
Chapter 14

COINTEGRATING AND
SPURIOUS REGRESSIONS

This chapter reviews properties of regression estimators and test statistics based on

the estimators when the regressors and regressant are difference stationary. When

the stochastic trends of two or more difference stationary variables are eliminated by

forming a linear combination of these variables, the variables are said to be cointe-

grated in the terminology of Engle and Granger (1987). Let zt be a n × 1 vector of

difference stationary random variables with ∆zt being stationary. If there exists a

nonzero vector of real numbers β such that β′zt is stationary, then zt is said to be

cointegrated with a cointegrating vector β. If β is a cointegrating vector, bβ is also a

cointegrating vector for any real number b. There may exist more than one linearly

independent cointegrating vector. This chapter covers the case in which there is only

one linearly independent cointegrating vector, and the case in which there exists no

cointegrating vector. Chapter 16 concerns the case when there are more than one

linearly independent cointegrating vectors.

When there is one cointegrating vector, a regression of one variable in zt on

the others is called a cointegrating regression. What is striking about cointegration
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is that a cointegrating vector that eliminates the stochastic trends can be estimated

consistently by a cointegrating regression without using instrumental variables, even

when no variables are exogenous.

When there is no cointegrating vector, a regression of one variable in zt on the

others is called a spurious regression. One reason why macroeconomists need to be

careful about unit root nonstationary variables is that the standard asymptotic theory

for regressions in Chapter 5 can be very misleading when variables in a regression are

difference stationary.

In the first section, cointegration, stochastic cointegration, and the deterministic

cointegration restriction are defined. Then some estimators for cointegrating vectors

are described. Tests for the null of no cointegration and the null of cointegration

as well as tests for the number of cointegrating vectors are presented. Section 14.6

discusses how cointegration may be combined with standard econometric methods

that assume stationarity.

14.1 Definitions

If β is a cointegrating vector, bβ is also a cointegrating vector for any real number

b. It is often convenient to normalize one of the elements of β by one. Suppose that

the first element of β is nonzero, then partition zt by zt = (yt,x
′
t)

′ and normalize β

by β = (1,−c′)′. Here yt is a difference stationary process, xt is a vector difference

stationary process, and c is a normalized cointegrating vector.

For most macroeconomic time series such as aggregate income, consumption,

and investment, we observe secular upward trends. A secular upward trend of a time

series implies that the expected value of the first difference of the series is positive,
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which implies that the drift term of the series is positive if the series is difference

stationary.

Nonzero drift terms in a system of difference stationary series introduce the de-

terministic trends in addition to the stochastic trends. Hence the cointegrating vector,

which eliminates the stochastic trends, may or may not eliminate the deterministic

trends from the system. In order to distinguish these cases, we now introduce the

notions of stochastic cointegration and the deterministic cointegration restriction, as

defined by Ogaki and Park (1997).1 Consider a vector difference stationary process

xt with drift:

xt − xt−1 = µx + vt(14.1)

for t ≥ 1 where µx is an (n−1)-dimensional vector of real numbers and vt is stationary

with mean zero. Recursive substitution in (14.1) yields

xt = µxt+ x0
t(14.2)

where x0
t is difference stationary without drift. Relation (14.2) decomposes the dif-

ference stationary process xt into deterministic trends arising from drift µx and the

difference stationary process without drift, x0
t . Suppose that yt is a scalar difference

stationary process with drift µy. Similarly, decompose yt into a deterministic trend

µyt and a difference stationary process without drift, y0t , as in (14.2):

yt = µyt+ y0t .(14.3)

Difference stationary processes yt and xt are said to be stochastically cointegrated

1Ogaki (1988) introduces these notions and calls them the stochastic and deterministic parts of
cointegration. West (1988) considers estimation under the deterministic cointegration restriction for
the special case of one stochastic trend in the system. Hansen (1992a) and Park (1992) consider the
deterministic cointegration restriction under more general cases.
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with a normalized cointegrating vector c when there exists an (n-1)-dimensional vec-

tor c such that yt − c′xt is trend stationary.2 This property means that stochastic

cointegration only requires that stochastic trend components of the series are cointe-

grated. We may then write y0t − c′x0
t = θc+ ϵt, where ϵt is stationary with mean zero.

