
Appendix B

COMPLEX VARIABLES, THE
SPECTRUM, AND LAG
OPERATOR

In this Appendix, we review some basic results of complex variables, and their ap-

plications to the lag operator and spectral analysis. Section B.1 collects standard

results of complex variables without proofs. Since most results in textbooks of com-

plex variables are not relevant for our purpose, it is useful to collect the results used in

macroeconometrics. Section B.2 gives examples of Hilbert spaces on C. We will use a

Hilbert space in this section in order to define the spectrum and give a foundation for

using lag operator methods. Section B.3 uses these results to prove important results

involving the lag operator such as convergence conditions for infinite order AR and

MA representations and invertibility conditions of AR and MA representations. The

results relating to a removable singular point in Section B.1 are used to derive the

Beveridge-Nelson decomposition (Section 13.2) and the nonlinear restrictions by the

linear rational expectations models presented in Chapter 16. Section B.3 presents

some results for the spectrum, using the tools developed in Sections B.1 and B.2.1

1Some of the results in Sections B.2 and B.3 can be found in Sargent (1987). The main difference
between Sargent’s presentation and the presentation here lies in the difference in the convergence

473



474 APPENDIX B. COMPLEX VARIABLES, SPECTRUM, LAG OPERATOR

B.1 Complex Variables

B.1.1 Complex Numbers

A complex number z = x+ iy can be defined as ordered pairs (x, y) of real numbers,

where i is a pure imaginary number that satisfies i2 = −1. The real numbers x and y

are known as the real and imaginary parts of z, respectively. It is natural to associate

the complex number with a point in the plane whose Cartesian coordinates are x and

y. In other words, each complex number corresponds to just one point. When used

for the purpose of displaying the numbers z = x + iy geometrically, the xy plane is

called the complex plane C. We denote the complex number which corresponds to the

origin of the complex plane by 0.

The absolute value, or modulus, of a complex number z = x + iy is defined as√
x2 + y2 and is denoted by |z|. The complex conjugate of a complex number z = x+iy

is defined as the complex number x− iy and is denoted by z. An important identity

relating the conjugate of a complex number z to its absolute value is zz = |z|2.

A circle with center at z0 and radius ϵ is {z : z is complex number such that

|z− z0| = ϵ}. The interior points of the circle are called the ϵ neighborhood of z0. For

any real number θ, it is convenient to define eiθ, or exp(iθ), by

eiθ = cos θ + i sin θ.(B.1)

Then eiθ = cos θ − i sin θ = e−iθ, and |eiθ| =
√
eiθe−iθ = 1. Hence eiθ represents the

circle with the center at the origin and radius of one. This circle is called the unit

concept for the z transform. Our definition allows us to use the results in Section B.1 for the z
transform, which can be used to prove various results such as the condition for invertibility of a lag
polynomial in terms of the zeros of the z transform.
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circle. We can express any complex number in exponential form:

z = reiθ.(B.2)

B.1.2 Analytic Functions

For a sequence of complex numbers {zi}∞i=1 and an infinite series of complex numbers∑∞
i=1 zi, convergence and divergence are defined in the same way as those of real

numbers except that the distance for complex numbers is used for the definitions. The

series
∑∞

i=1 zi is absolutely convergent if the series
∑∞

i=1 |zi| of real numbers converges.

Absolute convergence of a series of complex numbers implies the convergence of that

series.

A complex-valued function f , defined on a set of complex numbers D, assigns

a complex number f(z) to each z in D. The set D is the domain of definition of f .

A specific value of z for which f(z) = 0 is called a zero of a function f .

If n is a nonnegative integer, and if a0, a1, a2, · · · , an are complex constants,

where an ̸= 0, the function P (z) = a0 + a1z + a2z
2 + · · · + anz

n is a polynomial

of degree n. Any polynomial of degree n has precisely n zeros as in the following

proposition:

Proposition B.1.1 (The Fundamental Theorem of Algebra) For any polynomial of

degree n, P (z) = a0 + a1z + a2z
2 + · · · + anz

n where n ≥ 1, there exist n complex

numbers z1, z2, · · · , zn, such that

P (z) = an(z − z1)(z − z2) · · · (z − zn).
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Here zi is a zero of P (z), and a root of P (z) = 0. Note that zi may be equal to zj for

some j.

