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

 .

Note that the second component can be consistently estimated by

Tsρ̂
σ̂u

λ̂2 − γ̂0

2λ̂

because

T 2s2ρ̂
L−→ σ2

u/λ
2∫

W (r)2dr − (
∫
W (r)dr)2

.

Accordingly, we get the PP t test

σ̂u

λ̂
tρ̂ −

Tsρ̂
σ̂u

λ̂2 − γ̂0

2λ̂

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

,
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which follows the same asymptotic distribution as the DF t test. Note that γ0(=

E(u2
t )) can be consistently estimated by σ̂2

u(=
1

T−2

∑T
t=1 û

2
t ) and that λ can be con-

sistently estimated by the Newey-West estimator

λ̂2 = γ̂0 + 2

q∑
j=1

(1− j

q + 1
)γ̂j,

where γ̂j =
1
T

∑T
t=j+1 ûtût−j.

The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, consider a DGP:

a(L)yt = µ+ ϵt

and rearrange the equation

b(L)∆yt = µ− a(1)yt−1 + ϵt or

∆yt = µ+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Under the null, we get an MA representation

∆yt = θ + c(L)ϵt

= θ + ut

where θ = c(1)µ.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 + ut.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation
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using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1))ut

= (1− ρ)µ+ (δ + ρµ)t+ ρξt−1ut

= α + τt+ ρξt−1 + ut

= x′
tβ + ϵt,

where xt = (1, t, ξt−1)
′, and β = (α, τ, ρ)′. Define a scaling matrix

ST =

 √
T 0 0

0 3
√
T 0

0 0 T


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1 {
S−1
T

[
T∑
i=1

xtut

]}
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 1 T−2
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i=1 t T− 3
2
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· T−3
∑T

i=1 t
2 T− 5
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· · T−2
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i=1 ξ
2
t−1

−1  T− 1
2

∑T
i=1 ut

T− 3
2

∑T
i=1 tut

T−1
∑T

i=1 ξt−1ut

 ,

where under the null of ∆ξt = ut 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1
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 1 1
2

λ
∫
W (r)dr

· 1
3

λ
∫
rW (r)dr

· · λ2
∫
W (r)2dr

 and

 T− 1
2

∑T
i=1 ut

T− 3
2

∑T
i=1 tut

T−1
∑T

i=1 ξt−1ut
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 λW (1)
λ
∫
rdW

λ2
∫
WdW
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 0
0

1
2
(λ2 − γ0)

 .

Thus, we get T
1
2 α̂

T
3
2 τ̂

T ρ̂
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 1 1
2

λ
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W (r)dr

· 1
3
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1
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· 1
3
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rW (r)dr

· ·
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W (r)2dr
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 0
0

1
2
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2
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In particular,

T ρ̂
L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
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−1  W (1)∫
rdW∫
WdW
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0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1

 .

Note that the second component can be consistently estimated by

T 2s2ρ̂
σ̂2
u

λ̂2 − γ̂0
2

because

T 2s2ρ̂
L−→ σ2

u
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[
0 0 1
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W (r)dr
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3
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· ·
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Accordingly, we get the PP ρ test

T ρ̂−
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which follows the same asymptotic distribution as the DF ρ test.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2
u
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In particular, the standard error of ρ̂ follows
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and the t-test follows

tρ̂ =
T ρ̂
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Note that the second component can be consistently estimated by
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Accordingly, we get the PP t test
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,

which follows the same asymptotic distribution as the DF t test.
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Appendix

13.A Asymptotic Theory

13.A.1 Functional Central Limit Theorem

For the purpose of deriving asymptotic distributions for unit root tests, it is conve-

nient to generalize the concept of convergence in distribution. Instead of considering

a sequence of random variables or random vectors, we will consider a sequence of

random functions. This consideration leads to a generalized version of the central

limit theorem.

Let (S,F, P r) be a probability space and S be a metric space with a metric d.

The class B of Borel sets in M is the σ-field generated by the open sets of M. If a

function x which maps S into M is measurable F/B, then x is a random element.

A random element x induces a probability measure Pr∗ on (M,B) when we define

Pr∗(B) = Pr(x ∈ B) for any B in B. A sequence {xj : j ≥ 1} of random elements is

said to converge in distribution to a random element x0 if

(13.A.1) ????
Masao
needs to
check this!

13.B Procedures for Unit Root Tests

13.B.1 Said-Dickey Test (ADF.EXP)

Said-Dickey test with the general-to-specific rules proceeds as follows:

(i) Choose whether or not a constant and a time trend should be included in the

regression by selecting an appropriate alternative hypothesis. If the variable of

interest does not exhibit any secular trend, an appropriate alternative hypothesis

should be that the variable is stationary with non-zero mean and without a
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time trend. In this case, the regression should include a constant but no time

trend. On the other hand, if the variable of interest exhibits a secular trend,

an appropriate alternative hypothesis is that the variable is trend stationary.

Therefore, the regression should include both a constant and a linear time trend.

(ii) Select the maximum order of lagged polynomials (the corresponding variable to

be determined is P).

(iii) Determine the order of autoregressive process by following Campbell and Perron

(1991)’s recommendation.

(iv) If the t ratio consistent with the specification of the regression form is negative

and greater than the appropriate critical value in absolute value, then reject the

null of a unit root.

13.B.2 Park’s J Test (JPQ.EXP)

Park’s J(p, q) test proceeds as follows:

(i) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(ii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

secular time trend, the maintained hypothesis is that it includes only a constant
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(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iii) If J(p,q) is smaller than the appropriate critical value, then reject the null of

difference stationarity.

13.B.3 Park’s G Test (GPQ.EXP)

Park’s G(p, q) test proceeds as follows:

(i) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(ii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

secular time trend, the maintained hypothesis is that it includes only a constant

(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iii) Specify an appropriate method to estimate the long-run covariance matrix, ΩT .
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See chapter 6 for more details (the corresponding variables to be specified are

MAXD, ST, BST, and MSERHO).

(iv) If G(p,q) is greater than the appropriate critical value, then reject the null of

stationarity.

Exercises

13.1 Imagine that you are applying the Said-Dickey (augmented Dickey-Fuller) test

to the log real GDP for the United States. Explain the Said-Dickey test (the definition,

the null and alternative hypotheses that are appropriate in this context, and the small

sample properties compared with the Phillips and Perron test). If the test statistic

takes the value of -3.33, do you reject the null hypothesis at the 5 percent level?

What if the value is -1.47? What if the value is +3.99? The critical values for the

Said-Dickey test are given in Table 13.2, in which p is the order of time polynomial

included in the regression.

Table 13.2: Probability of smaller values

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
p = 0 (a constant)

-3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60
p = 1 (a constant and a time trend)

-3.96 -3.66 -3.41 -3.12 -1.25 -0.94 -0.66 -0.33

13.2 Imagine that you are applying the Said-Dickey (augmented Dickey-Fuller) test

to the log real exchange rate for the United States and United Kingdom for the pur-

pose of testing Purchasing Power Parity. Explain the Said-Dickey test (the definition,

the null and alternative hypotheses which are appropriate in this context, and the
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small sample properties compared with the Phillips and Perron test.) If the test

statistic takes the value of -2.93, do you reject the null hypothesis at the 5 percent

level? What if the value is -2.67? What if the value is +3.99. The critical values

for the Said-Dickey test are given in 13.2, in which p is the order of time polynomial

included in the regression.
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