
Chapter 16

VECTOR AUTOREGRESSIONS
WITH UNIT ROOT
NONSTATIONARY PROCESSES

This chapter explains econometric methods related to VARs and cointegration. We

first introduce a broader concept of cointegration that allows us to treat the case in

which a vector time series includes both stationary and nonstationary variables. In

the previous chapters, cointegration is only defined for a vector time series that does

not include stationary variables. Then we discuss a method to impose long-run re-

strictions for VARs with stationary variables for which the nonstationary variables in

the vector time series are not cointegrated. We will explain various representations of

a cointegrated system such as Vector Error Correction Model (VECM) and Phillips’

triangular representation. Then we will present methods to impose long-run restric-

tions imposed on Phillips’ triangular representation and VECM representation. We

will introduce a structural Error Correction Model (ECM) by considering a foreign

exchange rate model in which prices and the exchange rate adjusts toward a long-run

equilibrium level. A method to estimate the structural speed of the adjustment coef-

ficient toward the long-run equilibrium level will be discussed. In the Appendix, we
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will discuss long-run and short-run restrictions imposed on VECM.

16.1 Identification on Structural VAR Models

16.1.1 Long-Run Restrictions for Structural VAR Models

Blanchard and Quah (1989) propose using long-run restrictions to identify the under-

lying shocks in a VAR system. Let yt be the logarithm of GDP and ut be the level

of the unemployment rate. Here yt is assumed to be difference stationary and ut is

assumed to be stationary. Let yt = (∆yt, ut)
′, and let et = (est , e

d
t )

′ be the underlying

shocks of the economy, where edt is the demand shock, and est is the supply shock. It

is assumed that the demand and supply shocks are uncorrelated, and that yt has an

MA representation in terms of et:

yt = µ+Φ(L)et(16.1)

= µ+Φ0et +Φ1et−1 +Φ2et−2 + · · · ,

where Φ(1) is normalized so that its principal diagonal components are 1’s, and

E(ete
′
t) = Λ.

The long-run restrictions are that the demand shock does not have any long-run

effect, and the supply shock does not have any long-run effect on unemployment, but

may have a long-run effect on the level of output. These restrictions imply that the

matrix Φ(1) is lower triangular.

Let yt = µ + Ψ(L)ϵt be the Wold representation, which can be estimated by

inverting the VAR representation for yt. Then ϵt = Φ0et, Σϵ = E(ϵtϵ
′
t) = Φ0ΛΦ′

0,

and Φj = ΨjΦ0 for all j. Once Φ0 is known, we can obtain et from ϵt, and Φj from

Ψj. Is Φ0 identified? An informal argument by Blanchard and Quah suggest that
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it is. Given Σϵ, the equation Φ0ΛΦ′
0 = Σϵ gives three restrictions because Σϵ is

symmetric. Given Ψ(1), the equation that the upper right-hand entry of Φ(1) is zero

gives one more restriction. There exist four restrictions for four unknown parameters

in Φ0.

The assumption that Φ(1) is lower triangular gives n(n−1)
2

necessary conditions.

From Φ(1)et = Ψ(1)ϵt it follows

Φ(1)ΛΦ(1)′ = Ψ(1)ΣϵΨ(1)′.(16.2)

Let P be a lower triangular matrix of the Cholesky decomposition of Ψ(1)ΣϵΨ(1)′

so that PP′ = Ψ(1)ΣϵΨ(1)′. Then,

Φ(1) = PΛ− 1
2(16.3)

and

Φ0 = Ψ(1)−1Φ(1),(16.4)

whereΛ = [diag(P)]2. Lastrapes and Selgin (1995) apply this model to study liquidity

effects using yt = [rt, yt, (mt − pt),mt]
′.

Gaĺı (1999) uses similar long-run restrictions to identify shocks. The main

methodological difference from Blanchard and Quah is that Gali uses different vari-

ables, log productivity and log hours. Log productivity replaces log GDP. Log hours

(or the first difference of log hours) replaces the unemployment rate. The log GDP and

unemployment rate used by Blanchard and Quah can lead shocks such as government

purchases and permanent labor-supply shocks to be mislabeled as the technological

shock. Gali defines correlation of two variables when all shocks but one are shut

down as conditional correlation. The estimated conditional correlations of hours and
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productivity are negative for nontechnology shocks. Hours how a persistent decline

in response to a positive technology shock. These findings are hard to reconcile with

a RBC model, but are consistent with a model with monopolistic competition and

sticky price.

16.1.2 Short-run and Long-Run Restrictions for Structural
VAR Models

Gaĺı (1992) uses both short-run and long-run restrictions to identify a structural VAR.

He considers an IS-LM model that consists of output (yt), money supply (mt), the

nominal interest rate (rt), and the price level (pt)
1:

B(L)yt = δ + et(16.5)

where B(L) = B0 −
∑p

i=1BiL
i, B0 has ones on its diagonal, yt = (∆yt,∆rt, rt −

∆pt,∆mt − ∆pt)
′, p is the lag order of VAR, L is the lag operator, and et =

(est , e
ms
t , emd

t , eist )
′ is the vector stochastic process describing supply, money supply,

money demand, and spending (IS) disturbances that are assumed to be serially un-

correlated. Let n denote the dimension of yt, that is, n = 4 in this model.

The model (16.5) can be estimated by the reduced form VAR:

A(L)yt = δϵ + ϵt(16.6)

where A(L) = I −
∑p

i=1AiL
i, A0 = I, and ϵt is the vector of innovations in the

elements of yt. Let Σϵ denote the variance-covariance matrix of ϵt. Provided that B0

is identified, all the structural parameters in (16.5) are computed from the estimates

of (16.6) using δ = B0δϵ and Bi = B0Ai for i = 1, 2, · · · , p. Structural shocks are

also constructed by et = B0ϵt.

1yt, mt, and pt are in logarithms.
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In order to identify B0, Gaĺı (1992) imposes an orthogonality condition (R0)

that the variance-covariance matrix of structural shocks, Λ, is diagonal. FromB0ΣϵB
′
0 =

Λ we have n(n+1)
2

= 10 independent restrictions, and leave n(n−1)
2

= 6 free parameters

in B0.

A second set of restrictions, building on Blanchard and Quah (1989), specifies

that the supply shock has long-run effects on the level of output but the three aggre-

gate demand shocks (ems
t , emd

t , and eist ) have no long-run effects on the level of output

(R1, R2, and R3). These restrictions identify the supply shock (est) from the other

shocks. These restrictions are denoted by Φ(1)1j = 0 for j = 2, 3, and 4.

A third set of restrictions is that the money supply and the money demand

shocks have no contemporaneous effects on output (R4 and R5). These restrictions

identify the IS shock from the two types of monetary shocks. Let Φ(L) = B(L)−1, in

particular, Φ0 = B−1
0 . These two restrictions are denoted by Φ0,1j = 0 for j = 2 and

3.

The final restriction identifies the money supply shock from the money demand

shock. Gaĺı (1992) assumes that the contemporaneous price does not enter the money

supply rule that is denoted by B0,23 +B0,24 = 0 (R6).2

The estimation of Gaĺı (1992) is dramatic, and is well described by Pagan and

Robertson (1995, 1998). From the long-run restrictions (R1 ∼ R3), Φ(1) becomes a

block lower triangular matrix, where Φ(L) = B(L)−1 in (16.5). Inverting Φ(1), we

also have a block lower triangular matrix B(1) so that B12(1) = B13(1) = B14(1) = 0.

We can impose this set of restrictions directly on the coefficients of the structural

2Gaĺı (1992) suggests two more alternative assumptions; contemporaneous output does not enter
the money supply rule (R7) and contemporaneous homogeneity in money demand (R8). In this
section, we focus on (R6).
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VAR. For notational convention, let bij and bs,ij be the (i, j) components of B0 and

Bs, respectively. By imposing these long-run restrictions (R1 ∼ R3), we can repa-

rameterize the first equation of (16.5) as

y1t = −b12∆
py2t − b13∆

py3t − b14∆
py4t +

p∑
i=1

bi,11y1,t−i(16.7)

+

p−1∑
i=1

bi,12∆
p−iy2t−i +

p−1∑
i=1

bi,13∆
p−iy3t−i +

p−1∑
i=1

bi,14∆
p−iy4t−i + e1t,

where ∆py2t is, for example, y2t−y2,t−p, and estimate the coefficients by instrumental

variables using yit−1 for ∆pyit for i = 2, 3, 4. Similarly, with the short-run restriction

(R6), we can reparameterize the second equation of (16.5) as

y2t = −b21y1t − b23(y3t − y4t)(16.8)

+

p∑
i=1

bi,21y1,t−i +

p∑
i=1

bi,22y2,t−i +

p∑
i=1

bi,23y3,t−i +

p∑
i=1

bi,24y4,t−i + e2t,

where we use ϵ̂1t, a sample counterpart of the first error in (16.6) from a reduced

form VAR, and ê1t, a sample counterpart of the first shock in (16.7) from a structural

VAR, for y1t and y3t − y4t as an instrument, respectively. This result follows because

ϵ1t is orthogonal to e2t by the short-run restriction (R4) and e1t is orthogonal to e2t

by the orthogonality conditions. The third equation is given by

y3t = −b31y1t − b32y2t − b34y4t(16.9)

+

p∑
i=1

bi,31y1,t−i +

p∑
i=1

bi,32y2,t−i +

p∑
i=1

bi,33y3,t−i +

p∑
i=1

bi,34y4,t−i + e3t,

where ϵ̂1t, ê1t, and ê2t are used as the instrumental variables for y1t, y2t, and y4t,

respectively. The short-run restriction (R5) ensures that ϵ1t is orthogonal to e3t, while

the orthogonality conditions are used for e1t and e2t. Finally, the fourth equation is
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given by

y4t = −b41y1t − b42y2t − b43y3t(16.10)

+

p∑
i=1

bi,41y1,t−i +

p∑
i=1

bi,42y2,t−i +

p∑
i=1

bi,43y3,t−i +

p∑
i=1

bi,44y4,t−i + e4t

and estimated by instrumental variables using ê1t, ê2t, and ê3t for y1t, y2t, and y3t,

respectively from the orthogonality conditions.

