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PREFACE

This book presents various structural econometric tools used in macroeconomics.

The word “structural” has been defined in many ways. In this book, “structural”

means that explicit assumptions are made in econometric methods so that estimators

or test statistics can be interpreted in terms of an economic model (or models) as

explained in Chapter 1.

Many applied macroeconomists link macroeconomic models with econometric

methods in this sense of structural econometrics. In principle, recent advances of

theoretical time series econometrics make this task easier because they often relax

the very restrictive assumptions made in conventional econometrics. There are many

textbooks that explain these advanced econometric methods. It is often difficult,

however, for applied researchers to exploit these advances because few textbooks in

time series econometrics explain how macroeconomic models are mapped into ad-

vanced econometric models.1 To fill this gap, this book presents methods to apply

advanced econometric procedures to structural macroeconomic models. The econo-

metric methods covered are mainly those of time series econometrics, and include the

generalized method of moments, vector autoregressions, and estimation and testing

in the presence of nonstationary variables.

Since this book focuses on applications, proofs are usually omitted with refer-

ences given for interested readers. When proofs are helpful to understand issues that

are important for applied research, they are given in mathematical appendices. Many

examples are given to illustrate concepts and methods.

1For example, Hamilton (1994) contains exceptional volume of explanations of applications for a
time series econometrics textbook, but its main focus is on econometrics, and not on the mapping
of economic models into econometric models.
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This book is intended for an advanced graduate course in time series economet-

rics or macroeconomics. The prerequisites for this course would include an introduc-

tion to econometrics. This book is also useful to applied macroeconomic researchers

interested in learning how recent advances in time-series econometrics can be used to

estimate and test structural macroeconomic models.



Contents

1 INTRODUCTION 1

2 STOCHASTIC PROCESSES 5

2.1 Review of Probability Theory . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Conditional Expectations . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Stationary Stochastic Processes . . . . . . . . . . . . . . . . . . . . . 12

2.5 Conditional Heteroskedasticity . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Martingales and Random Walks . . . . . . . . . . . . . . . . . . . . . 18

2.A A Review of Measure Theory . . . . . . . . . . . . . . . . . . . . . . 19

2.B Convergence in Probability . . . . . . . . . . . . . . . . . . . . . . . . 29

2.B.1 Convergence in Distribution . . . . . . . . . . . . . . . . . . . 30

2.B.2 Propositions 2.2 and 2.3 for Infinite Numbers of R.V.’s (Incom-
plete) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3 FORECASTING 33

3.1 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Definitions and Properties of Projections . . . . . . . . . . . . 33

3.1.2 Linear Projections and Conditional Expectations . . . . . . . 35

3.2 Some Applications of Conditional Expectations and Projections . . . 39

3.2.1 Volatility Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.2 Parameterizing Expectations . . . . . . . . . . . . . . . . . . . 41

3.2.3 Noise Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.A Introduction to Hilbert Space . . . . . . . . . . . . . . . . . . . . . . 43

3.A.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.A.2 Hilbert Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 ARMAANDVECTORAUTOREGRESSION REPRESENTATIONS 53

4.1 Autocorrelation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2 The Lag Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Moving Average Representation . . . . . . . . . . . . . . . . . . . . . 55

4.4 The Wold Representation . . . . . . . . . . . . . . . . . . . . . . . . 57

iii



iv CONTENTS

4.5 Autoregression Representation . . . . . . . . . . . . . . . . . . . . . . 61

4.5.1 Autoregression of Order One . . . . . . . . . . . . . . . . . . . 61

4.5.2 The p-th Order Autoregression . . . . . . . . . . . . . . . . . 63

4.6 ARMA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.7 Fundamental Innovations . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.8 The Spectral Density . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 STOCHASTIC REGRESSORS IN LINEAR MODELS 70

5.1 The Conditional Gauss Markov Theorem . . . . . . . . . . . . . . . . 72

5.2 Unconditional Distributions of Test Statistics . . . . . . . . . . . . . 77

5.3 The Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Convergence in Distribution and Central Limit Theorem . . . . . . . 80

5.5 Consistency and Asymptotic Distributions of OLS Estimators . . . . 85

5.6 Consistency and Asymptotic Distributions of IV Estimators . . . . . 86

5.7 Nonlinear Functions of Estimators . . . . . . . . . . . . . . . . . . . . 87

5.8 Remarks on Asymptotic Theory . . . . . . . . . . . . . . . . . . . . . 88

5.9 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.9.1 Random Number Generators . . . . . . . . . . . . . . . . . . . 89

