
Chapter 17

PANEL AND
CROSS-SECTIONAL DATA

Many recent macroeconomic applications use panel and cross-sectional data. For

example, macroeconomic hypotheses are tested in micro data sets for households,

industries, and business firms and in aggregate data sets for many countries. This

chapter focuses on econometric issues that are particularly relevant for macroeconomic

applications.

17.1 Generalized Method of Moments

This section discusses GMM from the cross-sectional average rather than from the

time series average as in Chapter 9. The method here can be applied to both cross-

sectional and panel data with many cross-sectional observations and to those with a

relatively small number of observations over time. Given cross-sectional data for xi,

let b0 be a p-dimensional vector of the parameters to be estimated, and f(xi,b) a

q-dimensional vector of functions. We refer to ui = f(xi,b0) as the disturbance of

GMM. We assume that xi is i.i.d. Consider the (unconditional) moment restrictions

E(f(xi,b0)) = 0.(17.1)
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Note that E(uiu
′
j) = 0 for i ̸= j. Suppose that a law of large numbers can be applied

to f(xi,b) for all admissible b, so that the sample mean of f(xi,b) converges to its

population mean:

lim
N→∞

1

N

N∑
i=1

f(xi,b) = E(f(xi,b))(17.2)

with probability one (or in other words, almost surely). The basic idea of GMM

estimation is to mimic the moment restrictions (17.2) by minimizing a quadratic

form of the sample means

JN(b) = { 1

N

N∑
i=1

f(xi,b)}′WN{
1

N

N∑
i=1

f(xi,b)}(17.3)

with respect to b; where WN is a positive definite matrix, which satisfies

lim
N→∞

WN = W0(17.4)

with probability one for a positive definite matrix W0. The matrices WN and W0

are both referred to as the distance or weighting matrix. The GMM estimator, bN ,

is the solution of the minimization problem (17.3). Under fairly general regularity

conditions, the GMM estimator bN is a consistent estimator for arbitrary distance

matrices. The optimal choice of the distance matrix is W0 = E(uiu
′
i)
−1.

The GMM for cross-sectional data can be applied to panel data with large N

and short T in order to allow for a general serial correlation structure. Let xit be

a random vector of economic variables for an individual i at period t and ft(xit,b)

be a q∗-dimensional vector of functions, and let uit = ft(xit,b0). Let q = Tq∗,

xi = (x′
i1, · · · ,x′

iT )
′ and f(xi,b) = (f1(xi1,b)

′, · · · , fT (xiT ,b)
′)′. In this framework,
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E(uiu
′
i) can be estimated by 1

N

∑N
i=1 uiu

′
i. Since

E(uiu
′
i) =


E(ui1u

′
i1) · · · E(ui1u

′
iT )

· ·
· ·
· ·

E(uiTu
′
i1) · · · E(uiTu

′
iT )

 ,(17.5)

where some entries of E(uiu
′
i) represent autocovariances of uit. Thus a general form

of serial correlation is allowed by stacking disturbance terms with different dates as

different disturbance terms rather than treating them as different observations of one

disturbance term. Unlike GMM for the time series average in Chapter 9, there is no

need to use kernel estimators to allow for a general form of serial correlation.

17.2 Tests of Risk Sharing

As in Chapter 7, consider an economy with a single good, in which the current and

past values of a random vector xt generate the information set It, which is available

to the economic agents. The random vector Ht = [x′
0,x

′
1, · · · ,x′

t]
′ summarizes It. Let

Prob(Ht) denote the probability of Ht. For simplicity, we assume that the economy

ends at date T , and that there exist N possible values of HT .

We assume that consumer h maximizes the lifetime utility function

Uh =
T∑
t=0

∑
Ht

Prob(Ht)β
tu(Ch

t (Ht)),(17.6)

where β is a discount factor, u(·) is the utility function, and Ch
t (Ht) is the consumption

at date t with history Ht. As a bench mark case, we assume that there exists a

complete set of contingent security markets at date 0. Assuming the existence of a

complete set of markets, we obtain

β1Prob(Ht+1)mu(Ch
t+1(Ht+1))

Prob(Ht)mu(Ch
t (Ht))

=
Pt+1(Ht+1)

Pt(Ht)
(17.7)
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which we call the state-by-state intertemporal first order condition.