Then by (14.2) and (14.3),

yt = θc +mct+ c′xt + ϵt(14.4)

where

mc = µy − c′µx.(14.5)

Suppose that

µy = c′µx(14.6)

holds. Then the deterministic cointegration restriction is said to hold. This means

that the cointegrating vector that eliminates the stochastic trends also eliminates the

deterministic trends. If this restriction is satisfied, then

yt = θc + c′xt + ϵt.(14.7)

and (yt,xt)
′ is cointegrated.

Another way to explain the deterministic cointegration is to use an idea of

cotrending. Suppose that a vector c∗ satisfies

µy = c∗′µx.(14.8)

Then yt − c∗′xt does not possess any deterministic trend, and yt and xt are cotrended

with a normalized cotrending vector c∗. If n > 2 and if one of the components

2If y0t − c′x0
t is stationary rather than trend stationary, yt and xt are said to be cointegrated.
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of µx is nonzero, there are infinitely many cotrending vectors. Consider an extra

restriction that the normalized cointegrating vector c is a cotrending vector. This

restriction, which we call the deterministic cointegration restriction, requires that the

cointegrating vector eliminates both the stochastic and deterministic trends. In this

case, Equation (14.7) holds and (yt,x
′
t)

′ is cointegrated.

14.2 Exact Finite Sample Properties of Regression

Estimators

This section studies exact finite sample properties of cointegrating and spurious re-

gression estimators. In the literature on unit root econometrics, asymptotic theory

and the method of Monte Carlo studies have been typically used. However, the con-

ditional Gauss-Markov theorem in Chapter 5 can be applied to study exact finite

sample properties as in Ogaki and Choi (2001).

Consider a regression of the form

yt = h′dt + c′xt + ϵt.(14.9)

where dt is a function of time, t. For example, dt = (1, t)′ as in (14.4) or dt = 1 as

in (14.7). If ϵt is stationary for some c, (14.9) is a cointegrating regression. If ϵt is

difference stationary for any c, then (14.9) is a spurious regression.

14.2.1 Spurious Regressions

Suppose that yt is a random walk and xt is a random walk that is independent of

yt. Granger and Newbold (1974) find that the standard Wald test statistic for the

hypothesis that the coefficient on xt is zero tends to be large (compared with standard

critical values) in ordinary least squares (OLS) regressions of yt onto xt in their Monte
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Carlo experiments. Later, Phillips (1986) show that the Wald test statistic diverges to

infinity as the sample size is increased. In a regression with two independent difference

stationary variables without drift, the random walk components will dominate the

stationary components at least asymptotically. Hence these spurious regression results

imply that the absolute value of the t-ratio of the regressor tends to be larger than the

critical valued implied by the standard statistical theory that assumes stationarity.

An econometrician who ignores unit root nonstationarity issues tends to spuriously

conclude that two independent difference stationary variables are related.

Another example of the spurious regression results is in Durlauf and Phillips

(1988). When a difference stationary variable without drift, yt, is regressed onto a

constant and a linear time trend, the Wald test statistic for the hypothesis that a

coefficient for the linear trend is zero diverges to infinity as the sample size increases.

The Gauss Markov theorem provides us with a tool to understand exact small

sample properties of estimators and test statistics of spurious regressions. The asymp-

totic theories of Phillips (1987, 1998) have been used to understand the spurious re-

gression problem, but have not been used to provide a solution to the problem. The

Gauss Markov theorem indicates a simple solution to the problem.

Let yt be a random walk that is generated from

∆yt = ϵt(14.10)

with an initial random variable y0 and a white noise ϵt that is conditionally ho-

moskedastic. Let xt be another random walk that is generated from

∆xt = vt(14.11)

with an initial random variable x0 and a white noise vt that is conditionally ho-
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moskedastic. We assume that {ϵt}Tt=1 and y0 are independent, and that they are

independent from {vt}Tt=1 and x0, so that xt and yt are independent random walks.

Let y = {yt}Tt=1, X = {xt}Tt=1 and e = {et}Tt=1 where ∆et = ϵt, and consider the OLS

estimator for y = Xb0 + e. Then the true value of the regression coefficient is zero:

b0 = 0.