5.9.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.9.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.10 Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.A Weakly dependence process . . . . . . . . . . . . . . . . . . . . . . . 99

5.A.1 Independent Process . . . . . . . . . . . . . . . . . . . . . . . 100

5.A.2 Mixing Process . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.A.3 Martingale Difference Process . . . . . . . . . . . . . . . . . . 102

5.A.4 Mixingale Process . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.A.5 Near-Epoch Dependent (NED) Process . . . . . . . . . . . . . 104

5.B Functional Central Limit Theorem . . . . . . . . . . . . . . . . . . . 104

5.B.1 Central Limit Theorem . . . . . . . . . . . . . . . . . . . . . . 106

5.B.2 Functional Central Limit Theorem . . . . . . . . . . . . . . . 108

5.C Consistency of Bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.D Hansen’s (1999) Grid Bootstrap . . . . . . . . . . . . . . . . . . . . . 110

5.E Monte Carlo Methods with GAUSS . . . . . . . . . . . . . . . . . . . 111

5.E.1 Random Number Generators . . . . . . . . . . . . . . . . . . . 111

5.E.2 Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.E.3 A Pitfall in Monte Carlo Simulations . . . . . . . . . . . . . . 113

5.E.4 An Example Program . . . . . . . . . . . . . . . . . . . . . . 115

6 ESTIMATION OF THE LONG-RUN COVARIANCE MATRIX 124

6.1 Serially Uncorrelated Variables . . . . . . . . . . . . . . . . . . . . . 125

6.2 Serially Correlated Variables . . . . . . . . . . . . . . . . . . . . . . . 126

6.2.1 Unknown Order of Serial Correlation . . . . . . . . . . . . . . 126



CONTENTS v

6.2.2 Known Order of Serial Correlation . . . . . . . . . . . . . . . 131

7 TESTING LINEAR FORECASTING MODELS 135

7.1 Forward Exchange Rates . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.2 The Euler Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.3 The Martingale Model of Consumption . . . . . . . . . . . . . . . . . 141

7.4 The Linearized Euler Equation . . . . . . . . . . . . . . . . . . . . . 142

7.5 Optimal Taxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.6 Tests of Forecast Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 145

7.6.1 The Monetary Model of Exchange Rates . . . . . . . . . . . . 146

7.7 The Taylor Rule Model of Exchange Rates . . . . . . . . . . . . . . . 147

7.7.1 ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.7.2 ? and ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

8 VECTOR AUTOREGRESSION TECHNIQUES 156

8.1 OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

8.2 Granger Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.3 The Impulse Response Function . . . . . . . . . . . . . . . . . . . . . 162

8.4 Forecast error decomposition . . . . . . . . . . . . . . . . . . . . . . . 165

8.5 Structural VAR Models . . . . . . . . . . . . . . . . . . . . . . . . . . 166

8.6 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.6.1 Short-Run Restrictions for Structural VAR . . . . . . . . . . . 169