The limits, continuity, derivatives, and differentiability of functions are defined

in the same way as those of real-valued functions of a real variable except that the

distance for complex numbers is used for the definitions. For example, for a function

f with domain S

lim
z→z0

f(z) = w0(B.3)

means that for each positive number ϵ there is a positive number δ such that |f(z)−

w0| < ϵ whenever 0 < |z − z0| < δ and z ∈ S. Similarly, the derivative of f at z0 is

defined by

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,(B.4)

provided this limit exists. The function f is said to be differentiable at z0 if its

derivative at z0 exists. Since it is possible to approach z0 from many directions on

the complex plane, the differentiability of functions of complex numbers is in a sense

stricter than the differentiability of functions of real numbers as in the next example:

Example B.1.1 Let f(z) = |z|2. Churchill and Brown (1984, p.40) show that f(z)

is differentiable only at the origin. For z = x + iy, let the real and imaginary parts

of f(z) be u(x, y) and v(x, y): f(z) = u(x, y) + iv(x, y). Then u(x, y) = x2 + y2,

and v(x, y) = 0. Hence even when the real and imaginary components of a function

of a complex variable have continuous derivatives at z0, the function may not be

differentiable there.

Since the definition of a derivative in (B.4) is identical to that of the derivative

of a real-valued function of a real variable, most of the basic differentiation formulas
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remain valid for functions of complex variables. For example, if n is a positive integer,

dzn

dz
= nzn−1. This formula remains valid when n is a negative integer as long as z ̸= 0.

A function f of the complex number z is analytic at a point z0 if its derivative

exists not only at z0 but also at each point z in some neighborhood of z0. An entire

function is a function that is analytic at each point in the entire complex plane. Every

polynomial is an entire function.

If two functions f(z) and g(z) are analytic in a domain D, then their sum and

their product are both analytic in D. The quotient f(z)
g(z)

is also analytic in D provided

that g(z) ̸= 0 for any z in D. Hence the quotient P (z)
Q(z)

of two polynomials is analytic

in any domain throughout which Q(z) ̸= 0.

The following three propositions are important for our purposes. See Churchill

and Brown (1984, p.113, p.126, and p.153) for proofs.

Proposition B.1.2 Let a function f be analytic at a point z0 of f . There is a

neighborhood of z0 throughout which f has no other zeros, unless f is identically

zero. That is, the zeros of an analytic function which is not identically zero are

isolated.

Proposition B.1.3 If a function f is analytic at a point, then its derivatives of all

orders exist and are themselves analytic there.

Proposition B.1.4 (Taylor’s Theorem) Let f be analytic everywhere inside a circle

C with center at z and radius R. Then at each point z inside C,

f(z) = f(z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)

2!
(z − z0)

2 + · · ·(B.5)

+
f (n)(z0)

n!
(z − z0)

n + · · · .
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The special case of series (B.5) when z0 = 0 is called the Maclaurin series.

Example B.1.2 This example provides a Maclaurin series representation. Let f(z) =

1
1−az

for a nonzero real number a. Then f(z) is analytic on the complex plane except

for z = a−1.

f (n)(z) =
n!an

(1− az)n+1
(B.6)

At each point z such that |z| < |a−1|,

1

1− az
= 1 + az + a2z2 + · · ·+ anzn + · · · .

Let S(z) be a power series:

S(z) =
∞∑
n=0

anz
n.

See Churchill and Brown (1984, p.137 and p.143) for proofs of the following two

propositions.

Proposition B.1.5 If the power series converges when z = z1 (z1 ̸= 0), it is abso-

lutely convergent for every value of z such that |z| < |z1|.

The greatest circle about the origin such that the series converges at each point inside

is called the circle of convergence of the power series.

Proposition B.1.6 The power series S(z) represents a function that is analytic at

every point in the interior of its circle of convergence.
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If S(z) converges for z such that |z| < R, then S(z − z0) is analytic for z such that

|z − z0| < R because it is a composite function of two analytic functions.

When f(z) is analytic for all z such that |z − z0| < R but fails to be analytic

at z0, then we cannot apply Taylor’s theorem at that point. However, we can find a

series representation for f(z) involving both positive and negative powers of z − z0.

If f(z) is analytic in the domain of all points z such that R1 ≤ |z − z0| ≤ R2, then

f(z) =
∞∑
n=0

a0(z − z0)
n +

∞∑
n=0

bn(z − z0)
−n(B.7)

in the domain. The series here is called a Laurent series. A series representation of

this type is unique (see Churchill and Brown, 1984, pp. 132-134 and p.148).

When all the coefficients bn in (B.7) are zero, the point z0 is called a removable

singular point of f . In this case, the Laurent series (B.7) contains only nonnegative

powers of z − z0. If we define f(z) as a0 at z0, the function becomes analytic at z0.

Suppose that a function can be written in the form

f(z) =
g(z)

z − z0
,(B.8)

where g(z) is analytic everywhere inside a circle C with center at z0 and radius R.