Let Ix be the information set generated from y0 and X. Assumptions 5.1,

5.2, and 5.4 of the strict version of the theorem in Chapter 5 hold for the spurious

regression. However, Assumption 5.3 is violated because

E(ee′|Ix) = σ2Φ(14.12)

where σ2 = E(ϵ2t ), and

Φ =



1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1 2 3 · · · T − 1 T − 1
1 2 3 · · · T − 1 T


.(14.13)

Thus the spurious regression violates Assumption 5.3, but not the other assumptions.

The OLS estimator is still unbiased. One can apply a GLS correction and obtain a

more efficient estimator.

When Assumption 5.5 is made, by applying GLS to the spurious regression, we

can solve the spurious regression problem: we can obtain the exact (unconditional) t

distribution for the usual t statistic.

We now consider spurious regressions of the form (14.9) which do not satisfy

the strict exogeneity assumption. For this purpose, we consider a particular data

generating process that leads to a spurious regression.
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Let et and zt be two time series of dimensions 1 and k, respectively, that are

generated from

∆et = ϵt, t = 1, 2, 3, · · · .(14.14)

∆zt = µ+ vt, t = −q, · · · ,−1, 0, 1 · · ·(14.15)

where (ϵt,v
′
t)

′ is a covariance stationary series, µ is a k-dimensional vector of real

numbers, e0 = 0, and z−q is a given random vector. We assume that the long-run

covariance matrix of vt,

Ω = lim
j→∞

j∑
−j

E(vtv
′
t−j)(14.16)

is nonsingular. We assume that zt is strictly exogenous with respect to ϵt.

An implication of the strict exogeneity assumption is that et and zt are not

cointegrated: that is, there is no nonzero vector β such that et − β′zt is stationary.

This property results because the assumption implies that

lim
j→∞

j∑
−j

E(ϵtv
′
t−j) = 0.(14.17)

Consider a series yt that is generated from

yt = h′dt + c′zt + γ(L−1)∆zt + η(L)∆zt + et, t = 1, 2, 3, · · · ,(14.18)

where γ(L−1) = γ1L
−1 + · · · + γpL

−p, η(L) = η0 + η1L + · · · + ηqL
q and dt is a

vector of deterministic variables that is (1, t)′ or 1 for example. Here γ1, · · · ,γp, and

η0, · · · ,ηq are 1× k vectors, and we assume that at least one of them is nonzero.

Under these assumptions, consider a regression of yt onto dt and zt:

yt = h∗′dt + c∗′zt + e∗t(14.19)
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This regression is a spurious regression: that is, for any vector c∗, e∗t is unit root

nonstationary. To see this property, assume that e∗t is stationary for a vector c∗.

Then (14.18) implies that et− (c∗− c)′zt is stationary. It follows that a cointegrating

relationship exists between et and zt contradicting the strict exogeneity assumption.

Given that et in (14.18) satisfies the exogeneity condition, c can be considered

the true value of the spurious regression coefficient c∗ in (14.19). With this interpre-

tation, one problem with (14.19) is that the strict exogeneity assumption is violated.

Let X be a matrix whose t-th row is given by (d′
t, z

′
t,∆z′t+p,∆z′t+p−1, · · · ,∆z′t,

∆z′t−1, · · · ,∆z′t−q), y = {yt}Tt=1, and e∗ = {e∗t}Tt=1. When

E(e∗e∗′|X) = σ2Ψ(14.20)

with a known matrix Ψ and a possibly unknown number σ, then the GLS can be

applied to (14.18). If et is a random walk, then with Φ given by (14.13) and σ2 =

E(ϵ2t ). Just as in the strict exogenous case, the finite sample properties of the GLS

estimators and test statistics based on GLS can be analyzed.

The GLS correction is basically the same as taking first differences for the

case of strictly exogenous regressors. The GLS correction, however, can be useful in

applications for which the strict exogeneity assumption is violated.

14.2.2 Cointegrating Regressions

Let et and zt be two time series of dimensions 1 and k, respectively. We assume

that zt is generated from (14.15), where (et,v
′
t)

′ is a covariance stationary series, µ

is a k-dimensional vector of real numbers, e0 = 0, and z−q is a given random vector.