The estimation method described above is a two-step instrumental variables

method because the reduced form VAR is estimated in the first step and some of the

residuals estimated in the first step are used for instrumental variables in the second

step.

16.2 Representations for the Cointegrated System

This section introduces four useful representations of a cointegrating system: the

vector moving average representation and Phillips’ triangular representation. For ex-

ample, these representations are useful in developing different methods to impose

long-run restrictions.3 For the illustration below, consider a vector of difference sta-

tionary processes zt = (yt,xt)
′ with a cointegrating vector β = (I,−c′)′.

16.2.1 Vector Moving Average Representation

The cointegrating relationship between yt and x, and the difference stationarity of xt

can be written as

yt = c′xt + ut(16.11)

xt = xt−1 + vt,(16.12)

3Details of these representations are discussed in Section 19.1 of Hamilton (1994).
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where ut and vt are stationary with zero mean.

Differencing (16.11) yields

(16.13) ∆yt = c′∆xt +∆ut = c′vt + ut − ut−1.

Let e1,t ≡ c′vt + ut and e2,t ≡ vt. Then, (16.56) can be written as

∆yt = e1,t − (e1,t−1 − c′e2,t−1) = (I− L)e1,t + c′Le2,t.

Stacking this along with (16.12) in a vector system yields the vector moving average

representation for (∆yt,∆xt)
′,[
∆yt

∆xt

]
= Φ(L)

[
e1,t
e2,t

]
,

where

Φ(L) ≡
[
I− L c′L
0 I

]
.

Note that the polynomial Φ(z) has a root at unity, |Φ(1)| = 0, and hence is non-

invertible. This suggests that ∆zt cannot be represented by any finite-order vector

autoregression since [Φ(L)]−1∆zt = et does not exist.

Stationarity of β′zt requires that the vector moving average representation sat-

isfies two necessary conditions. First, the matrix polynomial associated with the

moving average must satisfy

β′Φ(1) = 0.

Further, if some of the series in zt exhibit nonzero drift and thus include the deter-

ministic trend component µzt,

zt = µzt+ z0t ,

where µz ̸= 0, and z0t is difference stationary without drift, then the stationarity

requires that the deterministic cointegration restriction holds (Engle and Yoo, 1987;
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Ogaki and Park, 1997). That is, the cointegrating vector must eliminate the deter-

ministic trend from the system:

β′µz = 0.

Otherwise, the linear combination β′zt will grow deterministically at the rate β′µz.

16.2.2 Phillips’ Triangular Representation

Phillips’s (1991) triangular representation takes the form:

yt − c′xt = ut,(16.14)

∆xt = vt.(16.15)

To derive this, suppose an n×1 vector zt = (yt,xt)
′ is characterized by h cointegrating

relations. The matrix of h cointegrating vectors can be written as

β′ =


b

′
1

b
′
2
...
b

′

h

 =


1 b12 b13 · · · b1n
b21 b22 b23 · · · b2n
...

...
... · · · ...

bh1 bh2 bh3 · · · bhn

 ,

where the (1,1)-th element has been normalized to unity. After appropriate row

operations, it can be transformed as

β′ =


1 0 · · · 0 b∗1,h+1 b∗1,h+2 · · · b∗1,n
0 1 · · · 0 b∗2,h+1 b∗2,h+2 · · · b∗2,n
...

... · · · ...
...

... · · · ...
0 0 · · · 1 b∗h,h+1 b∗h,h+2 · · · b∗h,n

 =
[
Ih −c′

]
.

Therefore, with zt correspondingly partitioned into an h×1 vector yt and a (n−h)×1

vector xt,

β′zt =
[
Ih −c′

] [ yt

xt

]
= yt − c′xt

is stationary in equation (16.57). Equation (16.58) comes from the assumption that

zt is difference stationary. Thus, in Phillips’ triangular representation, variables on
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the left hand side are all stationary, and are expressed in the form of the moving

average.

The triangular representation has been widely used for estimating cointegrating

vectors. One of the reasons is that when presented in this way, the model’s (unknown)

coefficients appear only in equation (16.57). Therefore, we can estimate the cointe-

grating relationship using standard estimation methods for a system of simultaneous

equations.

As an example of Phillips’ representation, consider the 4-variable system of

Shapiro and Watson (1988). The model consists of four variables: labor input ht,

output yt, the inflation rate πt, and the long-run real interest rate it − πt. In the

short-run, these variables deviate from their long-run steady state values due to four

types of serially uncorrelated shocks: labor supply shocks vt, technological shocks et,

and two aggregate demand shocks ν1
t and ν2

t . Labor supply shocks and technology

shocks are uncorrelated with each other and with the aggregate demand shocks. In

this model, all shocks are assumed to have only short-term effects on the real interest

rate. That is, the nominal interest rate and the inflation rate are cointegrated so the

real interest rate is stationary. Let

zt = [ it πt ht yt ]′,

with a cointegrating vector

β′ = [ 1 −1 0 0 ].

We can partition zt into z1,t = it, and z2,t = ( πt ht yt )′. With the model’s long-
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run restrictions, Phillips’ triangular representation for this cointegrating system is

it − πt = c1 +Φi(L)[ vt et ν1
t ν2

t ]′,

∆πt = c2 +Φπ(L)[ vt et ν1
t ν2

t ]′,

∆ht = c3 +Σh(L)vt + (1− L)Φh(L)[ vt et ν1
t ν2

t ]′,

∆yt = c4 +Σh(L)vt + α−1Σe(L)et + (1− L)Φy(L)[ vt et ν1
t ν2

t ]′,

where ci for i = 1, · · · , 4, are constant, and the lag polynomials Σh(L) and Σε(L) are

assumed to have absolutely summable coefficients and roots outside the unit circle.

16.2.3 Vector Error Correction Model Representation

Vector autoregressive models originating with Sims (1980) have the following reduced

form:

A(L)yt = δϵ + ϵt,(16.16)

where A(L) = In −
∑p

i=1AiL
i, A(0) = In, and ϵt is white noise with mean zero and

varianceΣϵ. From the reduced form of the VAR model, A(L) can be re-parameterized

as A(1)L+A∗(L)(1−L), where A(1) has a reduced rank, r < n. Engle and Granger

(1987) showed that there exists an error correction representation:

A∗(L)∆yt = δϵ −A(1)yt−1 + ϵt,(16.17)

where A∗(L) = In −
∑p−1

i=1 A
∗
iL

i, and A∗
i = −

∑p
j=i+1Aj. Since yt is assumed to be

cointegrated I(1), ∆yt is I(0), and −A(1) can be decomposed as αβ′, where α and

β are n× r matrices with full column rank, r.

Monte Carlo experiments of Qureshi (2008) show that for OLS estimates of

level VAR very often exhibit explosive autoregressive roots for typical macro data. In



16.2. REPRESENTATIONS FOR THE COINTEGRATED SYSTEM 411

contrast, the frequency of encountering explosive roots in OLS estimates of VECM is

much fewer. Because there is a general consensus among macroeconomists that the

absolute value of autroregessive roots is at most one, this is an important advantage

for VECM over level VAR.

16.2.4 Common Trend Representation

Another representation of a cointegrated VAR system is Stock and Watson (1988b)

common trend representation, which is a generalization of Beverage-Nelson decom-

position. Since ∆yt is stationary, we have

(1− L)yt = Φ(L)ϵt.(16.18)

Then

yt =
Φ(L)

1− L
(16.19)

=
Φ(1)

1− L
ϵt +

Φ(L)−Φ(1)

1− L
ϵt

= A

 z1,t
...

zn−r,t

+B(L)ϵt

where zi,t is a random walk and is called a stochastic trend. In a n-variable system,

there exist r cointegration relationship if and only if there exist (n − r) common

stochastic trend.

Example 16.1 If we have income and consumption, yt and ct, such that

yt = zt + eyt(16.20)

ct = zt + ect(16.21)
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where zt is a random walk, and eyt and ect are transitory income and consumption

shock, respectively. Then, (
yt
ct

)
= zt +

(
eyt
ect

)
.(16.22)

where zt is a common stochastic trend. In this case, there is one cointegrating rela-

tionship so that yt − ct = eyt − ect is stationary.