8.6.2 Identification of block recursive systems . . . . . . . . . . . . . 171

8.6.3 Two-step ML estimation . . . . . . . . . . . . . . . . . . . . . 172

8.A Asymptotic Interval Method . . . . . . . . . . . . . . . . . . . . . . . 174

8.B Bias-Corrected Bootstrap Method . . . . . . . . . . . . . . . . . . . . 176

8.C Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . 178

9 GENERALIZED METHOD OF MOMENTS 182

9.1 Asymptotic Properties of GMM Estimators . . . . . . . . . . . . . . . 182

9.1.1 Moment Restriction and GMM Estimators . . . . . . . . . . . 182

9.1.2 Asymptotic Distributions of GMM Estimators . . . . . . . . . 184

9.1.3 Optimal Choice of the Distance Matrix . . . . . . . . . . . . . 185

9.1.4 A Chi-Square Test for the Overidentifying Restrictions . . . . 186

9.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

9.2.1 Ordinary Least Squares . . . . . . . . . . . . . . . . . . . . . 187

9.2.2 Linear Instrumental Variables Regressions . . . . . . . . . . . 187

9.2.3 Linear GMM estimator . . . . . . . . . . . . . . . . . . . . . . 188

9.2.4 Nonlinear Instrumental Variables Estimation . . . . . . . . . . 189

9.3 Important Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 190

9.3.1 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

9.3.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 192



vi CONTENTS

9.4 Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

9.4.1 Sequential Estimation . . . . . . . . . . . . . . . . . . . . . . 192

9.4.2 GMM with Deterministic Trends . . . . . . . . . . . . . . . . 194

9.4.3 Other GMM Estimators . . . . . . . . . . . . . . . . . . . . . 194

9.5 Hypothesis Testing and Specification Tests . . . . . . . . . . . . . . . 195

9.6 Numerical Optimization . . . . . . . . . . . . . . . . . . . . . . . . . 197

9.7 The Optimal Choice of Instrumental Variables . . . . . . . . . . . . . 198

9.8 Small Sample Properties . . . . . . . . . . . . . . . . . . . . . . . . . 199

9.9 Weak Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

9.10 Identification Robust Methods . . . . . . . . . . . . . . . . . . . . . . 202

9.A Asymptotic Theory for GMM . . . . . . . . . . . . . . . . . . . . . . 205

9.A.1 Asymptotic Properties of Extremum Estimators . . . . . . . . 206

9.A.2 Consistency of GMM Estimators . . . . . . . . . . . . . . . . 208

9.A.3 A Sufficient Condition for the Almost Sure Uniform Convergence209

9.A.4 Asymptotic Distributions of GMM Estimators . . . . . . . . . 214

9.B The Conditional Likelihood Ratio Statistic . . . . . . . . . . . . . . . 218

9.C A Procedure for Hansen’s J Test (GMM.EXP) . . . . . . . . . . . . . 220

10 EMPIRICAL APPLICATIONS OF GMM 229

10.1 Euler Equation Approach . . . . . . . . . . . . . . . . . . . . . . . . 229

10.2 Habit Formation and Durability . . . . . . . . . . . . . . . . . . . . . 232

10.3 State-Nonseparable Preferences . . . . . . . . . . . . . . . . . . . . . 234

10.4 Time Aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

10.5 Multiple-Goods Models . . . . . . . . . . . . . . . . . . . . . . . . . . 236

10.6 Seasonality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

10.7 Monetary Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

10.8 Calculating Standard Errors for Estimates of Standard Deviation, Cor-
relation, and Autocorrelation . . . . . . . . . . . . . . . . . . . . . . 241

10.9 Dynamic Stochastic General Equilibrium Models and GMM Estimation 243

10.10GMM and an ARCH Process . . . . . . . . . . . . . . . . . . . . . . 248

10.11Estimation and Testing of Linear Rational Expectations Models . . . 251

10.11.1The Nonlinear Restrictions . . . . . . . . . . . . . . . . . . . . 252

10.11.2Econometric Methods . . . . . . . . . . . . . . . . . . . . . . 255

10.12GMM for Consumption Euler Equations with Measurement Error . . 257

11 EXTREMUM ESTIMATORS 270

11.1 Asymptotic Properties of Extremum Estimators . . . . . . . . . . . . 270

11.1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.1.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