The first order condition (17.7) implies that the ratio of the marginal utilities,

mu(Ch
t+1(Ht+1))

mu(Ch
t (Ht))

is identical for all consumers for all possible histories. When this con-

dition is satisfied, consumers are said to be completely risk sharing. The hypothesis

of complete risk sharing has been tested by Altug and Miller (1990), Deaton (1990),

Cochrane (1991), Mace (1991), Townsend (1994), and Hayashi, Altonji, and Kotlikoff

(1996) among others.

The implications of complete risk sharing on consumption depend on the func-

tional form of the utility function. With an isoelastic utility function, u(Ct) =
C1−α

t −1

1−α
,

mu(Ch
t ) = (Ch

t )
−α. Hence complete risk sharing implies that consumption growth,

Ch
t+1(Ht+1)

Ch
t (Ht)

, is identical for all consumers for all possible histories. With a constant

absolute risk aversion utility function, ut(Ct) = exp(αCt), mut = α exp(αCt). Hence

(17.7) implies that exp(α(Ch
t+1(Ht+1) − Ch

t (Ht))) is identical for all consumers in

all possible histories. Therefore, complete risk sharing implies that the change in

consumption is identical for all consumers.

These implications hold exactly without any errors. For tests of complete risk

sharing with household data, errors are introduced either as preference shocks or mea-

surement errors. Since measurement errors are likely to be important for household

data, we consider them.

With the isoelastic utility function, assume that consumption is measured with

multiplicative errors: Cmh
t = Ch

t e
h
t , where C

mh
t is the measured level of consumption.

Then let ϕt be the logarithm of the growth rate of consumption that is common to

all consumers: ln(Ch
t+1) − ln(Ch

t ) = ϕt. Substituting ln(Ch
t ) = ln(Cmh

t ) − ln(eht ) into
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this equation, we obtain

ln(Cmh
t+1)− ln(Cmh

t ) = ϕt + eht ,(17.8)

where eht = − ln(eht+1) + ln(eht ). Consider the regression

ln(Cmh
t+1)− ln(Cmh

t ) = bdt + xh′
t a+ eht ,(17.9)

where dt is a time dummy and xh
t contains variables that are uncorrelated with the

logarithm of the measurement error in consumption. Typically, income growth of

consumer h is used as xh
t . Wealth, unemployment, and sickness are other examples.

The null hypothesis of complete risk sharing can be tested by testing a = 0.

With the exponential utility function, assume that consumption is measured

with additive errors: Cmh
t = Ch

t +eht , where C
mh
t is the measured level of consumption.

Then let ϕt be the common first difference of consumption. Then

Cmh
t+1 − Cmh

t = ϕt + eht ,(17.10)

where eht = −eht+1 + eht . Consider the regression

Cmh
t+1 − Cmh

t = bdt + xh′
t a+ eht ,(17.11)

where dt is a time dummy and xh
t contains variables that are uncorrelated with

the measurement errors in consumption. Then the null hypothesis of complete risk

sharing can be tested by testing a = 0.

17.3 Decreasing Relative Risk Aversion and Risk

Sharing

Ogaki and Zhang (2001) argue that decreasing relative risk aversion is more plausible

than constant relative risk aversion and increasing relative risk aversion. A parsimo-
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nious parameterization of the utility function which contains decreasing, constant,

and increasing relative risk aversion as special cases is

u(Ct) =
1

1− α
((Ct − γ)1−α − 1)(17.12)

which is called the Hyperbolic Absolute Risk Aversion (HARA) utility function.

Then the relative risk aversion coefficient is

−u′′Ch
t

u′ α(1− γ

Ch
t

)−1.(17.13)

Thus relative risk aversion is decreasing (increasing) in consumption if γ is positive

(negative).

For the HARA utility function mu(Ch
t ) = (Ch

t − γ)−α. Hence the complete risk

sharing hypothesis implies that Ch
t − γ grows at the same rate for all consumers. Let

ϕt be the common growth rate:

Ch
t+1 − γ

Ch
t − γ

= ϕt.(17.14)

Assume that consumption is measured with additive errors: Cmh
t = Ch

t + eht where

Cmh
t is the measured level of consumption. Multiplying both sides of (17.14) by

Ch
t − γ, substituting Ch

t = Cmh
t − eht , and rearranging terms, we obtain

Cmh
t+1 − ϕtC

mh
t + (ϕt − 1)γ = νh

t ,(17.15)

where

νh
t = eht+1 − eht .(17.16)

Let zht be a vector of instrumental variables that are uncorrelated with the consump-

tion measurement errors. Then GMM can be applied to the moment conditions that

E(zht ν
h
t ) = 0.
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17.4 Euler Equation Approach

As in Chapter 7, the state-by-state intertemporal first order condition can be used to

derive the Euler equation

E(βmu(Ch
t+1)Rt+1|It)

mu(Ch
t )

= 1(17.17)

for any asset return, Rt+1.