16.3 Long-Run Restrictions on Phillips’ Triangu-

lar Representation

Long-run restrictions can be imposed on Phillips’ Triangular representation. As an

illustration, consider the model of Shapiro and Watson (1988). In this model, yt =

(∆ht,∆yt,∆πt, it − πt)
′, where ht denotes labor supply, yt output, πt inflation, and

it the nominal interest rate. Since ht, yt, and πt are assumed to be I(1), ∆ht, ∆yt,

and ∆πt are stationary I(0). There are three sources of disturbances: labor supply

vt, technology et, and aggregate demand disturbances ν1
t and ν2

t , and thus et =

(vt, et, ν
1
t , ν

2
t )

′. The first two disturbances may be referred as supply shocks, and

are assumed to be orthogonal and serially uncorrelated, and uncorrelated with the

demand shocks. Since yt has been assumed to be stationary, none of the shocks has

a long-run effect on ∆ht, ∆yt, ∆πt, or it − πt.

Shapiro and Watson (1988) make two identifying restrictions: first, the aggre-

gate demand shocks have no permanent effect on the level of output; and second, the

long-run level of labor supply is exogenous. To impose these restrictions, consider, for

example, the long-run effect of ν1
t on yt. In their setup, ϕ23k is the effect of ν1

t on ∆yt

after k periods, and therefore
∑l

k=1 ϕ23k is the effect of ν1
t on yt itself after l periods.

For ν1
t to have no effect on yt in the long run, then we must have that

∑∞
k=0 ϕ23k = 0.
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Thus, the two assumptions impose restrictions that the long-run multipliers from ν1
t

and ν2
t to ht and yt, and from et to ht are zero. The resulting matrix of long-run

multipliers, Φ(1), is block lower triangular:

Φ(1) =


ϕ11 0 0 0
ϕ21 ϕ22 0 0
ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44

.
Because there are no restrictions on ϕ34, this identification scheme cannot be

used to disentangle the two aggregate demand shocks ν1
t and ν2

t , and only their joint

impact can be estimated.

In order to estimate et and Φ(L) using the observed data, Shapiro and Watson

(1988) follow Blanchard and Quah (1989), and use the block lower triangular structure

of Φ(1) and the assumption that the shocks are serially and mutually uncorrelated.

The Wold representation yt = δ + Ψ(L)ϵt can be obtained by first estimating and

then inverting the VAR representation of yt in the usual way.

The equation for ∆ht can be written as

∆ht =

p∑
j=1

βhh,j∆ht−j +

p∑
j=0

βhy,j∆yt−j +

p∑
j=0

βhπ,j∆πt−j +

p∑
j=0

βhi,j(it−j − πt−j) + vt.

Because the long-run multipliers from et, ν
1
t , and ν2

t to ht are zero,
∑p

j=0 βhn,j = 0

for n = y, π, i. Imposing these constrains yields second differences. For example,

consider the long-run restriction of et on ht:

p∑
j=0

βhy,j∆yt−j = βhy,0∆yt + · · ·+ βhy,p−1∆yt−(p−1) + βhy,p∆yt−p

= βhy,0(∆yt −∆yt−1) + (βhy,0 + βhy,1)(∆yt−1 −∆yt−2) + · · ·

+(βhy,0 + βhy,1 + · · ·+ βhy,p−1)(∆yt−(p−1) −∆yt−p)

+(βhy,0 + βhy,1 + · · ·+ βhy,p−1 + βhy,p)(∆yt−p)
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The long-run restriction requires that βhy,0 + βhy,1 + · · · + βhy,p−1 + βhy,p = 0, and

hence the coefficient on ∆yt−p is zero. Thus we have

p∑
j=0

βhy,j∆yt−j = βhy,0∆
2yt + (βhy,0 + βhy,1)∆

2yt−1 + · · ·+ (βhy,0 + βhy,1 + · · ·+ βhy,p−1)∆
2yt−(p−1)

= γhy,0∆
2yt + γhy,1∆

2yt−1 + · · ·+ γhy,p−1∆
2yt−(p−1)

=

p−1∑
j=0

γhy,s∆
2yt−j.

The same operations can be done for
∑p

j=0 βhπ,j and
∑p

j=0 βhi,j as well. The resulting

equation to be estimated is

∆ht =

p∑
j=1

βhh,j∆ht−j+

p−1∑
j=0

γhy,j∆
2yt−j+

p−1∑
j=0

γh,π∆
2πt−j+

p−1∑
j=0

γhi,j(∆it−j−∆πt−j)+vt.

This equation cannot be consistently estimated by OLS because it includes contem-

poraneous values of some of the regressors which are correlated with vt. Therefore,

the IV estimation is used with {∆ht−s,∆yt−s,∆πt−s, it−s − πt−s}ps=1 as instruments.

Similarly, the equation for ∆yt is

∆yt =

p∑
j=1

βyh,j∆ht−j+

p∑
j=1

βyy,j∆yt−j+

p−1∑
j=0

∆2πt−j+

p−1∑
j=0

γyi,j(∆it−j−∆πt−j)+βyvvt+et.

Note that the contemporaneous value of ∆ht do not enter this equation since vt enters

directly. Again, the correlations between et and contemporaneous values of some of

the regressors require that it is estimated by the IV estimation using the same set of

instruments plus {vt−s}ps=1 as instruments.

The equations estimated for ∆πt and πt − it are reduced forms. They are

∆πt =

p∑
j=1

βπh,j∆ht−j+

p∑
j=0

βπy,j∆yt−j+

p∑
j=1

βππ,j∆πt−j+

p∑
j=1

βπi,j(it−j−πt−j)+βπvvt+βπeet+a1t ,

and

it−πt =

p∑
j=1

βih,j∆ht−j+

p∑
j=0

βiy,j∆yt−j+

p∑
j=1

βiπ,j∆πt−j+

p∑
j=1

βii,j)it−j−πt−j)+βivvt+βieet+a2t .
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The error terms a1t and a2t are linear combinations of the structural aggregate shocks

ν1
t and ν2

t . Since these disturbances are uncorrelated with the regressions, these two

equations can be estimated by OLS.

16.3.1 Long-run Restrictions and VECM

An alternative method to impose long-run restrictions is to use VECM. As ∆yt is

assumed to be stationary, it has a unique Wold representation:

∆yt = µ+Ψ(L)ϵt,(16.23)

where µ = Ψ(1)δϵ and Ψ(L) = In+
∑∞

i=1ΨiL
i. The above, which is in reduced form,

can be represented in structural form as:

∆yt = µ+Φ(L)et

Φ(L) = Ψ(L)Φ0(16.24)

et = Φ−1
0 ϵt,

where Φ(L) = Φ0+
∑∞

i=1ΦiL
i, and et is a vector of structural innovations with mean

zero and variance Λ.

Long-run restrictions are imposed on the structural form, as in Blanchard and

Quah (1989). Stock and Watson (1988a) developed a common trend representation

that was shown to be equivalent to a VECM representation. When cointegrated

variables have a reduced rank, r, there exist k = n − r common trends. These

common trends can be considered to be generated by permanent shocks, so that et

can be decomposed into (ek′t , e
r′
t )

′, in which ekt is a k-dimensional vector of permanent

shocks and ert is an r-dimensional vector of transitory shocks. As developed in King,

Plosser, Stock, and Watson (1989, 1991, KPSW for short), this decomposition ensures
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that

Φ(1) =
[
A 0

]
,(16.25)

where A is an n×k matrix and 0 is an n×r matrix with zeros, representing long-run

effects of permanent shocks and transitory shocks, respectively. In order to identify

permanent shocks, in general, causal chains, in the sense of Sims (1980), are imposed

on permanent shocks:

A = ÂΠ,(16.26)

where Â is an n×k matrix, and Π is a k×k lower triangular matrix with ones in the

diagonal. As Jang (2001a) shows, Â is constructed using the cointegrating vectors:

Â = β̂⊥.(16.27)

See Appendix 16.A for detail.

16.3.2 Identification of Permanent Shocks

The main interest lies in the identification of structural permanent shocks, not in

structural transitory shocks.4 Following KPSW, we decompose Φ0 and Φ−1
0 as:

Φ0 =
[
H J

]
, Φ−1

0 =

[
G
E

]
(16.28)

where H,J,G and E are n× k, n× r, k × n, and r × n matrices, respectively. Note

that the permanent shocks are identified once H (or G) is identified, and that these

two matrices have a one-to-one relation, G = ΛkH′Σ−1
ϵ , where Λk is the variance-

covariance matrix of permanent shocks, ekt .
5 Therefore, the above decomposition of

Φ0 does not generate additional free parameters.

4Fisher, Fackler, and Orden (1995) consider the identification of transitory shocks imposing causal
chains on transitory shocks.

5One can easily derive this relation from the relation Φ−1
0 Σϵ = ΛΦ′

0.
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The identifying scheme below basically follows that of KPSW, but enables one

to generalize their model as described below. See Jang (2001a) for details. Following

KPSW, let D = (β̂
′
⊥β̂⊥)

−1β̂
′
⊥Ψ(1) and P be a lower triangular matrix chosen from

the Cholesky decomposition of DΣϵD
′. Then Π and Λk are uniquely determined by

Π = P(Λk)−
1
2 ,(16.29)

where Λk = [diag(P)]2, and H and G are identified by

H =

[
D

α′Σ−1
ϵ

]−1 [
Π
0

]
(16.30)

and

G = ΛkH′Σ−1
ϵ .(16.31)

Accordingly, the permanent shocks and the short run dynamics are identified by

ekt = Gϵt(16.32)

and

Φ(L)k = Ψ(L)H,(16.33)

where Φ(L)k denotes the first k columns of Φ(L).