11.2 Two Classes of Extremum Estimators . . . . . . . . . . . . . . . . . . 271

11.2.1 Minimum Distance Estimators . . . . . . . . . . . . . . . . . . 271

11.2.2 M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 272



CONTENTS vii

11.3 Examples of Minimum Distance Estimators . . . . . . . . . . . . . . 272

11.3.1 Two-Step Minimum Distance Estimators . . . . . . . . . . . . 272

11.3.2 Two-Step Minimum Distance Estimation with Impulse Responses273

11.3.3 Minimum Distance to Estimate Data Statistics . . . . . . . . 276

11.4 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

11.4.1 Evaluation of the Likelihood Function using the Kalman Filter 281

11.A Examples of State-Space Representations . . . . . . . . . . . . . . . . 283

12 INTRODUCTION TO BAYESIAN APPROACH 286

12.1 Bayes Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

12.2 Parameter Estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

12.3 Bayesian Intervals and Regions . . . . . . . . . . . . . . . . . . . . . 288

12.4 Posterior Odds Ratio and Hypothesis Testing . . . . . . . . . . . . . 289

12.A Numerical Approximation Methods . . . . . . . . . . . . . . . . . . . 292

12.A.1 Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . 292

12.A.2 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . 293

12.B Application of the MCMC methods . . . . . . . . . . . . . . . . . . . 296

13 UNIT ROOT NONSTATIONARY PROCESSES 301

13.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302

13.2 Decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

13.3 Tests for the Null of Difference Stationarity . . . . . . . . . . . . . . 305

13.3.1 Dickey-Fuller Tests . . . . . . . . . . . . . . . . . . . . . . . . 306

13.3.2 Said-Dickey Test . . . . . . . . . . . . . . . . . . . . . . . . . 307

13.3.3 Phillips-Perron Tests . . . . . . . . . . . . . . . . . . . . . . . 309

13.3.4 Park’s J Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

13.4 Testing the Null of Stationarity . . . . . . . . . . . . . . . . . . . . . 311

13.5 Near Observational Equivalence . . . . . . . . . . . . . . . . . . . . . 312

13.6 Asymptotics for Unit Root Processes . . . . . . . . . . . . . . . . . . 313

13.6.1 Continuous Mapping Theorem . . . . . . . . . . . . . . . . . . 313

13.6.2 Dickey-Fuller test with serially uncorrelated disturbances . . . 314

13.6.3 Said-Dickey test with serially correlated disturbances . . . . . 318

13.6.4 Phillips-Perron test . . . . . . . . . . . . . . . . . . . . . . . . 324

13.A Asymptotic Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

13.A.1 Functional Central Limit Theorem . . . . . . . . . . . . . . . 331

13.B Procedures for Unit Root Tests . . . . . . . . . . . . . . . . . . . . . 331

13.B.1 Said-Dickey Test (ADF.EXP) . . . . . . . . . . . . . . . . . . 331

13.B.2 Park’s J Test (JPQ.EXP) . . . . . . . . . . . . . . . . . . . . 332

13.B.3 Park’s G Test (GPQ.EXP) . . . . . . . . . . . . . . . . . . . . 333



viii CONTENTS

14 COINTEGRATING AND SPURIOUS REGRESSIONS 338

14.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

14.2 Exact Finite Sample Properties of Regression Estimators . . . . . . . 342

14.2.1 Spurious Regressions . . . . . . . . . . . . . . . . . . . . . . . 342

14.2.2 Cointegrating Regressions . . . . . . . . . . . . . . . . . . . . 346

14.3 Large Sample Properties . . . . . . . . . . . . . . . . . . . . . . . . . 347

14.3.1 Canonical Cointegrating Regression . . . . . . . . . . . . . . . 348

14.3.2 Estimation of Long-Run Covariance Parameters . . . . . . . . 351

14.4 Tests for the Null Hypothesis of No Cointegration . . . . . . . . . . . 352

14.5 Tests for the Null Hypothesis of Cointegration . . . . . . . . . . . . . 354

14.6 Generalized Method of Moments and Unit Roots . . . . . . . . . . . 355

14.A Procedures for Cointegration Tests . . . . . . . . . . . . . . . . . . . 356

14.A.1 Park’s CCR and H Test (CCR.EXP) . . . . . . . . . . . . . . 356

14.A.2 Park’s I Test (IPQ.EXP) . . . . . . . . . . . . . . . . . . . . . 358

14.B Weak Convergence to Stochastic Integral . . . . . . . . . . . . . . . . 359

15 ECONOMIC MODELS AND COINTEGRATING REGRESSIONS363

15.1 The Permanent Income Hypothesis of Consumption . . . . . . . . . . 364

15.2 Present Value Models of Asset Prices . . . . . . . . . . . . . . . . . . 367

15.3 Applications to Money Demand Functions . . . . . . . . . . . . . . . 369

15.4 The Cointegration Approach to Estimating Preference Parameters . . 369

15.4.1 The Time Separable Addilog Utility Function . . . . . . . . . 371

15.4.2 The Time Nonseparable Addilog Utility Function . . . . . . . 375

15.4.3 Engel’s Law and Cointegration . . . . . . . . . . . . . . . . . 380

15.5 The Cointegration-Euler Equation Approach . . . . . . . . . . . . . . 383

15.5.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

15.5.2 The 2-Step Estimation Method . . . . . . . . . . . . . . . . . 390

15.5.3 Measuring Intertemporal Substitution: The Role of Durable
Goods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