We assume that the long-run covariance matrix of vt, Ω = limj→∞
∑j

−j E(vtv
′
t−j) is

nonsingular. We assume that zt is strictly exogenous with respect to et.
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Consider a series yt that is generated from

yt = h′dt + c′zt + γ(L−1)∆zt + η(L)∆zt + et, t = 1, 2, 3, · · · ,(14.21)

where γ(L−1), η(L) and dt are defined in (14.18).

Under these assumptions, consider a regression of yt onto dt and zt:

yt = h∗′dt + c∗′zt + e∗t(14.22)

This regression is a cointegrating regression. With an appropriate choice of h∗ and

c∗ = c, e∗t is stationary. However, since the strict exogeneity assumption is not

satisfied, the OLS estimator for (14.22) is biased.

In contrast, the OLS estimator for (14.21) is unbiased. It is the BLUE if et is

serially uncorrelated. This is because Assumptions 5.1, 5.2, 5.3 and 5.4 are satisfied,

and the conditional Gauss-Markov theorem applies. The OLS estimator for (14.21)

is called the dynamic OLS estimator. The GLS estimator for (14.21) is called the

dynamic GLS estimator.

14.3 Large Sample Properties

An important feature of the cointegration regression is that the OLS estimator is

consistent without any exogeneity assumption (see Phillips and Durlauf, 1986; Stock,

1987). Along with the spurious regression results discussed in the last section, it is

another example of the fact that the standard asymptotic theory in Chapter 5 does

not apply to regressions in the presence of unit root nonstationary variables. This

fact is well known in the literature. On the other hand, the fact that the conditional

probability version of the Gauss Markov theorem applies to cointegrating regressions

under the assumptions of the theorem has not been emphasized in the literature. In
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the context of cointegration, an assumption of the theorem requires that xt is strictly

exogenous.

In most applications, the strict exogeneity assumption is too restrictive. This

section discusses econometric methods for when the assumption is violated. The OLS

estimator is consistent (see Phillips and Durlauf, 1986; Stock, 1987), but is asymptot-

ically biased. It also has a nonstandard distribution, which makes statistical inference

very difficult. For example, the OLS standard errors calculated in the standard econo-

metric packages for OLS are not very meaningful for cointegrating regressions. Many

efficient estimation methods that solve all or some of these problems have been devel-

oped. Dynamic OLS and GLS estimators introduced in the last section were proposed

by Stock and Watson (1993). Phillips and Loretan (1991) and Saikkonen (1991) have

proposed similar estimators.

Dynamic OLS and GLS estimators correct the endogeneity problem parametri-

cally. Estimators proposed by Phillips and Hansen (1990) and Park’s (1992) Canoni-

cal Cointegrating Regressions correct the endogeneity problem nonparametrically. In

Chapter 16, we will explain Johansen (1988, 1991) Maximum Likelihood Estimation

method.

14.3.1 Canonical Cointegrating Regression

Johansen’s maximum likelihood estimation makes a parametric correction for long-

run correlation of ∆xt and et. Another way to obtain an efficient estimator is to utilize

a nonparametric estimate of the long-run covariance parameters. Both Phillips and

Hansen (1990) and Park (1992) employ such covariance estimates. Here, attention is

confined to Park’s Canonical Cointegration Regressions (CCR).
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Consider a cointegrated system

yt = h′dt + c′xt + ϵt(14.23)

∆xt = vt,(14.24)

where dt is a deterministic term that are usually constants, time trends, or both, yt

and xt are difference stationary, and ϵt and vt are stationary with zero mean. Here

yt is a scalar and xt is a (n− 1)× 1 random vector. Let

wt = (ϵt,v
′
t)

′.(14.25)

Define Φ(i) = E(wtw
′
t−i), Σ = Φ(0), Γ =

∑∞
i=0 Φ(i), and Ω =

∑∞
i=−∞Φ(i). Here Ω

is the matrix version of (14.16) and is the long run variance (or covariance) matrix of

wt. Partition Ω as

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
(14.26)

where Ω11 is a scalar, andΩ22 is a (n−1)×(n−1) matrix, and partition Γ conformably.