The specific solutions forH andG in the form of matrices enable one to general-

ize the model. Jang (2001b) considered a structural VECM in which structural shocks

are partially identified using long-run restrictions and are fully identified by means of

additional short-run restrictions (See Jang, 2001b, for the method of identification in

structural VECMs with short-run and long-run restrictions). Jang and Ogaki (2001)

consider a special case, where impulse response analysis is used to examine the effects
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of only one permanent shock, and the recursive assumption on the permanent shocks

in (16.26) can be relaxed, which implies Π is lower block triangular. Note that we

can compute the impulse responses to the kth shock as long as the kth column of H,

Hk, is identified. Note also that the third column of Π does not contain any unknown

parameters. Analogous to (16.30), Hk is identified by

Hk =

[
D

α′Σ−1
ϵ

]−1

Sk(16.34)

where Sk is an n-dimensional selection vector with one at the kth row and zeros at

other rows. Similarly, Gk is identified by:

Gk = Λk
k,kH

′
kΣ

−1
ϵ(16.35)

and it follows from the identity relation of GH = Ik that

Λk
k,k = (H′

kΣ
−1
ϵ Hk)

−1,(16.36)

where Λk
k,k is the variance of the kth permanent shock. Thus, the kth permanent shock

is identified by

ekt,k = Gkϵt.(16.37)

16.3.3 Impulse Response Functions

Impulse response analysis has been widely used in the applied VAR literature. It is,

however, not straightforward to compute the impulse response from VECMs. The

reduced-form VECM is usually converted to a levels VAR model for impulse response

analysis.6 Noting that the presence of unit roots prevents the inversion of a levels

6Mellander, Vredin, and Warne (1992) provide an algorithm to compute impulse response without
converting VECM to levels VAR following the scheme in Campbell and Shiller (1988) and Warne
(1991).



16.3. LONG-RUN RESTRICTIONS ON PHILLIPS’ TRIANGULAR REPRESENTATION419

VAR model to a moving average (MA) representation, Lütkepohl and Reimers (1992)

suggested the following algorithm to get impulse responses recursively in a cointe-

grated system. First, estimate the reduced-form VECM in (16.17), then convert the

VECM to a levels VAR representation in (16.16) using the following relations:7

Ai =


In −A(1) +A∗

1 i = 1
A∗

i −A∗
i−1 for 2 ≤ i ≤ p− 1

−A∗
p−1 i = p.

(16.38)

Though a Wold representation does not exist in the presence of unit roots, Lütkepohl

and Reimers (1992) showed that impulse responses can be recursively computed by

Ψm =

p∑
l=1

Ψm−lAl, m = 1, 2, 3, · · ·(16.39)

Φm = ΨmΦ0,(16.40)

where Ψ0 = In, Φm = (ϕm,ij), and ϕm,ij is an m-step response of the ith variable to

the jth innovation.8 In particular, the impulse response function of permanent shocks

in this paper is calculated by9

Φk
m = ΨmH, m = 1, 2, · · · .(16.41)

As a special case, discussed in Section 16.3.2, the impulse response function of

the kth permanent shock is uniquely calculated from

Φk
m,k = ΨmHk, m = 1, 2, · · ·(16.42)

where Φk
m,k is equivalent to the kth column of Φk

m in (16.41).

7We assume that n > p without any loss of generality.
8This algorithm can be simplified by rewriting VAR in (16.16) as a companion VAR(1) form.

Then, Ψm is the first n row and n column submatrix of Am
c , in which Ac is a companion form

coefficient matrix.
9One may calculate the impulse response to a one standard deviation permanent shock by

ΨmH(Λk)
1
2 .
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16.3.4 Forecast-Error Variance Decomposition

Denoting the h-step forecast error by

yt+h − Etyt+h =
∞∑
i=0

Ψi(ϵt+h−i − Etϵt+h−i)(16.43)

=
h−1∑
i=0

Ψiϵt+h−i,

the forecast error variance is computed by the diagonal components of

E(yt+h − Etyt+h)
2 =

h−1∑
i=0

ΨiΣϵΨ
′
i.(16.44)

In particular, the forecast error variance of the lth variable, yl,t+h, is computed by

h−1∑
i=0

Ψi,l·ΣϵΨ
′
i,l·(16.45)

where Ψi,l· denotes the lth row of Ψi.

To isolate the fraction of the forecast error variance attributed to permanent

shocks, it is convenient and necessary to decompose the contribution of permanent

shocks and transitory shocks as follows:

yt+h − Etyt+h =
∞∑
i=0

ΨiΦ0(et+h−i − Etet+h−i)(16.46)

=
h−1∑
i=0

Ψi

[
H J

] [ ekt+h−i

ert+h−i

]
,

where Ψi is defined in (16.39). Since et is serially uncorrelated,

E(yt+h − Etyt+h)
2 =

h−1∑
i=0

Ψi

[
H J

] [ Λk 0
0 Λr

] [
H′

J′

]
Ψ′

i(16.47)

=
h−1∑
i=0

Ψi(HΛkH′ + JΛrJ′)Ψ′
i.
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Therefore, the contribution of permanent shocks to forecast error variance of the

h-step forecast is estimated by the diagonal components of

h−1∑
i=0

Φk
iΛ

kΦk′
i .(16.48)

In particular, the contribution of the mth permanent shock, ekm, to the forecast error

variance of the lth variable, yl,t+h, is
10

h−1∑
i=0

(Φk
i,lm)

2Λk
m,m,(16.49)

where Λk
m,m is the variance of the mth permanent shock.

Finally, dividing (16.49) by (16.45) yields the fraction of the h-step forecast

error variance of the lth variable attributed to the mth structural shock.

Section 16.3.2 discusses the special case of the contribution of the kth permanent

shock, ekk, to the forecast error variance of the lth variable, yl,t+h, which is computed

by

h−1∑
i=0

(Φk
i,lk)

2Λk
k,k(16.50)

where Λk
k,k is the variance of the kth permanent shock. Dividing (16.50) by (16.45)

gives the portion of the contribution of the kth structural shock to the h-step forecast

error variance of the lth variable.

16.3.5 Summary

In summary, the estimation and identification of VECM with long-run restrictions

are executed by the following procedure:

1. Select the lag length of VECM using some criteria such as AIC and BIC.

10By the virtue of the assumption that permanent shocks are uncorrelated mutually, we can
separate the contribution of each permanent shock.
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2. Estimate cointegrating vectors and determine the rank of cointegrating vectors

in (16.17).

3. Convert VECM to levels VAR using (16.38).

4. Impose long-run restrictions implied by economic theory11, and identify struc-

tural parameters using (16.30) and (16.31).

5. Compute impulse responses to a structural shock using (16.41).

6. Compute forecast-error variance decompositions using (16.45) and (16.49).

7. Compute confidence intervals of impulse responses and standard errors of forecast-

error variance decompositions using Monte Carlo integration as described in

Appendix 16.B.

16.4 Structural Vector Error Correction Models

In this section, we introduce ECM. Let yt be an n-dimensional vector of first difference

stationary and stationary random variables. Let ℓi = (0, ...0, 1, 0, ...0)′ with 1 on the

ith element. If the ith element of yt is stationary, then ℓiyt is stationary. When a time

series includes stationary variables, we extend the definition of cointegration, and say

that yt is cointegrated with ℓi as a cointegrating vector. Suppose that yt has a VAR

representation

yt = δϵ +A1yt−1 +A2yt−2 + · · ·+Apyt−p + ϵt.(16.51)

11For example, one may adopt a long-run restriction that a monetary shock does not affect the
level of real output.
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where δϵ is an n × 1 vector. Just as in Said-Dickey’s reparameterization for the

univariate case, it is convenient to reparameterize Equation (16.51) as

∆yt = δϵ −A(1)yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.52)

where

A(1) = In −
p∑

j=1

Aj and A∗
i = −

p∑
j=i+1

Aj for i = 1, 2, · · · , p− 1.(16.53)

This reparameterization is convenient because −A(1) summarizes the long-run prop-

erties of the series. We assume that there exist r linearly independent cointegrating

vectors, so that β′yt−1 is stationary, where β
′ is a r×n matrix of real numbers whose

rows are linearly independent cointegrating vectors. Then −A(1) = αβ′ for an n× r

matrix of real numbers, α. Hence Equation (16.52) can be written as

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.54)

This representation is called an ECM.

In many applications of standard ECMs, elements in α are given structural

interpretations as parameters of the speed of adjustment toward the long-run equi-

librium represented by β′yt−1. It is of interest to study conditions under which the

elements in α can be given such a structural interpretation. In the model of the next

section, the domestic price level gradually adjusts to its PPP level with a speed of ad-

justment parameter b. We will investigate conditions under which b can be estimated

as an element in α from (16.54).

The standard ECM, (16.54), is a reduced form model. A class of structural

models can be written in the following form of a structural ECM:

B0∆yt = µ∗ +α∗β′yt−1 +B1∆yt−1 + · · ·+Bp−1∆yt−p+1 + et,(16.55)
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where Bi is an n× n matrix, µ∗ is an n× 1 vector, and α∗ is an n× r matrix of real

numbers. Here B0 is a nonsingular matrix of real numbers with ones along its prin-

cipal diagonal, and et is a stationary n-dimensional vector of random variables with

Ê[et|Ht−τ ] = 0, where τ > 0. Even though cointegrating vectors are not unique, we

assume that there is a normalization that uniquely determines β, so that parameters

in α∗ have structural meanings.