15.6 Purchasing Power Parity . . . . . . . . . . . . . . . . . . . . . . . . . 392

16 VECTOR AUTOREGRESSIONS WITH UNIT ROOT NONSTA-
TIONARY PROCESSES 400

16.1 Identification on Structural VAR Models . . . . . . . . . . . . . . . . 401

16.1.1 Long-Run Restrictions for Structural VAR Models . . . . . . . 401

16.1.2 Short-run and Long-Run Restrictions for Structural VAR Models403

16.2 Representations for the Cointegrated System . . . . . . . . . . . . . . 406

16.2.1 Vector Moving Average Representation . . . . . . . . . . . . . 406

16.2.2 Phillips’ Triangular Representation . . . . . . . . . . . . . . . 408

16.2.3 Vector Error Correction Model Representation . . . . . . . . . 410

16.2.4 Common Trend Representation . . . . . . . . . . . . . . . . . 411

16.3 Long-Run Restrictions on Phillips’ Triangular Representation . . . . 412



CONTENTS ix

16.3.1 Long-run Restrictions and VECM . . . . . . . . . . . . . . . . 415

16.3.2 Identification of Permanent Shocks . . . . . . . . . . . . . . . 416

16.3.3 Impulse Response Functions . . . . . . . . . . . . . . . . . . . 418

16.3.4 Forecast-Error Variance Decomposition . . . . . . . . . . . . . 420

16.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

16.4 Structural Vector Error Correction Models . . . . . . . . . . . . . . . 422

16.5 An Exchange Rate Model with Sticky Prices . . . . . . . . . . . . . . 424

16.6 The System Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 429

16.7 Tests for the Number of Cointegrating Vectors . . . . . . . . . . . . . 430

16.8 How Should an Estimation Method be Chosen? . . . . . . . . . . . . 432

16.8.1 Are Short-Run Dynamics of Interest? . . . . . . . . . . . . . . 432

16.8.2 The Number of the Cointegrating Vectors . . . . . . . . . . . 433

16.8.3 Small Sample Properties . . . . . . . . . . . . . . . . . . . . . 434

16.A Estimation of the Model with Long-Run Restrictions . . . . . . . . . 435

16.B Monte Carlo Integration . . . . . . . . . . . . . . . . . . . . . . . . . 440

16.C Johansen’s Maximum Likelihood Estimation and Cointegration Rank
Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

17 PANEL AND CROSS-SECTIONAL DATA 451

17.1 Generalized Method of Moments . . . . . . . . . . . . . . . . . . . . . 451

17.2 Tests of Risk Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

17.3 Decreasing Relative Risk Aversion and Risk Sharing . . . . . . . . . . 455

17.4 Euler Equation Approach . . . . . . . . . . . . . . . . . . . . . . . . 457

17.5 Panel Unit Root Tests . . . . . . . . . . . . . . . . . . . . . . . . . . 458

17.6 Cointegration and Panel Data . . . . . . . . . . . . . . . . . . . . . . 460

A INTRODUCTION TO GAUSS 465

A.1 Starting and Exiting GAUSS . . . . . . . . . . . . . . . . . . . . . . . 465

A.1.1 The Windows Version . . . . . . . . . . . . . . . . . . . . . . 465

A.1.2 The DOS Version . . . . . . . . . . . . . . . . . . . . . . . . . 465

A.2 Running a Program Stored in a File from the COMMAND Mode . . 466

A.3 Editing a File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

A.4 Rules of Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

A.4.1 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

A.4.2 Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466

A.4.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

A.4.4 Symbol Names . . . . . . . . . . . . . . . . . . . . . . . . . . 467

A.5 Reading and Storing Data . . . . . . . . . . . . . . . . . . . . . . . . 467

A.6 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

A.6.1 Operators for Matrix Manipulations . . . . . . . . . . . . . . . 467

A.6.2 Numeric Operators . . . . . . . . . . . . . . . . . . . . . . . . 469

A.7 Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470



x CONTENTS

A.7.1 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
A.7.2 Printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471
A.7.3 Preparing an Output File . . . . . . . . . . . . . . . . . . . . 472

A.8 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
A.9 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

B COMPLEX VARIABLES, THE SPECTRUM, AND LAG OPERA-
TOR 473
B.1 Complex Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474

B.1.1 Complex Numbers . . . . . . . . . . . . . . . . . . . . . . . . 474
B.1.2 Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . 475