Define

Ω11.2 = Ω11 −Ω12Ω
−1
22 Ω21(14.27)

and Γ2 = (Γ′
12,Γ

′
22)

′. The CCR procedure assumes that Ω22 is positive definite,

implying that xt is not itself cointegrated (see, e.g., Phillips, 1986; Engle and Granger,

1987). This assumption assures that (1,−c) is the unique cointegrating vector (up to

a scale factor).3

3For many applications, it is natural to assume that ∆−1ϵt is not cointegrated with xt. This
assumption implies that Ω11.2 is positive. Park (1992) calls cointegration between yt and xt singular
when Ω11.2 is zero. For the singular models, either a different CCR procedure described by Park
is necessary (the removable singularity case) or the CCR procedure is not applicable (the essential
singularity case).
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The OLS estimator in (14.23) is super-consistent in that the estimator converges

to c at the rate of T (sample size) even when ∆xt and ϵt are correlated. The OLS

estimator, however, is not asymptotically efficient. Consider transformations

y∗t = yt + π′
ywt(14.28)

x∗
t = xt + π′

xwt.(14.29)

Since wt is stationary, y
∗
t and x∗

t are cointegrated with the same cointegrating vector

(1,−c) as yt and xt for any πy and πx. The idea of the CCR is to choose πy and

πx, so that the OLS estimator is asymptotically efficient when y∗t is regressed on

x∗
t .

4 This requires
Masao

needs to
check this!

πy = Σ−1Γ2c+ (0,Ω12Ω
−1
22 )

′(14.30)

πx = Σ−1Γ2.(14.31)

In practice, long-run covariance parameters in these formulas are estimated, and

estimated πy and πx are used to transform yt and xt. As long as these parameters

are estimated consistently, the resultant CCR estimator is asymptotically efficient.

Here we have considered a single regression. If there are many cointegrating

regressions with disturbances with nonzero long-run covariances in an econometric

system of interest, then asymptotically it is more efficient to apply seemingly unre-

lated regressions. Park and Ogaki (1991a) develop a method of Seemingly Unrelated

Canonical Cointegrating Regressions (SUCCR) for this case. In the SUCCR, trans-

formations of yt and xt that are slightly different from (14.28) and (14.29) are applied

4Under general conditions, a sequence of functions 1√
T

∑T
t=1 wt converges in distribution to a

vector Brownian motion B with covariance matrix Ω. The OLS estimator converges in distribution
to ????
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in each regression. After transforming the variables, the standard seemingly unrelated

regression method is applied to the transformed variables.

14.3.2 Estimation of Long-Run Covariance Parameters

In order to use efficient estimators for cointegrating vectors based on nonparametric

correction such as CCR estimators, it is necessary to estimate long-run covariance

parameters Ω and Γ.

In many applications of cointegration, the order of serial correlation is unknown.

Let Φ(τ) = E(wtw
′
t−τ ),

ΦT (τ) =
1

T

T∑
t=τ+1

ŵtŵ
′
t−τ for τ ≥ 0,(14.32)

and ΦT (τ) = ΦT (−τ)′ for τ < 0, where ŵt is constructed from a consistent estimate

of the cointegrating vector. Many estimators for Ω in the literature have the form

ΩT =
T

T − p

T−1∑
τ=−T+1

k(
τ

ST

)ΦT (τ),(14.33)

where k(·) is a real-valued kernel, and ST is a band-width parameter. The factor T
T−p

is a small sample degrees of freedom adjustment. See Andrews (1991) for examples

of kernels. Similarly, Γ is estimated by

ΓT =
T

T − p

T−1∑
τ=0

k(
τ

ST

)ΦT (τ),(14.34)

Park and Ogaki (1991b) extend Andrews and Monahan’s (1992) VAR prewhiten-

ing method to the estimation of Γ so that it can be applied to cointegrating regres-

sions. The first step in the VAR prewhitening method is to run a VAR:

wt = A1wt−1 +A2wt−2 + · · ·+Akwt−k + ft.(14.35)
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Note that the model (14.35) need not be a true model in any sense. Then the

estimated VAR is used to form an estimate ft and estimators of the form (14.33)

and (14.34) are applied to the estimated ft to estimate the long-run variance of ft,