In order to see the relationship between the standard ECM and the structural

ECM, we premultiply both sides of (16.55) by B−1
0 to obtain the standard ECM

(16.54), where δϵ = B−1
0 µ∗,α = B−1

0 α∗,A∗
i = B−1

0 Bi, and ϵt = B−1
0 et. Thus the

standard ECM estimated by Engle and Granger’s two step method or Johansen’s

(1988) Maximum Likelihood method is a reduced form model. Hence it cannot be

used to recover structural parameters in α∗, nor can the impulse-response functions

based on ϵt be interpreted in a structural way unless some restrictions are imposed

on B0.

As in a VAR, various restrictions are possible for B0. One example is to assume

that B0 is lower triangular. If B0 is lower triangular, then the first row of α is equal

to the first row of α∗, and structural parameters in the first row of α∗ are estimated

by the standard methods to estimate an ECM.

16.5 An Exchange Rate Model with Sticky Prices

This section presents a simple exchange rate model in which the domestic price adjusts

slowly toward the long-run equilibrium level implied by Purchasing Power Parity

(PPP). Kim, Ogaki, and Yang (2007) use this model to motivate a particular form

of a structural ECM in the previous section. This model’s two main components
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are a slow adjustment equation and a rational expectations equation for the exchange

rate. The single equation method is only based on the slow adjustment equation. The

system method utilizes both the slow adjustment and rational expectations equations.

A similar method was applied to an exchange rate model with the Taylor rule by Kim

and Ogaki (2009).

Let pt (p
∗
t ) be the log domestic (foreign) price level, and et be the log nominal

exchange rate. We assume that these variables are first difference stationary and PPP

holds in the long-run, so that the real exchange rate, pt − p∗t − et, is stationary,

or yt = (pt, et, p
∗
t )

′ is cointegrated with a cointegrating vector (1, -1, -1). Let µ

= E[pt − p∗t − et], then µ can be nonzero when different units are used to measure

prices in the two countries.

Using Mussa’s (1982) model, the domestic price is assumed to adjust slowly to

the PPP level

(16.56) ∆pt+1 = b(µ+ p∗t + et − pt) + Et[p
∗
t+1 + et+1]− (p∗t + et)

where ∆xt+1 = xt+1 − xt for any variable xt, E[· |It] is the expectation operator

conditional on It, the information available to the economic agents at time t, and a

positive constant b (0 ≤ b ≤ 1) is the adjustment coefficient. The idea behind (3) is

that the domestic price slowly adjusts toward its PPP level of p∗t +et, while it adjusts

instantaneously to the expected change in its PPP level. The adjustment speed is

slow (fast) when b is close to zero (one). From (3),

(16.57) ∆pt+1 = d+ b(p∗t + et − pt) + ∆p∗t+1 +∆et+1 + εt+1

where d = bµ , εt+1 = Et[p
∗
t+1 + et+1] − (p∗t+1 + et+1). Hence εt+1 is a one-period

ahead forecasting error, and E[εt+1|It] = 0. (4) can be referred to as the structural
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gradual adjustment equation which implies a first order AR structure for the real

exchange rate. To see this, let st = p∗t + et − pt be the log real exchange rate. Then

(4) implies

(16.58) st+1 = − d+ (1− b)st − εt+1

We define the half-life of the real exchange rate as the number of periods required for

a unit shock to dissipate by one half in (5). Without measurement errors, b can be

estimated by OLS directly from (4). In the presence of measurement errors, IV are

necessary.

Let the money demand equation and the Uncovered Interest Parity (UIP) con-

dition be

(16.59) mt = θm + pt − hit

(16.60) it = i∗t + E[et+1|It]− et

where mt is the log nominal money supply minus the log real national income, it (i
∗
t )

is the nominal interest rate in the domestic (foreign) country. In (6), we are assuming

that the income elasticity of money is one. From (6) and (7),

(16.61) E[et+1|It]− et = (1/h){θm + pt − ωt − hE[(p∗t+1 − p∗t )|It]}

where ωt = mt + hr∗t and r∗t is the foreign real interest rate, r∗t = i∗t −E[p∗t+1|It] + p∗t .

Following Mussa (1982), solving (3) and (8) as a system of stochastic difference

equations

(16.62) pt = E[Ft|It−1]−
∞∑
j=1

(1− b)j{E[Ft−j|It−j]− E[Ft−j|It−j−1]}
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(16.63) et =
bh+ 1

bh
E[Ft|It]− p∗t −

1

bh
pt

where Ft = (1−δ)
∑∞

j=0 δ
jωt+j and δ = h/(1+h). We assume that ωt is first difference

stationary. Since δ is a positive constant that is smaller than one, this implies that

Ft is also first difference stationary. From (9) and (10), et+p∗t −pt =
bh+1
bh

∑∞
j=0(1−

b)j{E[Ft−j|It−j]− E[Ft−j|It−j−1]}, which means et + p∗t − pt is stationary.
7

For a structural ECM representation from the exchange rate model, we use

Hansen and Sargent’s (1980; 1982) formula for linear rational expectations models.

From (16.63),

(16.64) ∆et+1 =
bh+ 1

bh
(1− δ)E[

∞∑
j=0

δj∆ωt+j+1|It]−
1

bh
∆pt+1 −∆p∗t+1 + εe,t+1

where εe,t+1 =
bh+1
bh

[E(Ft+1|It+1)−E(Ft+1|It)], so that the law of iterated expectation

implies E[εe,t+1|It] = 0. The system method using Hansen and Sargent’s (1982)

method is applicable because this equation involves a discounted sum of expected

future values of ∆ωt.

Hansen and Sargent’s (1982) method can be applied to this model by projecting

the conditional expectation of the discounted sum, E[δj∆ωt+j+1|It], onto an econo-

metrician’s information set Ht. We take the econometrician’s information set at t,

Ht, to be the one generated by linear functions of current and past values of ∆p∗t . For

simplicity, we follow West (1987) in that we choose a single variable to generate the

information set Ht. In terms of the orthogonality condition, any variable in It can

be used for this purpose.8 Replacing E[
∑∞

j=0 δ
j∆ωt+j+1|It] by the econometrician’s

linear forecast based on Ht in (11), we obtain

(16.65) ∆et+1 =
bh+ 1

bh
(1− δ)Ê[

∞∑
j=0

δj∆ωt+j+1|Ht]−
1

bh
∆pt+1 −∆p∗t+1 + u2,t+1
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where u2,t+1 = εe,t+1 +
bh+1
bh

(1 − δ)E[(
∑∞

j=0 δ
j∆ωt+j+1|It) − Ê(

∑∞
j=0 δ

j∆ωt+j+1|Ht)]

and Ê[u2,t+1|Ht] = 0. Following Hansen and Sargent (1980, 1982) we obtain (See

appendix A.)

(16.66) Ê[
∞∑
j=0

∆ωt+j+1|Ht] = ξ1∆p∗t + ξ2∆p∗t−1 + ...+ ξp∆p∗t−p+1

A system of four equations will be9:

(16.67) ∆pt+1 = d+∆p∗t+1 +∆et+1 − b(pt − p∗t − et) + u1,t+1

(16.68) ∆et+1 = − 1

bh
∆pt+1−∆p∗t+1+αξ1∆p∗t +αξ2∆p∗t−1+ ...+αξp∆p∗t−p+1+u2,t+1

(16.69) ∆p∗t+1 = β1∆p∗t + β2∆p∗t−1 + ...+ βp∆p∗t−p+1 + u3,t+1

(16.70) ∆ωt+1 = γ1∆p∗t + γ2∆p∗t−1 + ...+ γp−1∆p∗t−p+2 + u4,t+1

where α = bh+1
bh

(1− δ) and u1,t+1 = εt+1 with a set of nonlinear restrictions imposed

by (16.66),

ξ0 = γ(δ)[1− δβ(δ)](16.71)

ξj = δγ(δ)[1− δβ(δ)]−1(βj+1 + δβj+1 + ...+ δp−jβp) + (γj + δγj + ...+ δp−jγp)

for j = 1, ..., p. We call (16.67) the gradual adjustment equation, and (16.68)-(16.70)

the Hansen and Sargent equations. Given the data for [∆pt+1, ∆et+1,∆p∗t+1,∆ωt+1]
′,

GMM can be applied to the system of four equations, (14)-(17).10

It is instructive to observe the relationship between the structural ECM and

the reduced form ECM in the exchange rate model (See appendix B.). Comparing

G and B shows that the speed of adjustment coefficient for the domestic price is
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b in the structural model, while it is b2h/(bh + 1) in the reduced form model. b

in the structural form is not a deep structural parameter, unlike parameters of a

production function or a utility function. However, it is clearly a parameter of

interest because it determines the half-life of the real exchange rate. The reduced

form speed of adjustment coefficient is a nonlinear function of b, and thus cannot be

directly compared with the half-life estimates in the literature.

16.6 The System Method

Since standard methods of estimating (16.54) may not recover the structural param-

eters of interest in α∗, Kim, Ogaki, and Yang (2001) propose a system method based

on GMM that does not require restrictions on B0.