B.2 Hilbert Spaces on C . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
B.3 Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
B.4 Lag Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 484

C ANSWERS TO SELECTED QUESTIONS 487



List of Tables

5.1 Dependence between Xt and Xt+m . . . . . . . . . . . . . . . . . . . 103

13.1 Critical Values of Park’s J(p, q) Tests for the Null of Difference Sta-
tionarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310

13.2 Probability of smaller values . . . . . . . . . . . . . . . . . . . . . . . 334

14.1 Critical Values of Park’s I(p, q) Tests for Null of No Cointegration . . 354

C.1 GMM Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
C.2 Data moments and model moments . . . . . . . . . . . . . . . . . . . 498
C.3 GPQ tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
C.4 ADF tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503
C.5 CCR estimation and H(p,q) tests . . . . . . . . . . . . . . . . . . . . 504

xi



Chapter 1

INTRODUCTION

The word “structural” has various different meanings in econometrics. In this book,

“structural” means that explicit assumptions are made in econometric methods so

that estimators or test statistics can be interpreted in terms of an economic model

(or models). In some cases, some properties of the estimators and test statistics

are known when they are applied to data generated from an economic model. We

then use the economic model to interpret empirical results obtained by applying the

econometric tools to real data. This is important because an economic model is used

to analyze causal relationships between economic variables, and understanding causal

relationships is essential for policy evaluations and forecasting.

As a very simple example, consider a model of demand for a good:

Qd
t = a− bPt + et,(1.1)

where Pt is the price and Qd
t is the market quantity demanded. In this model a and

b are constants and et is the demand shock. The model assumes that the observed

quantity, Qt, is equated with Qd
t , Pt is nonstochastic, et has mean zero, E(e2t ) = σ2,

and E(etes) = 0 if t ̸= s. With these assumptions the Gauss-Markov Theorem can be

applied to this model. If the Ordinary Least Squares (OLS) slope coefficient estimator

1
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is applied to data of Qt and Pt for t = 1, · · · , T in this model, then the estimator is

the Best Linear Unbiased Estimator (BLUE) for the demand slope coefficient, b.

One benefit of having this structural model is that we know exactly what the

limitations are when we interpret OLS results applied to real data in terms of the

model. This knowledge is helpful because we can then study how to improve our

econometric methods for better interpretation of data.

For example, consider the assumption made in the model that Pt is nonstochas-

tic. This assumption is sometimes motivated by saying that the price is taken as

given by the individual market participants. It is easy to see that this motivation is

problematic by considering the supply side of the market. Consider a model of supply

of the good:

Qs
t = c+ dPt + ut,(1.2)

where Qs
t the market quantity supplied and ut is the supply shock. In equilibrium,

the observed quantity, Qt, is equal to Q
d
t and Qs

t . Equating the right hand sides of

(1.1) and (1.2), and solving for Pt , we obtain

Pt =
1

d+ b
(a− c+ et − ut).(1.3)

Hence Pt is stochastic. Moreover, (1.3) makes it clear that Pt is correlated with et

and ut . This means that the OLS slope coefficient estimator is not even a consistent

estimator for b or d as discussed in Chapter 5. This leads us to consider an improved

econometric method, an instrumental variable method, for example.

The structural demand model tells us under what assumptions we can interpret

the OLS slope estimator as an unbiased estimator for b. By studying the assumptions,

we can see what will happen when they are violated. This process leads to better
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econometric methods.

Another consideration is the trend observed in most aggregate data. The de-

mand model with trends leads to cointegrating regressions as discussed in Chapter

15.

Instead of starting with a demand function, one can start with a utility function

as in the Euler Equation Approach discussed in Chapter 10. When data contain

trends, cointegrating regressions can be used to estimate preference parameters, and

this Cointegration Approach can be combined with the Euler Equation Approach as

described in Chapter 15.

We do not claim that structural econometrics as defined here is better than

non-structural econometrics. They are tools that serve different purposes. Just as

it does not make sense to argue whether a hammer is better than a screwdriver, we

cannot compare structural and non-structural econometrics without specifying the

purposes. For the purpose of summarizing data properties and finding stylized facts,

non-structural econometrics is better. This purpose is obviously very important in

economics. Using a structural econometric model that enforces a certain economic

interpretation is not good for this purpose. On the other hand, after finding stylized

facts with non-structural econometrics, one may wish to understand causal relation-

ships that explain stylized facts and make policy recommendations based on causal

relationships. For that purpose, structural econometrics is better than non-structural

econometrics.