Ω∗ and the parameter Γ for ft, Γ
∗. The estimator based on the QS kernel with the

automatic bandwidth parameter can be used for ft for example. Then the sample

counterpart of the formulas

Ω = [I−
k∑

i=1

Ai]
−1Ω∗[I−

k∑
i=1

A′
i]
−1(14.36)

Γ = Φ(0) + [I−
k∑

i=1

Ai]
−1(Γ∗ − E(ftf

′
t))[I−

k∑
i=1

A′
i]
−1(14.37)

+ [I−
k∑

i=1

Ai]
−1

k−1∑
j=0

k∑
i=j+1

AiΦ(−i)

are used to form estimates of Ω and Γ.5

Monte Carlo experiments in Park and Ogaki (1991b) show that the VAR prewhiten-

ing improves small sample properties of CCR estimators substantially.

14.4 Tests for the Null Hypothesis of No Cointe-

gration

Many tests for cointegration apply unit root tests to the residuals of a cointegrating

regression. When tests for the null hypothesis of unit root nonstationarity are applied

to residuals, the null of no cointegration is tested against the alternative of cointe-

gration. It should be noted that the asymptotic distributions of these tests generally

depend on the number of the variables in the cointegrating regression.

Engle and Granger’s (1987) augmented Dickey-Fuller (ADF) test applies the

Said-Dickey test to the residual from cointegrating regressions. The asymptotic prop-

5See Park and Ogaki (1991a) for a derivation of (14.36) and (14.37).
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erties of the ADF test are studied in Phillips and Ouliaris (1990). These authors and

MacKinnon (1990) tabulate critical values from Monte Carlo simulations. Note that

these critical values assume the OLS is used for the cointegrating regression, so that

the efficient estimation methods discussed in Section 14.3 above should not be used

for this test. Just as the Said-Dickey test, the ADF test may be sensitive to the choice

of the order of AR.

Phillips and Ouliaris (1990) also study asymptotic properties of tests for cointe-

gration obtained by applying the Phillips-Perron test to OLS cointegrating regression

residuals. Asymptotic critical values are reported by Phillips and Ouliaris. This test

requires an estimate of the long run variance of the residual.

Park’s (1990) I(p,q) test basically applies his J(p, q) test to OLS cointegrating

regression residuals. This test was originally developed by Park, Ouliaris, and Choi

(1988). The I(p, q) test is computed by adding spurious time trends as additional

regressors in the cointegrating regression:

yt =

p∑
τ=0

µτ t
τ +

q∑
τ=p+1

µτ t
τ + c′xt + ϵt.(14.38)

Here, time polynomials up to the order of p represent maintained trends, while higher

order time polynomials are spurious trends. Part of Park, Ouliaris, and Choi’s (1988)

table of critical values for I(p, q) tests are reproduced here in Table 14.1. This test

has an advantage over ADF and Phillips-Ouliaris tests in that neither the order of

AR nor the bandwidth parameter needs to be chosen.
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Table 14.1: Critical Values of Park’s I(p, q) Tests for Null of No Cointegration

Number of Regressors Size I(0, 3) I(1, 5)
1 0.01 0.06864 0.10269

0.05 0.23286 0.25064
0.10 0.39897 0.49845

2 0.01 0.05520 0.00819
0.05 0.17539 0.21040
0.10 0.29622 0.32251

Note: These critical values are from Park, Ouliaris, and Choi (1988).

14.5 Tests for the Null Hypothesis of Cointegra-

tion

When an economic model implies cointegration, it is often more appealing to test

for the null of cointegration, so that an econometrician can control the probability

of rejecting a valid economic model. Phillips and Ouliaris (1990) discussed why it

was hard to develop tests for the null of cointegration. More recently, Fukushige,

Hatanaka, and Koto (1994), Hansen (1992b), and Kwiatkowski, Phillips, Schmidt,

and Shin (1992), among others, have developed tests for the null of cointegration.