To apply the system method to (14)-(17) of the exchange rate model, we need

data for ∆ωt, which requires knowledge of h. Even though h is unknown, a cointe-

grating regression can be applied to money demand if money demand is stable in the

long-run, as in Stock and Watson (1993). For this purpose, we augment the model

as follows:

(16.72) mt = θm + pt − hit + ζm,t

where ζm,t is assumed to be stationary so that money demand is stable. By redefining

mt as mt − ζm,t, the same equations as those in section 3.2 are obtained. For the

measurement of ∆ωt, the ex ante foreign real interest rate can be replaced by the ex

post value because of the Law of Iterated Expectations. Using (16.72), we obtain

(16.73) ∆ωt+1 = ∆pt+1 − h∆it+1 + h∆i∗t+1 − h(∆p∗t+2 −∆p∗t+1)

With this expression, ∆ωt can be measured from price and interest rate data once h is
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obtained, even if data for the monetary aggregate and national income are unavailable.

We have now obtained a system of four equations, (16.67)-(16.70). Because

E[ui,t|It−τ ] = 0 and Ê[ui,t|Ht] = 0, we obtain a vector of IV z1,t in It−τ for u1,t and zi,t

in Ht for ui,t (i = 2, 3, 4).11 Using the moment conditions E[zi,tui,t] = 0 for i = 1, ..., 4

we form a GMM estimator, imposing the Hansen-Sargent restrictions and the other

cross-equation restrictions implied by the model.12 Given estimates of cointegrating

vectors from the first step, this system method provides more efficient estimators than

Kim’s (2004) single equation method as long as the restrictions implied by the model

are true.13 The cross-equation restrictions can be tested by Wald, Likelihood Ratio

(LR) type, and Lagrange Multiplier (LM) tests in the GMM framework (see Ogaki,

1993). When restrictions are nonlinear, LR and LM tests are known to be more

reliable than Wald tests.

16.7 Tests for the Number of Cointegrating Vec-

tors

Johansen’s (1988; 1991) maximum likelihood (ML) estimation is based on an error

correction representation:

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.74)

where yt and ϵt are n× 1 vectors of random variables, α and β are n× r matrices of

real numbers, and A∗
i ’s are n × n matrices of real numbers. The first term αβ′yt−1

is called an error correction term.12 Engle and Granger (1987) show that first differ-

ence stationary yt has a possibly infinite order error correction representation with a

12Johansen uses an error correction term αβ′yt−p instead of more conventional αβ′yt−1. However,
these two representations can be shown to be equivalent.



16.7. TESTS FOR THE NUMBER OF COINTEGRATING VECTORS 431

nonzero α under general regularity conditions if yt is cointegrated with r linear inde-

pendent cointegrating vectors. The columns of β are these cointegrating vectors. It

should be noted that Johansen’s assumption that the error correction representation

of finite order can be very restrictive in some applications. For example, Gregory, Pa-

gan, and Smith (1993) show that linear quadratic economic models with adjustment

costs imply moving average terms in the error correction representation. Phillips’s

(1991) ML estimation method may be useful in these circumstances.

Johansen makes an additional assumption that ϵt is normally distributed and

derives a maximum likelihood estimator for β. In his procedure, all parameters are

jointly estimated and his estimators are asymptotically efficient. Another way to es-

timate an error correction representation is to use Engle and Granger’s (1987) two

step estimation method. In the first step, cointegrating vectors are estimated. For

example, if there is only one linear independent cointegrating vector, it can be esti-

mated by OLS. Other efficient estimators may be used in this first step. Then the rest

of the parameters in the error correction representation are estimated in the second

step. Since cointegrating vector estimators converge faster than
√
T , the first step

estimation does not affect the asymptotic distributions of the second step estimators.

In the second step, only stationary variables are involved, so standard econometric

theory can be used. See 16.C for Johansen’s maximum likelihood estimation and the

cointegration rank test for detail.

Johansen’s (1988; 1991) likelihood ratio tests and Stock and Watson’s (1988a)

tests for common trends are often used to determine the number of cointegrating

vectors in a system. These tests take the null hypothesis that a n×1 vector process yt

has r ≥ 0 linear independent cointegrating vectors (or it has n−r common stochastic
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trends) against the alternative that it has k > r linear independent cointegrating

vectors (or it has n − k common stochastic trends). Hence if r = 0, these statistics

test the null hypothesis of no cointegration against the alternative of cointegration.

Podivinsky’s (1998) Monte Carlo results suggest that there can be severe size

distortion problem with Johansen’s tests when the sample size is small. For example,

when there is no cointegrating vector in the data generation process and when asymp-

totic critical values are used, he finds a tendency for the test with the null hypothesis

of r = 0 to overreject and the test with the null hypothesis of r ≤ 1 to underreject.

16.8 How Should an Estimation Method be Cho-

sen?

There exist many estimation and testing methods for cointegration. It is advisable

for an applied researcher to try at least two methods and check sensitivity of empir-

ical results. When the researcher chooses a main method to be used, the following

considerations naturally come to mind.

16.8.1 Are Short-Run Dynamics of Interest?

If, in addition to cointegrating vectors, the short-run dynamics are of interest, then

it seems (at least conceptually) natural to estimate short-run dynamics and cointe-

grating vectors simultaneously. For example, this process can be done by applying

Johansen’s ML method to estimate an error correction model.

On the other hand, the researcher is often interested in the cointegrating vec-

tor but not in short-run dynamics (see, e.g., Atkeson and Ogaki, 1996; Clarida, 1994,

1996; Ogaki, 1992). In such cases, it is desirable to avoid making unnecessary assump-

tions about short-run dynamics. An estimation method that uses a nonparametric
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method to estimate long-run covariance parameters such as CCR is natural in these

circumstances.

16.8.2 The Number of the Cointegrating Vectors

In some empirical applications, the researcher may have many economic variables

and may not have any guidance from economic models about which variables may be

cointegrated. In such applications, tests for the number of cointegrating vectors are

useful. It should be noted, however, that these tests may not have very good small

sample properties because of the near observational equivalence problem discussed in

Section 13.5. For this reason, it is desirable to use economic models to give some a

priori information about which variables should be cointegrated.

In some applications, an economic model implies that there exist two or more

linearly independent cointegrating vectors. In this case of multiple cointegrating vec-

tors in a cointegrating regression, neither OLS nor CCR can be used to identify coin-

tegrating vectors. Tests for the null of cointegration based on CCR discussed above

also assume that there is only one cointegrating vector and hence cannot be used.

However, it is sometimes possible to use a priori information from economic models

to handle multiple cointegrating vectors with the CCR methodology.13 Johansen’s

ML method has an advantage that it allows multiple cointegrating vectors. However,

as pointed out by Park (1990) and Pagan (1995) among others, cointegrating vectors

may not be identified even by the Johansen’s ML method.

13See Kakkar and Ogaki (1993) for an example of an empirical application.
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16.8.3 Small Sample Properties

It is known that Johansen’s ML estimates and test results can be very sensitive to

the choice of the order of autoregression in empirical applications (see, e.g., Stock

and Watson, 1993). Therefore, it is important to check sensitivity of empirical results

with respect to the order of autoregression when Johansen’s method is used. This

sensitivity may be related to the fact that Johansen’s estimator for a normalized

cointegrating vector has a very large mean square error when the sample size is small

(see Park and Ogaki, 1991). Gonzalo (1993) also reports this property even though

he emphasizes that Johansen’s estimator has good small sample properties when the

sample size is increased. Podivinsky’s (1998) result that Johansen’s likelihood ratio

tests have severe size distortion problems in some circumstances discussed in Section

16.7 may be due to these observations.

Park and Ogaki (1991) find that the CCR estimator typically has smaller mean

square errors than Johansen’s ML estimator when the prewhitening method is used.

Han and Ogaki (1991) find that Park’s tests for the null of cointegration have rea-

sonable small sample properties.

To improve small sample properties of CCR estimators, iterations on the esti-

mation of the long-run covariance parameters are recommended. In empirical appli-

cations of CCR, OLS is typically used as an initial estimator. Since OLS coincides

with CCR when there is no correlation between the disturbance term and the first

difference of the regressors at all leads and lags, the initial OLS may be called the first

stage CCR. The second stage CCR is obtained from the long-run covariance parame-

ters calculated from the first stage CCR estimates. The third stage CCR is obtained

from the long-run covariance parameters calculated from the second stage CCR es-



16.A. ESTIMATION OF THE MODEL WITH LONG-RUN RESTRICTIONS 435

timates, and so on. Park and Ogaki (1991) report that the small sample properties

of the third stage CCR estimator are typically better than those of the second stage

CCR estimator. On the other hand, the fourth stage CCR estimator sometimes had

a significantly larger mean square error. For Park’s tests for the null of cointegration

to be consistent, it is necessary to bound both the eigenvalues of the VAR prewhiten-

ing coefficient matrices and the bandwidth parameter estimate. For example, while

using the first order VAR for prewhitening, Han and Ogaki (1991) bound the singular

values of the VAR coefficient matrix by 0.99 and the bandwidth parameter by the

square root of the sample size. When the variables are cointegrated, the CCR estima-

tors have better small sample properties without these bounds. Consequently, they

recommend reporting the third stage CCR estimates without the bounds imposed

and the fourth stage CCR test results with the bounds imposed.