Then at each point z inside C, f(z) is analytic for all z except for z = z0. From the

Taylor series

g(z) = g(z0) +
g′(z0)

1!
(z − z0) +

g′′(z0)

2!
(z − z0)

2 + · · ·(B.9)

+
g(n)(z0)

n!
(z − z0)

n + · · · .

It follows that

f(z) =
g(z0)

z − z0
+

g′(z0)

1!
+

g′′(z0)

2!
(z − z0) + · · ·(B.10)

+
g(n)(z0)

n!
(z − z0)

n−1 + · · · .
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Then a is a nonzero real number, and S(z) is a polynomial or a power series which

converges for all z such that |z| < R for some R. Hence if g(z0) = 0, then z0 is a

removable singular point of f(z).

B.2 Hilbert Spaces on C

In Appendix 3.A, it was noted that the complex plane, C, can be used as the set of

scalars K for a vector space, and therefore for a Hilbert space. This section gives

examples of Hilbert spaces for which K = C. The space of complex-valued random

variables explained in Example B.2.4 and L2(Prob) of real-valued random variables

explained in Appendix 3.A are the two Hilbert spaces we use in this book.

Example B.2.1 The complex plane, C, is a vector space on K = C with addition

and scalar multiplication defined in the usual way. When the norm of a complex

number is defined as its absolute value, C is a Banach space. When the inner product

is defined as (x|y) = xȳ, C is a Hilbert space.

Example B.2.2 Vectors in the space consist of sequences of n complex numbers, Cn,

is a vector space on C when x+y for x = (x1, x2, · · · , xn)
′ and y = (y1, y2, · · · , yn)′ is

defined by (x1+y1, x2+y2, · · · , xn+yn)
′ and αx for α in C is defined by (αx1, αx2, · · · , αxn)

′.

When we define a norm of x as ∥x∥ =
√∑n

i=1 |xi|2, Cn is a Banach space. When we

define (x|y) =
∑n

i=1 xiȳi, C
n is a Hilbert space on C.

Example B.2.3 The space l2 consists of all sequences of complex numbers {x1, x2, · · · }

for which
∑∞

i=1 |xi|2 < ∞. The inner product of elements x = {x1, x2, · · · } and

y = {y1, y2, · · · } in l2 is defined as (x|y) =
∑∞

i=1 xiȳi. With this inner product, l2 is

a Hilbert space on C.
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Example B.2.4 On the interval [−π, π], use the uniform distribution to define the

probability of the σ-field of the Borel sets in the interval. On this probability space,

consider a complex-valued random variable z = x+ iy where x and y are real-valued

random variables on [−π, π]. Define

E(z) = E(x) + iE(y) =
1

2π

∫ π

−π

x(λ)dλ+ i
1

2π

∫ π

−π

x(λ)dλ

Let L2[−π, π] = {h: h is a complex valued random variable on [−π, π] and E(|h|2) <

∞}. Then with an inner product defined by (h1|h2) = E(h1h̄2), L
2[−π, π] is a Hilbert

space. As in L2(Prob), if two different random variables h1 and h2 satisfy E[|h1 −

h2|2] = 0, then we view h1 and h2 as the same element in this space.2

B.3 Spectrum

This section defines the spectral density for a linearly regular covariance stationary

process. We will first consider stochastic processes of random variables. Then we will

consider stochastic processes of random vectors.

Imagine that we are given a white noise process {v}∞t=−∞ on a probability space

(S,F , P rob) that satisfies E(v2t ) = σ2
v and E(vtvs) = 0 for t ̸= s. It is conve-

nient to normalize this white noise process by defining et =
vt
σv
. Then {et}∞t=−∞ is

an orthonormal sequence in L2(Prob) because it satisfies ∥et∥ =
√
E(e2t ) = 1 and

(et|es) = E(etes) = 0 for t ̸= s. Let b(L) = b0+ b1L+ b2L
2+ · · · be a series in the lag

operator. Then from Proposition 3.A.5, b(L)et converges to an element in L2(Prob)

if and only if {bj}∞j=1 is square summable, that is,
∑∞

j=1 |bj|2 < ∞.

2For our purpose, it is convenient to view an element of L2[−π, π] as a complex-valued random
variable when the uniform distribution is given on [−π, π]. In many books, this interpretation is not
given, and elements in L2[−π, π] are considered complex-valued functions, f , which are measurable
on [−π, π].
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Given an orthonormal sequence {et}∞t=−∞ in L2(Prob), imagine that we are

interested in certain properties of b(L)et for various series in the lag operator b(L) =

b0 + b1L+ b2L
2 + · · · such as convergence of b(L)et and the autocovariance of b(L)et.