Similarly, we do not claim that the definition of “structural” in this book is

better than other definitions. For example, Hendry (1993) and Ericsson (1995) de-

fine a structural model as an econometric model that is invariant over extensions of
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the information set in time, interventions or variables. Their definition is useful for

their purpose of finding invariant relationships between economic variables in data,

but cannot be used for our purpose of interpreting empirical results in terms of an

economic model.
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Chapter 2

STOCHASTIC PROCESSES

In most macroeconomic models, expectations conditional on information sets are used

to model the forecasting conducted by economic agents. Economic agents typically

observe stochastic processes of random variables (collections of random variables in-

dexed by time) to form their information sets. This chapter defines the concepts

of conditional expectations and information sets for the case of a finite number of

elements in the probability space.1

2.1 Review of Probability Theory

Since the probability statements made in asymptotic theory involve infinitely many

random variables instead of just one random variable, it is important to understand

basic concepts in probability theory. Thus, we first review those basic concepts.

Imagine that we are interested in making probability statements about a set

of the states of the world (or a probability space), which we denote by S. For the

purpose of understanding concepts, nothing is lost by assuming that there is a finite

number of states of the world. Hence we adopt the simplifying assumption that S

1For the general probability space, these concepts are defined with measure theory (see Appendix
2.A). For our purpose, it is not necessary for the reader to understand measure theory.

5
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consists of N possible states: S = {s1, · · · , sN}. We assign a probability πi = Pr(si)

to si, depending on how likely si is to occur. It is assumed that
∑N

i=1 πi = 1 and

0 ≤ πi ≤ 1 for all i. Note that we can now assign a probability to all subsets of S.

For example, let Λ be {s1, s2}. Then the probability that the true s is in Λ is denoted

by Pr(s ∈ Λ), where Pr(s ∈ Λ) = π1 + π2.

Example 2.1 The state of the world consists of s1: it rains tomorrow, and s2: it

does not rain tomorrow. According to a weather forecast, π1 = 0.8 and π2 = 0.2.

A random variable assigns a real value to each element s in S (that is, it is

a real valued function on S). Let X(s) be a random variable (we will often omit

the arguments s). For a real value x, the distribution function, F (x), of the random

variable is defined by F (x) = Pr{s : X(s) ≤ x}. A random variable is assigned an

expected value or mean value

E(X) =
N∑
i=1

X(si)πi.(2.1)

Example 2.2 Continuing Example 2.1, let X(s) be the profit of an umbrella seller in

terms of dollars withX(s1) = 100 andX(s2) = 10. Then E(X) = 100×0.8+10×0.2 =

82. The distribution function F (x) is given by F (x) = 0 for x < 10, F (x) = 0.2 for

10 ≤ x < 100, and F (x) = 1 for x ≥ 100.

A random vector is a vector of random variables defined on the set of states.

For a k-dimensional random vector X(s) = (X1(s), · · · , Xk(s))
′, the joint distribution

function F is defined by

F (x1, · · · , xk) = Pr[X1 ≤ x1, · · · , Xk ≤ xk].(2.2)
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2.2 Stochastic Processes

A collection of random variables indexed by time is called a stochastic process or a time

series. LetXt(s) be a random variable, then a collection {Xt : X0(s), X1(s), X2(s), · · · }

is a univariate stochastic process. It is sometimes more convenient to consider a

stochastic process that starts from the infinite past, {· · · , X−2(s),X−1(s), X0(s), X1(s),

X2(s), · · · }. In general, {Xt(s) : t ∈ A} for any set A is a stochastic process. If A

is a set of integers, then time is discrete. It is also possible to consider a continuous

time stochastic process for which the time index takes any real value. For example,

{Xt(s) : t is a nonnegative real number}. Here, if we take Xt as a random vector

rather than a random variable, then it is a vector stochastic process. When we observe

a sample of size T of a random variable X or a random vector X : {X1, · · · , XT}, it

is considered a particular realization of a part of the stochastic process.

Note that once s is determined, the complete history of the stochastic pro-

cess becomes known. For asymptotic theory, it is usually easier to think about the

stochastic nature of economic variables this way rather than the alternative, which is

to consider a probability space for each period based on independent disturbances.