Appendix

16.A Estimation of the Model with Long-Run Re-

strictions

The three variable model in KPSW highlights a real-business-model with permanent

productivity shocks. Under the assumption of constant returns to scale, a production

function with stochastic trends can be described as

yt = log λt + 1− θkt(16.A.1)

log λt = µλ + log λt−1 + ξt(16.A.2)

where yt and kt denote output per capita and capital stock per capita, respectively,

in logarithms. Total productivity, λt, follows a logarithmic random walk, and ξt
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is iid with mean zero and variance σ2. Let ct and it be consumption per capita

and investment per capita, respectively. In the steady state, output, consumption

and investment have the same growth rate of µλ+ξt
θ

which can be interpreted as a

common stochastic trend. Thus, the ‘great ratios’, ct−yt and it−yt, follow stationary

stochastic processes, implying yt, ct and it are cointegrated with one common trend,

or equivalently, with two cointegrating relations. Therefore, there exists only one

permanent innovation, vk1t that can be interpreted as a productivity shock, ξt. Let

xt = (yt, ct, it)
′, then Φ(1) in (16.25) becomes

Φ(1) =

 1 0 0
1 0 0
1 0 0

(16.A.3)

Since Φ(1) is normalized, the first column in 16.A.3 captures the long run effects of

a unit shock of v1t .
14 It is straightforward to estimate structural parameters following

a scheme described in Section 16.3.1 where k = 1, Â = (1 1 1)′ and Π = 1.

To incorporate nominal shocks, a six-variable model is considered in KPSW.

First, money demand has the following relation

mt − pt = βyyt − βRRt + ut(16.A.4)

where mt − pt is the logarithm of real balances, Rt is the nominal interest rate, and

ut is the money-demand disturbance. Second, the Fisher equation is considered to

introduce nominal shocks

Rt = rt + Et∆pt+1(16.A.5)

where rt is the ex ante real interest rate and pt is the logarithm of the price level. Six

variables (yt, ct, it,mt − pt, Rt,∆pt) follow an I(1) process and exhibit cointegrating

14vk1t is equal to
ξt
θ so that standard deviation of vk1t is equal to

σ
θ .
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relationships. It has already been shown that there are two cointegrating relations

among three variables (yt, ct, it). An additional cointegrating relationship is captured

by the money demand equation in (16.A.4) provided that money-demand disturbance

is stationary. Consequently, there exist three cointegrating relationships, reflecting

that the system can be described by three stochastic common trends. Letting xt =

(yt, ct, it,mt − pt, Rt,∆pt)
′, three permanent shocks consist of a real balance shock, a

neutral inflation shock, and a real interest shock so that A is constructed as

A = ÂΠ =


1 0 0
1 0 ϕ1

1 0 ϕ2

βy −βR −βR

0 1 1
0 1 0


 1 0 0

π21 1 0
π31 π32 1

(16.A.6)

KPSW assumed Â to be known, and constructed the parameters in Â by the esti-

mates from Dynamic OLS in each cointegrating equation. It is notable that these two

cointegrating relationships are used as c− y = ϕ1(R −∆p) and i− y = ϕ2(R −∆p)

provided that the real interest rate follows a nonstationary process. This assump-

tion implies that the ‘great ratios’ exhibit permanent shifts from a permanent real

interest shock.15 The issue on nonstationarity of real interest is in order. The null

hypothesis that the ex post real interest rate16 has a unit root is investigated using

the Dickey-Fuller test, and is not rejected at the 10% significance level. This model

is a benchmark in KPSW.

This property, in turn, implies that ϕ1 and ϕ2 are zero since regression of the

I(0) variable on the I(1) variable gives the estimate of zero from the theoretical

15A higher real interest rate raises the consumption-output ratio and lowers the investment-output
ratio, which implies that ϕ1 is positive and ϕ2 is negative.

16Three nominal interest rates are used in King et al. (1989); three month U.S. Treasury bills,
an average rate on four to six month commercial paper, and the yield on a portfolio of high-grade
longer term corporate bonds.
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viewpoint.17 KPSW also investigate sensitive analysis other than the benchmark

model. First, the coefficients, ϕ1 and ϕ2, are set equal to zero. This modification,

however, does not affect the main results in the benchmark model. Second, assuming

that real interest rates are stationary, a model with four cointegrating relationships

is considered, where two stochastic common trends are interpreted as a real balance

shock and a neutral inflation shock. In this case, Â is constructed as

Â =


1 0
1 0
1 0
βy −βR

0 1
0 1

(16.A.7)

The main conclusions, however, in the benchmark model are still robust after this

modification.

This section explains how we can construct Â from the estimates of cointegrat-

ing vectors. Engle and Granger (1987) showed:

β′Ψ(1) = 0,(16.A.8)

which by the property of cointegration implies that β′xt is stationary. It follows from

Φ(1) = Ψ(1)Φ0 and (16.25) that

β′A = 0 or β′Â = 0.(16.A.9)

This property enables one to choose Â = β⊥ after re-ordering xt conformably with

β⊥, in which β⊥ is an n× k orthogonal matrix of cointegrating vectors, β, satisfying

β′β⊥ = 0. Johansen (1995) proposed a method to choose β⊥ by:

β⊥ = (In − S(β′S)−1β′)S⊥,(16.A.10)

17ϕ1 and ϕ2 are estimated as 0.0033(0.0022) −0.0028(0.0050), respectively, where values in paren-
theses are standard errors, implying coefficients are not significantly different from zero.
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where S is an n × r selection matrix, (Ir 0)′, and S⊥ is an n × k selection matrix,

(0 Ik)
′. Note that β is identified up to the space spanned by α and β. This con-

dition does not necessarily mean that each cointegrating vector is identified, because

αβ′ = αFF−1β′ = α̃β̃
′
, i.e., any linear combination of each cointegrating vector is

a cointegrating vector. The model does not require the identification of each cointe-

grating vector. Park (1990) argues that the identification condition is not required a

priori but is necessary for proper interpretation of the estimated results.

Since β⊥ is normalized so that the last k × k submatrix is an identity matrix,

one should re-arrange the variables xt conformably in order to maintain Blanchard

and Quah (1989)-type long-run restrictions. Alternatively, one may re-normalize β⊥

as shown below. Consider the six-variable model in KPSW, for instance. Let xt

be (yt, ct, it,mt − pt, Rt,∆pt)
′, in which mt − pt is the logarithm of the real balance,

Rt is the nominal interest rate, and pt is the logarithm of the price level. KPSW

noted that there are three permanent shocks: a real balanced growth shock, a neutral

inflation shock, and a real interest shock. We impose long-run restrictions that a

neutral inflation shock has no long-run effect on output, and that a real interest rate

shock has no long-run effect on either output or the inflation rate. These restrictions

imply a specific form of β̂⊥ as in:

A = β̂⊥Π =


1 0 0
× × ×
× × ×
× × ×
0 0 1
0 1 0


 1 0 0

π21 1 0
π31 π32 1

 ,(16.A.11)

where × denotes that those parameters are not restricted other than β′β̂⊥ = 0. From
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A = ÂΠ, we can choose Â using:18

Â = β̂⊥.(16.A.12)

16.B Monte Carlo Integration

The literature on confidence intervals for impulse response estimates is well explained

by Kilian (1998), which can be categorized by the following three traditional meth-

ods: the asymptotic interval method (see Lütkepohl, 1990), the parametric Monte

Carlo integration method (see Doan, 1992; Sims and Zha, 1999), and the nonpara-

metric bootstrap interval method (see Runkle, 1987). We provide the Monte Carlo

integration method used in KPSW.19

It is convenient to rewrite the reduce-form VECM in (16.17) as:

∆x′
t = δ′

ϵ + x′
t−1βα

′ +

p−1∑
i=1

∆x′
t−iA

∗′
i + ϵ′t(16.B.13)

= X′
tθ + ϵ′t

where X′
t = (1,x′

t−1β,∆x′
t−1, · · · ,∆x′

t−p+1), and θ′ = (δϵ,α,A∗
1, · · · ,A∗

p−1). Stack-

ing (16.B.13) for t = 1, · · · , T , the model is represented by the following matrix form:

Y = Xθ +U(16.B.14)

Assuming that ut is i.i.d. and normally distributed, Zellner (1971) finds thatΣ follows

the Normal-inverse Wishart posterior distribution, with the prior, f(vec(θ),Σ) ∼

|Σ|−n+1
2 :

Σ−1 ∼ Wishart((TΣ0))
−1, T ) with given Σ0,(16.B.15)

18KPSW, instead, assume that Â is known a priori, which is estimated by dynamic OLS in each
cointegrating equation.

19Kilian (1998) examines the accuracy of these confidence intervals in the small samples, and
proposes the bootstrap-after-bootstrap method. He finds from Monte Carlo simulations that his
method is the best, the Monte Carlo integration method is the second best, the asymptotic interval
is the third, and the standard bootstrap interval method is the worst.
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and

θ ∼ N(θ0,Σ⊗ (X′X)−1),(16.B.16)

where θ0 and Σ0 are the estimates of θ and Σ, respectively, from OLS or MLE.

The algorithm for estimating confidence intervals of impulse responses is as

follows:

1. Estimate (16.17) and let β0, θ0 and Σ0 be these estimates.

2. Let A be a lower triangular matrix of Choleski decomposition of (X′X)−1.

3. Let S−1 be a lower triangular matrix of Choleski decomposition of Σ−1
0 .

4. Generate n× T random numbers, wb, from the normal distribution, N(0, 1
T
).

5. Generate (n(p− 1)+ r+1)×n random numbers, ub, from the standard normal

distribution, N(0, 1).

6. Let rb = w′
bS

−1, and get Σ−1
b = r′brb.