As long as these properties do not depend on the probability space, we can choose a

probability space that makes studying these properties convenient. As we will see, it

is convenient to consider a random variable and an orthonormal sequence in L2[−π, π]

in which the probability is given by the uniform distribution on [−π, π].

For this purpose, we consider a sequence {ut}∞t=−∞ in L2[−π, π] where ut(λ) =

exp(−iλt) = cos(λt) − i sin(λt). Then |ut(λ)| = 1 for all λ in [−π, π], so that ∥u∥ =√
E(|ut|2) = 1. If t ̸= s,

(ut|us) =
1

2π

∫ π

−π

exp(−iλt)exp(−iλs)dλ(B.11)

=
1

2π

∫ π

−π

exp(−iλt) exp(iλs)dλ

=
1

2π

∫ π

−π

exp(iλ(s− t))dλ

=
1

2π

∫ π

−π

[cos(λ(s− t)) + i sin(λ(s− t))]dλ

= 0.

Thus {ut}∞t=−∞ is an orthonormal sequence.

Given b(L)et =
∑∞

j=0 bjet−j, consider a process b(L)ut =
∑∞

j=0 bjut−j in L2[−π, π].

From Proposition 3.A.5, b(L)et and b(L)ut converge if and only if {bj} is square

summable. Hence b(L)et converges if and only if b(L)ut converges.

Let M be the closed subspace in L2[−π, π] generated by {ut}∞t=−∞. From Propo-
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sition 3.A.6, for any element y in M ,

y =
∞∑
j=0

cj exp(iλj)(B.12)

cj =
1

2π

∫ π

−π

y(λ) exp(−iλj)dλ(B.13)

where cj is the Fourier coefficient for u(−j) = exp(iλj) and {cj} is square summable.

When {bj}∞j=0 is square summable, let xt = b(L)et. Then the autocovariance

Φ(k) = E(xtxt−k) is given by Φ(k) = limn→∞ E
[
(
∑n

j=0 bjet−j)(
∑n

j=0 bjet−k−j)
]
=∑∞

j=k bjbj−k, where the last equality can be proved by the continuity of the inner

product (Proposition 3.A.2).

Define the autocovariance of order k, Φ(k) for ht =
∑∞

j=0 bj exp(−iλ(t − j)) =∑∞
j=0 bj exp(iλj) exp(−iλt) = h0 exp(−iλt) as

Φ(k) = E(hth̄t−k).(B.14)

Then Φ(k) =
∑∞

j=k bjbj−k. Thus the autocovariance of ht coincides with that of xt.

A simple expression for Φ(k) can be obtained in L2[−π, π]:

Φ(k) = E(h0h̄0−k)

=
1

2π

∫ π

−π

h0(λ)h0(λ) exp(−iλk)dλ

=
1

2π

∫ π

−π

h0(λ)h0(λ) exp(iλk)dλ

Hence

Φ(k) =
1

2π

∫ π

−π

f(λ) exp(iλk)dλ(B.15)

where

f(λ) = h0(λ)h0(λ)(B.16)

=

[
∞∑
j=0

bj exp(iλj)][
∞∑
j=0

bj exp(−iλj)

]
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is the spectral density.

For a vector process xt = B(L)vt =
∑∞

j=0Bjvt−j where xt and vt are p × 1

vectors and Bj is a p×pmatrix, we consider a matrix process ht =
∑∞

j=0Bj exp(iλ(t−

j)). Then define Φ(k) = E(xtx
′
t−k) for xt and Φ(k) = E(hth̄

′
t−k) for ht. Then for

both xt and ht, Φ(k) =
∑∞

j=k BjB
′
j−k, and

Φ(k) =
1

2π

∫ π

−π

f(λ) exp(iλk)dλ(B.17)

where

f(λ) =
1

2π
h0(λ)h0(λ)

′
(B.18)

=
∞∑
j=0

Bj exp(iλ(t− j)).

B.4 Lag Operators

In this section, we will apply the results of the previous sections to polynomials

and series of the lag operator. We will first consider stochastic processes of random

variables. Then we will consider stochastic processes of random vectors.