Imagine that a panel data set of Ch
t and Rt is available for t = 1, · · · , T and

h = 1, · · · , N . In order to estimate and test the Euler equation with the panel data

set, it is important to distinguish the time average and the cross-sectional average.

In many panel data sets, N is large but T is small. Chamberlain (1984) criticized

the use of such a panel data set for the Euler equation approach by pointing out a

difficulty in such applications. This difficulty is often refereed to as Chamberlain’s

critique.

For example, assume that the intraperiod utility function is u(Ct) =
C1−α

t −1

1−α
, so

that mu(Ch
t ) = (Ch

t )
−α, and the Euler equation is

E[β(
Ch

t+1

Ch
t

)−αRt+1|It] = 1.(17.18)

Removing the conditional expectation yields

β(
Ch

t+1

Ch
t

)−αRt+1 − 1 = eht ,(17.19)

where E(eht |It) = 0. It should be noted that E(eht |It) = 0 does not imply that the

probability limit of the cross-sectional average of eht is zero even though it implies

that the probability limit of the time-series average of eht is zero. In order to see this,

recall that consumption growth is identical for all consumers under complete risk
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sharing. Hence (17.19) implies that eht is identical, and 1
N

∑∞
h=1 e

h
t = e1t for any N . In

a panel data set with large N and small T , an appropriate asymptotic theory fixes T

and drives N to infinity to derive asymptotic results. In this example, the estimators

based on E(eht |It) = 0 are inconsistent because 1
N

∑∞
h=1 e

h
t does not converge to zero

in probability when N is driven to infinity. This example illustrates Chamberlain’s

critique.

17.5 Panel Unit Root Tests

Panel data allows researchers to effectively increase the number of observations.

Levin, Lin, and Chu (2002) developed unit root tests for panel data. Their null

hypothesis is that all series in the panel data are difference stationary against all se-

ries are stationary. Their test is a panel version of the Augmented Dickey-Fuller test.

For a panel data set of a variable xi,t for i = 1, ..., N and t = 1, ..., T , they consider

N time series regressions of the form:

∆x̃i,t = θi + µit + ρx̃i,t−1 + βi,1∆x̃i,t−1 + · · ·+ βi,p∆x̃t−p + νt,(17.20)

where x̃i,t = xi,t−(1/N)
∑N

i=1 xi,t. Here the cross-sectional average is subtracted from

xi,t in each period in order to take into account the cross-sectional dependence or a

common time effect. It should be noted that they assumed that ρ is common to all i

under both null and alternative hypotheses. Their test statistic, which is basically the

t-statistic for ρ = 0, is called the adjusted t-statistic. When N and T go to infinity,

the test statistic has an asymptotic standard normal distribution. Im, Pesaran, and

Shin (2003) relaxed Levin and Lin’s assumption that ρ is common to all i. Their test



17.5. PANEL UNIT ROOT TESTS 459

is based on regressions

∆x̃i,t = θi + µit + ρix̃i,t−1 + βi,1∆x̃i,t−1 + · · ·+ βi,p∆x̃t−p + νt.(17.21)

For their test, the null hypothesis is that ρi = 0 for all i, and the alternative hypothesis

is that ρi < 0 at least one i. Their test statistic is based on the average of the t-

statistics for the hypothesis that ρi = 0. Its asymptotic distribution is the standard

normal distribution.

Maddala and Wu (1999) also relaxed Levin and Lin’s assumption that ρ is

common to all i. Their test statistic is based on the p-values and can be used for

an unbalanced panel in which T is different for different i. However, this test is

computationally more involved than the other two tests mentioned above because the

p-values need to be computed by simulations for each application.

The alternative hypothesis of both Im, Pesaran, and Shin’s and Maddala and

Wu’s tests is that at least one series is stationary. Therefore, rejection of the null

hypothesis should not be regarded as evidence that all series are stationary unless

there is a reason to believe that all series are either difference stationary or stationary.