Park’s (1990) H(p, q) test is computed by applying the CCR to (14.38). Thus,

this test essentially applies Park’s G(p, q) test to CCR residuals. A similar test

was originally developed by Park, Ouliaris, and Choi (1988), where G(p, q) tests were

applied to OLS residuals, and their tests have nonstandard distributions. In contrast,

Park’s H(p, q) tests have asymptotic chi-square distributions with q − p degrees of

freedom. Under the alternative of no cointegration, the H(p, q) statistic diverges to

infinity because spurious trends try to mimic the stochastic trend left in the residual.

Therefore, this test is consistent.



14.6. GENERALIZED METHOD OF MOMENTS AND UNIT ROOTS 355

In many applications, it is appropriate to model each variable in the econo-

metric system as first difference stationary with drift. Each variable possess a linear

deterministic trend as well as a stochastic trend in Section 14.1 because of drift. In

this case, H(1, q) statistics test the null hypothesis of stochastic cointegration. The

H(0, 1) test can be considered as a test for the deterministic cointegration restric-

tion because the restriction implies that the cointegrating vector that eliminates the

stochastic trends also eliminates the linear deterministic trends.

14.6 Generalized Method of Moments and Unit

Roots

When difference stationary variables are involved in the econometric system, standard

econometric methods that assume stationarity are not applicable because of spurious

regression problems. Hence econometricians detrend data by taking growth rates of

variables, for example. However, by detrending data, the econometrician loses the

information contained in stochastic and deterministic trends. It is thus natural to seek

a method to combine standard econometric methods and cointegrating regressions.

Estimating an error correction representation explained in Section 16.4 is an example

of such a method in vector autoregressions. Let us now consider this problem in the

context of Hansen’s (1982) Generalized Method of Moments (GMM) estimation. This

case is particularly useful because many estimators can be considered special cases of

GMM.

The asymptotic theory of GMM does not make strong distributional assump-

tions, such as that the variables are normally distributed. However, Hansen assumes

that xt is stationary. Hence if variables are difference stationary, the econometrician

needs to transform the variables to induce stationarity. One such transformation is
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to take the first difference of a variable, or to take the growth rate of the variables

if the log of the variable is difference stationary. But it may not be possible to take

growth rates of all variables for some functions in f(xt,b0) while retaining moment

conditions. In such cases, it may be possible to use cointegrating relationships to

induce stationarity by taking linear combinations of variables. In empirical appli-

cations of Eichenbaum and Hansen (1990) and Eichenbaum, Hansen, and Singleton

(1988), their economic models imply some variables are cointegrated with a known

cointegrating vector. They use this cointegration relationship to induce stationarity

for the equations involving the first order condition that equate the relative price and

the marginal rate of substitution.

In Cooley and Ogaki (1996) and Ogaki and Reinhart (1998a,b) explained in

the next chapter, their economic model implies a cointegration relationship, but the

cointegrating vector is not known. They employ a two-step procedure. In the first

step, they estimate the cointegrating vector, using a cointegrating regression. In the

second step, they plug in estimates from the first step into GMM functions, f(xt,b0).

This two step procedure is similar to Engle and Granger’s two step procedure for the

error correction model discussed in Section 16.4. Asymptotic distributions of GMM

estimators in the second step are not affected by the first step estimation because

cointegrating regression estimators converge at a faster rate than
√
T .

Appendix

14.A Procedures for Cointegration Tests

14.A.1 Park’s CCR and H Test (CCR.EXP)

Park’s canonical cointegrating regression (CCR) and H(p, q) test proceed as follows:
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(i) Define a regressand (the corresponding variable to be specified is Y) and re-

gressors. The latter includes both a vector of deterministic regressors6 (the

corresponding variable to be specified is X1) and difference stationary regressors

(the corresponding variable to be specified is X2).

(ii) Choose the order of the maintained trend (the corresponding variable to be spec-

ified is P) in the residuals to test for the null hypothesis of cointegration (H(p, q)

test). If either each variable exhibits no secular trend or some variables show a

secular trend with the deterministic cointegration restriction7, set P=0. On the

other hand, when some variables exhibit a time trend without the deterministic

cointegration, set P=1.

(iii) Select the largest order of additional time polynomials (the corresponding vari-

able to be specified is Q). If either each variable exhibits no secular trend or some

variables show a secular trend with the deterministic cointegration restriction,

set Q=1. But when some variables exhibit a time trend without the deterministic

cointegration, set Q=2. Choose an appropriate DQ depending on how many test

results you want. We recommend either DQ=2 or DQ=3.