Given xt = b(L)et =
∑∞

j=0 bjet−j with an orthonormal et in L2(Prob), we con-

sider ht(λ) =
∑∞

j=0 bj exp(−iλ(t−j)) =
∑∞

j=0 bj exp(iλj) exp(−iλt) = h0(λ) exp(−iλt)

in L2[−π, π] as in the previous section. As we will see, there is a one-to-one mapping

that preserves the distance between the closed linear space generated by {ut}∞t=−∞

and that by {et}∞t=−∞. Moreover, Lnht(λ) = ht−n(λ) = ht exp(iλn). Hence applying

the lag operator n times to the stochastic process ht corresponds with multiplying

a complex number ht by exp(iλ) n times. For these reasons, we can study various

properties of b(L)et by studying the power series b(z) =
∑∞

j=0 bjz
j of a complex vari-

able z. For example, if b(z) converges on the unit circle, then b(exp(iλ)) converges
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for each λ in [−π, π]. This point-wise convergence in turn implies the convergence of

h0(λ) = bj exp(iλj) in L2[−π, π] by the Bounded Convergence Theorem.

Let {et}∞t=−∞ be an orthonormal sequence in L2(Prob), and let a sequence

{ut}∞t=−∞ in L2[−π, π] be defined by ut(λ) = exp(−iλt) = cos(λt) − i sin(λt) as

in the previous section. Given b(L)et =
∑∞

j=0 bjet−j, consider a process b(L)ut =∑∞
j=0 bjut−j in L2[−π, π]. From Proposition 3.A.5, b(L)et and b(L)ut converge if and

only if {bj} is square summable. Hence b(L)et converges if and only if b(L)ut con-

verges.

From these results, we obtain the following proposition which gives a convenient

sufficient condition for b(L)et to be defined.

Proposition B.4.1 Let {et}∞t=−∞ be a white noise stochastic process with E(e2t ) = 1.

Suppose that b(z) =
∑∞

j=0 bjz
j converges for z = z1 such that |z1| > 1. Then∑N

j=0 bjet−j converges in mean square to a random variable with a finite second mo-

ment yt as N → ∞ and yt = b(L)et is a covariance stationary process.

Proof From Proposition B.1.5, b(z) =
∑∞

j=0 bjz
j is converges for |z| = 1, and hence b(exp(iλ))

converges for each λ in [−π, π] in C. Let sN (λ) =
∑N

j=0 bj exp(iλj), and let h0(λ) = b(exp(iλ)) be
the limit of sN (λ) in C. For each λ, limN→∞ |sN (λ)− h0(λ)| = 0. Hence by Lebesgue’s dominated
convergence theorem,

lim
N→∞

∫ π

−π

|sN (λ)− h0(λ)| =
∫ π

−π

lim
N→∞

|sN (λ)− h0(λ)| = 0,

which implies that
∑N

j=0 bj exp(−iλj) converges in L2[−π, π] to h0(λ). Hence {bj}∞j=0 is square
summable. To see that yt is covariance stationary, note that E(yt) = b0E(et) does not depend on t.

Since the inner product in L2 is continuous, E(ytyt−τ ) = limN→∞ E((
∑N

j=0 bjet−j)(
∑N

j=0 bjet−j−τ )).

Since et is covariance stationary, E((
∑N

j=0 bjet−j)(
∑N

j=0 bjet−j−τ ))E((
∑N

j=0 bjet−j)
2) does not de-

pend on t.

In this book, b(L)et is taken to mean the limit of
∑N

j=0 bjet−j in L2(Prob) as

N → ∞.
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Example B.4.1 Let b(L) = 1 + aL+ a2L2 + · · ·+ anLn + · · · . If |a| < 1, then b(z)

converges for z = z1 where z1 is a real number such that 1 < z1 < a−1. Hence b(L)et

can be defined in L2(Prob).

Proposition B.4.1 gives a sufficient condition for b(L)et to be covariance stationary.

The next proposition gives a sufficient condition for b(L)et to be strictly stationary.

Proposition B.4.2 Let {et}∞t=−∞ be a strictly stationary white noise process with

finite second moments. Suppose that b(z) =
∑∞

j=0 bjz
j converges for z = z1 such that

|z1| > 1. Then yt = b(L)et is a strictly stationary process.

Proof Let sNt =
∑N

j=0 bjet−j . Then sNt converges in mean square to yt as N → ∞. Therefore,
sNt converges in probability to yt, and hence it converges in distribution to yt. Let FNt(ζ) be
the distribution function of sNt, and Ft(ζ) be the distribution function of yt. Then Ft+τ (ζ) =
limN→∞ FNt(ζ) = Ft(ζ) except for the discontinuity points of Ft+τ (ζ) and Ft(ζ) because et is strictly
stationary. There are only countably many discontinuity points, and the distribution function is right
continuous. Therefore, Ft−τ (ζ) = Ft(ζ) for all ζ. Similar arguments can be made to show that the
joint distribution function of (yt, yt+1, · · · , yt+k) does not depend on t.
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