Most panel unit root tests assume that the error terms are cross-sectionally

uncorrelated. If this assumption is violated, then the tests can show severe size dis-

tortions (see, e.g., O’Connell, 1998). A certain degree of cross-sectional dependence

can be removed by subtracting the cross-sectional mean for each time period. How-

ever, if the true cross-sectional dependence exhibits substantial heterogeneity, then

this method will not work very well. Moreover, if the series share a common stochas-

tic trend, then the subtraction of the cross-sectional mean can transform a difference

stationary series into a stationary series. A recent work by Chang (2000) has solved

this problem.
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The tests described so far take difference stationarity as the null hypothesis.

There are tests for the null hypothesis of stationarity for panel data. Nyblom and

Harvey (2000) extended Kwiatkowski, Phillips, Schmidt, and Shin (1992, KPSS for

short) test for stationarity to panel data. The null hypothesis is that all series in the

panel are stationary, and the alternative hypothesis is that at least one of them is

difference stationary. Choi (2000) extended Park and Choi’s (1988) G test to panel

data. Choi (2000) reports Monte Carlo results that the panel G test is more powerful

than the panel KPSS test for most data generation processes.

17.6 Cointegration and Panel Data

Pedroni (2001) developed residual based tests for the null hypothesis of no cointe-

gration for panel data while allowing for estimated slope coefficients to vary across

individual members of panel. Pedroni (2000) and Phillips and Moon (1999) extended

Phillips and Hansen’s (1990) fully modified OLS estimator to panel data. Mark and

Sul (2002) extended the dynamic OLS technique to panel data. The dynamic OLS

estimator is much computationally simpler to calculate in the panel data setting.

These estimators assume that the regression errors are cross-sectionally uncorrelated

after removing common time effects. Seemingly unrelated cointegration techniques

explained in Chapter 15 (see, e.g., Mark, Ogaki, and Sul, 2003) can be used to allow

for a general form of cross-sectional dependence in regression errors. However, these

techniques cannot be used when N is large because too many free parameters for

cross-sectional dependence need to be estimated.
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Exercises

17.1 Suppose that each consumer maximizes the identical lifetime utility function

U =
T∑
t=0

∑
et

Prob(et)β
tU(ct)(17.E.1)

at time 0 in an Arrow-Debreu complete market, where et = (s0, · · · , st) is the history

of the economy, st ∈ {1, · · · , S} is the state of the economy at t, and Prob(et) denotes

the probability of et conditioned on e0. The intra-period utility function is assumed

to be

U(ct) =
{ct − γ}1−α − 1

1− α
(17.E.2)

where ct is consumption at time t

(a) Write down a complete market budget constraint.

(b) Derive a parameterized formula for a state-by-state intertemporal first order

condition for ct and ct+1. Discuss the complete risk sharing implication of the

first order condition. Then use the first order condition to derive an asset pricing

formula for an asset that pays off dt+1 at t+ 1 (dt+1 varies depending on et+1).

(c) Imagine that you have panel data set for {cht : t = 1, · · · , T, h = 1, · · · , N}

and real bond returns {Rt : t = 1, · · · , T} (without measurement error) in this

village. Suppose that these variables are stationary. Discuss how you set up the

GMM estimation to estimate β, α, and γ in this case, assuming T = 200 and

N = 300. If T = 2 and N = 300, do you think that you can use the GMM to

estimate these parameters for this model? Explain your answer.
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(d) Now assume that there exist multiplicative measurement errors with unknown

serial correlation in the consumption data {cht : t = 1, · · · , T, h = 1, · · · , N} in

this panel data set of the following form:

cht − γ = (ch∗t − γ)ϵht(17.E.3)

where ch∗t is the true consumption and ln(ϵht ) has mean zero and is uncorrelated

across the consumers and with any income variables. Also assume that there

are no asset return data and that T = 6 and N = 300. Discuss how you set

up GMM estimation to estimate γ (parameterized disturbance and weighting

matrix). In particular, discuss why the expected value of the parameterized

GMM disturbance is zero.

(e) Now assume that there exist additive measurement errors with unknown serial

correlation in the consumption data {cht : t = 1, · · · , T, h = 1, · · · , N} in this

panel data set of the following form:

cht = ch∗t + ϵht(17.E.4)

where ch∗t is the true consumption and ϵht has mean zero and is uncorrelated

across consumers and with any income variables. Also assume that there are no

asset return data and that T = 6 and N = 300. Discuss how you set up GMM

estimation to estimate γ in terms of the parameterized disturbance. In partic-

ular, discuss why the expected value of the parameterized GMM disturbance is

zero. You do not have to explain the weighting matrix for this question.
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