(iv) Determine an appropriate method to estimate the long-run covariance matrix,

ΩT . See chapter 6 for details (the corresponding variables to be specified are

MAXD, ST, BST, and MSERHO. The default of the program is the prewhitened

QS kernel with automatic bandwidth selection).

(v) Impose restrictions on the cointegrating vector (the corresponding variable in

6It is typically either a constant or a constant and a linear time trend
7Typically, the economic model for the application tells us whether or not this restriction is

satisfied
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the program is B), if any (the corresponding variables to be specified are R and

RV matrices).

(vi) Check the statistical evidence about estimates and tests. For CCR estimates,

report the third stage result. For the H(p, q) test, report the fourth stage result.

For a linear restriction RB=RV, report the third stage result when the alternative

hypothesis is cointegration with RB ̸= RV, and report the fourth stage result

when the alternative hypothesis is no cointegration.

14.A.2 Park’s I Test (IPQ.EXP)

Park’s I(p,q) test proceeds as follows:

(i) Define a regressand (the corresponding variable to be specified is Y) and re-

gressors. The latter includes both a vector of deterministic regressors8 (the

corresponding variable to be specified is X1) and difference stationary regressors

(the corresponding variable to be specified is X2).

(ii) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(iii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

8It is typically either a constant or a constant and a linear time trend
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secular time trend, the maintained hypothesis is that it includes only a constant

(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iv) Impose restrictions on the cointegrating vector (the corresponding variable in

the program is B), if any (the corresponding variables to be specified are R and

RV matrices).

(v) If I(p, q) is smaller than the appropriate critical value, then reject the null of no

cointegration.

14.B Weak Convergence to Stochastic Integral

Before we provide formal theorems of weak convergence to stochastic integral, by

using a a cointegrating regression, we show why the FCLT alone (even with the

CMT) is not enough to establish the asymptotic properties of the OLS estimator.

Consider the following cointegrating regression:

yt = βxt + ut,

where xt is an I(1) process and ut is an I(0) process. The OLS estimator is given by

β̂ =

∑T
t=1 ytut∑T
t=1 x

2
t

,

and its sample error can be written as

T (β̂ − β) =

1

T

∑T
t=1 xtut

1

T 2

∑T
t=1 x

2
t

.
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For the denominator, by the FCLT (along with the CMT) it can be shown that:

1

T 2

T∑
t=1

x2
t

d−→
∫ 1

0

W 2(r)dr.

However, the numerator cannot be analyzed by the FCLT alone. It is evident that the

asymptotic distribution of the numerator cannot be established by the FCLT alone,

because the numerator is a mixture of I(1) and I(0) random variables. Therefore

we need a different too, so-called “weak convergence to the stochastic integral.” In

below, we present the most general version of the theorem.

Theorem 14.1 Let {Unt,Wnt} be a (2 × 1) stochastic array, let Xn(r) =
∑[nr]

t=1 Unt

and Yn(r) =
∑[nr]

t=1 Wnt, and suppose that (Xn(r), Yn(r))
d−→ (BX(r), BY (r)). Assume

{Unt} is Lr-bounded and L2-NED of size -1 on {Vnt} with respect to constants {cUnt}.

If the one of the following assumptions hold:

1. {Wnt,Hnt} is a martingale difference array, where Hnt = σ((Wnk, Un,k−1, k ≤

t), and E(W 2
n,t+1|Hn,t) ≪ (cWn,t)

2 < ∞, a.s.

2. Wnt =
∑∞

k=0 θkV1n,t−k where V1nt ∈ Vnt is a Lr-bounded zero-mean random

variable, independent of Vn,t′ for all t ̸= t′, and
∑∞

t=0

∑∞
k=t |θk| < ∞

Then,

Gn =
n−1∑
j=1

(
j∑

i=1

Un,i

)
Wn,j+1

d−→
∫ 1

0

BX(r)dBY (r) + ΛXY

where ΛXY = limn→∞
∑n−1

i=1

∑i−1
m=0E(Un,i−mWn,i+1)
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