7. Let Sb be a lower triangular matrix of Choleski decomposition of Σb.

8. Let θ = θ0 + eb, in which eb = AubS
′
b. Then, θ ∼ N(θ0,Σb ⊗ (X′X)−1).20

9. Draw impulse responses, irb, as described in Section 16.3.3.

20Note that var(eb) = var(vec(eb)) = var((Sb ⊗ A)vec(ub)) = SbS
′
b ⊗ AA′ = Σb ⊗ (X′X)−1.

RATS uses vec(eb) = (Sb ⊗ In(p−1)+r+1)vec(Aub), which is the same as what this text uses. Note
that (Sb ⊗A)vec(ub) = vec(AubS

′
b) = (Sb ⊗ In)vec(Aub), in which vec(ABC) = (C′ ⊗A)vec(B)

is used for transformation.
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10. Repeat 4 ∼ 9, B times, and calculate 95% upper and lower bands of impulse

responses using21

Upper =
1

B

B∑
b=1

irb + 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2(16.B.17)

and

Lower =
1

B

B∑
b=1

irb − 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2 .(16.B.18)

16.C Johansen’s Maximum Likelihood Estimation

and Cointegration Rank Tests

To see Johansen’s method in detail, consider the VAR(p) model

yt = δϵ +A1yt−1 + · · ·+Apyt−p + ϵt,(16.C.19)

where yt is an n × 1 vector of variables assumed to be I(1). If yt is cointegrated,

then there exists the following VECM representation proposed by Engle and Granger

(1987):

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.20)

where α and β have full column rank of r, the number of cointegrating vectors.

We can concentrate on α and β from a partial regression:

Regress ∆yt on 1,∆yt−1, · · · ,∆yt−p+1 → Get residuals : R0t(16.C.21)

Regress yt−1 on 1,∆yt−1, · · · ,∆yt−p+1 → Get residuals : Rkt(16.C.22)

Then, we have a concentrated regression:

R0t = αβ′Rkt + ϵt(16.C.23)

21Note that we fix cointegrating vectors, β, and generate parameters from a normal distribution,
N(θ0,Σb ⊗ (X′X)−1). Note also that we do not update S.
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For notational convenience, let

Sij =
1

T

T∑
t=1

RitR
′
jt, i, j = 0, k(16.C.24)

Note that α can be easily estimated from (16.C.23) provided that β is known:

α̂′ = (β′R′
kRkβ)

−1β′R′
kR0(16.C.25)

= (β′Skkβ)
−1β′Sk0.

Johansen (1988) estimates β using MLE. Consider MLE for

Y = XB +U, ut ∼ N(0,Σ).(16.C.26)

Then, the log likelihood of (16.C.26) is

logL = −T

2
log 2π − T

2
log |Σ| − 1

2
(Y −XB)′Σ−1(Y −XB)(16.C.27)

The FOC of (16.C.27) for Σ is:

Σ̂ =
1

T
(Y −XB)′(Y −XB)(16.C.28)

Plug (16.C.28) in (16.C.27), then we get a concentrated likelihood:

logL = constant− T

2
log |Σ̂|,(16.C.29)

which is proportional to

Lmax = |Σ̂|−
T
2 .(16.C.30)

Let L(β) = |Σ̂|−T
2 . Then,

|L(β)|−
2
T = |Σ̂|(16.C.31)

= | 1
T
(R0 −Rkβα

′)′(R0 −Rkβα
′)|

= | 1
T
(R0R0 −αβ′R′

kRkβα
′)|

= |S00 − S0kβ(β
′Skkβ)

−1β′Sk0|
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So,

max
β

L(β) ⇔ min
β

|S00 − S0kβ(β
′Skkβ)

−1β′Sk0|(16.C.32)

⇔ min
β

|β′Skkβ − β′Sk0S
−1
00 S0kβ|

|S00|
|β′Skkβ|

⇔ max
β

|β′Skkβ|
|β′(Skk − Sk0S

−1
00 S0k)β|

1

|S00|

At the second line, we use the following formula:∣∣∣∣ A B
C D

∣∣∣∣ = |A| |D−CA−1B| = |D| |A−BD−1C|(16.C.33)

Thus,

|A−BD−1C| = |D−CA−1B| |A|
|D|

,(16.C.34)

where A = S00,B = S0kβ,C = β′Sk0, and D = β′Skkβ. Note also that FOC for

max
x

x′Ax

x′Bx
(≡ λ)(16.C.35)

is

(A− λB)x = 0,(16.C.36)

where λ is an eigenvalue, and x is an eigenvector. Therefore, (16.C.32) becomes an

eigenvalue problem. Let

λ0 = max
β

|β′Skkβ|
|β′(Skk − Sk0S

−1
00 S0k)β|

.(16.C.37)

Then, the FOC is

(Skk − λ0(Skk − Sk0S
−1
00 S0k))β = 0(16.C.38)

⇔ ((1− λ0)Skk + λ0(Sk0S
−1
00 S0k))β = 0

⇔ (λ0(Sk0S
−1
00 S0k)− (λ0 − 1)Skk)β = 0

⇔ (Sk0S
−1
00 S0k − (1− 1

λ0

)Skk)β = 0

⇔ (Sk0S
−1
00 S0k − λSkk)β = 0,
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where λ = 1 − 1
λ0
. Note that λ and β are an eigenvalue and an eigenvector of

S−1
kk Sk0S

−1
00 S0k, respectively. Therefore, our maximization problem is reduced to find

an eigenvalue and eigenvector of S−1
kk Sk0S

−1
00 S0k.

Having estimated the model, we can construct the cointegration rank tests as

follows. From (16.C.30), (16.C.32) and (16.C.37), we get

|Lmax(β)|−
2
T = |S00|

r∏
i=1

1

λ0i

(16.C.39)

Lmax(β) = −T

2
|S00|

r∏
i=1

(1− λi)(16.C.40)

Therefore, we get the LR test (or Trace test) as:

LR = −2 log
Lmax(H0 = r)

Lmax(H1 = n)
(16.C.41)

= −T
n∑

i=r+1

log(1− λi)

and the maximum eigenvalue test (or λmax test) as:

λmax = −2 log
Lmax(H0 = r)

Lmax(H1 = r + 1)
(16.C.42)

= −T log(1− λr+1).

Note that the alternative hypothesis is different in each test. For large values of

test statistics, we reject the null hypothesis that there exist r cointegrating vectors,

H0 = r. Johansen (1995) gives the critical values, and Osterwald-Lenum (1992)

provides revised critical values.

Johansen (1995) considers five models with respect to data properties as well as

cointegrating relations as follows: i) a model with a quadratic trend in yt (hflag=1):

∆yt = δϵ + ρ0t+αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.43)
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ii) a model with a linear trend in yt (hflag=2), in which deterministic cointegration

is not satisfied:

∆yt = δϵ + ρ0t+αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.44)

iii) a model with a linear trend in yt (hflag=3), in which deterministic cointegration

is satisfied (cotrended):

∆yt = δϵ +α(β′yt−1 + ρ1t) +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.45)

iv) a model with no trend in yt (hflag=4):

∆yt = α(β′yt−1 + ρ0) +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.46)

and v) a model with no trend in yt (hflag=5):

∆yt = αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt.(16.C.47)

Johansen (1995) illustrates how to estimate restricted cointegrating vectors.

Consider a trivariate model with two cointegrating vectors. Let yt = (y1t,y2t,y3t)
′

and β = [β1|β2]. One may impose a restriction of β11 = β13 using H1φ1 = β1 and

H2φ2 = β2, where Hi is an n× (n− qi) matrix, φi is an (n− qi)× 1 matrix, and qi is

the number of restrictions on each cointegrating vector. In this particular example,

letting

H1 =

 1 0
0 1
−1 0

 , H2 = I3(16.C.48)

gives the following restrictions:

H1φ1 =

 1 0
0 1
−1 0

[
φ11

φ12

]
=

 φ11

φ12

−φ11

 =

 β11

β12

β13

 .(16.C.49)



REFERENCES 447

References

Atkeson, A., and M. Ogaki (1996): “Wealth-Varying Intertemporal Elasticities of Substitution:
Evidence from Panel and Aggregate Data,” Journal of Monetary Economics, 38, 507–534.

Blanchard, O. J., and D. Quah (1989): “The Dynamic Effects of Aggregate Demand and
Supply Disturbances,” American Economic Review, 79(4), 655–673.

Campbell, J. Y., and R. J. Shiller (1988): “Interpreting Cointegrated Models,” Journal of
Economic Dynamics and Control, 12, 505–522.

Clarida, R. H. (1994): “Cointegration, Aggregate Consumption, and the Demand for Imports: A
Structural Econometric Investigation,” American Economic Review, 84(1), 298–308.

(1996): “Consumption, Import Prices, and the Demand for Imported Consumer Durables:
A Structural Econometric Investigation,” Review of Economics and Statistics, 78, 369–374.

Doan, T. A. (1992): RATS User’s Manual, Version 4. Estima, Evanston, IL.

Engle, R. F., and C. Granger (1987): “Co-Integration and Error Correction: Representation,
Estimation, and Testing,” Econometrica, 55, 251–276.

Engle, R. F., and B. S. Yoo (1987): “Forecasting and Testing in Co-Integrated Systems,”
Journal of Econometrics, 35(1), 143–159.

Fisher, L. A., P. L. Fackler, and D. Orden (1995): “Long-run Identifying Restrictions for
an Error-Correction Model of New Zealand Money, Prices and Output,” Journal of International
Money and Finance, 14(1), 127–147.
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