In a sense, the stochastic process modeled in this manner is deterministic be-

cause everything is determined at the beginning of the world when s is determined.

However, this does not mean that there is no uncertainty to economic agents because

they do not learn s until the end of the world. In order to illustrate this, let us

consider the following example:

Example 2.3 Imagine an economy with three periods and six states of the world.

The world begins in period 0. We observe two variables, aggregate output (Yt) and
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the interest rate (it), in period 1 and period 2. The world ends in period 2. In each

period, Yt can take two values, 150 and 300, and it can take two values, 5 and 10.

We assume that i2 is equal to i1 in all states of the world, and that the i1 = 5 in all

states in which Y1 = 150. The six states of the world can be described by the triplet,

[Y1, i1, Y2].

The six states of the world are, s1 = [300, 10, 300], s2 = [300, 10, 150], s3 =

[300, 5, 300], s4 = [300, 5, 150], s5 = [150, 5, 300], and s6 = [150, 5, 150]. To illustrate,

s1 means the economy is in a boom (higher output level) with a high interest rate

in period 1, and is in a boom in period 2. In period 0, the economic agents assign a

probability to each state: π1 = 0.20, π2 = 0.10, π3 = 0.15, π4 = 0.05, π5 = 0.15, and

π6 = 0.35. Unconditional expected values are taken with these probabilities.

In this example, let Xt(s) = [Yt(s), it(s)]. Then [X1(s),X2(s)] is a stochastic

process. The whole history of the process is determined at the beginning of the world

when s is chosen, and the agents learn which state of the world they are in at the

end of the world in period 2. In period 1, however, the agents only have partial

information as to which state of the world is true. For example, if Y1 = 300 and

i1 = 5, the agents learn that they are in either s3 or s4, but cannot tell which one

they are in until they observe Y2 in period 2.

2.3 Conditional Expectations

Economic agents use available information to learn the true state of the world and

make forecasts of future economic variables. This forecasting process can be modeled

using conditional expectations.

Information can be modeled as a partition of S into mutually exclusive subsets:
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F = {Λ1, · · · ,ΛM} where Λ1 ∪ · · · ∪ ΛM = S, and Λj ∩ Λk = ∅ if j ̸= k. For example,

information F consists of two subsets: F = {Λ1,Λ2}. Here Λ1 = {s1, · · · , sM}, and

Λ2 = {sM+1, · · · , sN}. The information represented by F tells us which Λ contains

the true s, but no further information is given by F.

In this situation, once agents obtain the information represented by F, then the

agents know which subset contains the true s, and they can assign a probability of

zero to all elements in the other subset. There is no reason to change the ratios of

probabilities assigned to the elements in the subset containing the true s. Nonetheless,

the absolute level of each probability should be increased, so that the probabilities

add up to one. The probability conditional on the information that the true s is in

Λj is denoted by Pr{si|s ∈ Λj}. The considerations given above lead to the following

definition of conditional probability:

Pr{si|s ∈ Λj} =
Pr{si}

Pr{s ∈ Λj}
,(2.3)

when si is in Λj. Here each probability is scaled by the probability of the subset

containing the true s, so that the probabilities add up to one.

We use conditional probability to define the conditional expectation. The ex-

pectation of a random variable Y conditional on the information that the true s is in

Λj is

E(Y |s ∈ Λj) =
∑
s∈Λj

Y (s)
Pr{si}

Pr{s ∈ Λj}
,(2.4)

where the summation is taken over all s in Λj.

It is convenient to view the conditional expectation as a random variable. For

this purpose, the conditional expectation needs to be defined over all s in S, not

just for s in a particular Λj. Given each s, we first find out which Λ contains s.
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When Λj contains s, the expected value of Y conditional on F for s is given by

E(Y |F)(s) = E(Y |s ∈ Λj).

Instead of a partition, we can use a random variable or a random vector to de-

scribe information. Consider information represented by a partition F = {Λ1, · · · ,ΛM}.

Consider the set I, which consists of all random variables that take the same value

for all elements in each Λj : I = {X(s) : X(si) = X(sk) if si ∈ Λj and sk ∈ Λj for

all i, j, k}. Then the information set I represents the same information as F does. A

random variable X is said to be in this information set, when X(si) = X(sk) if both

si and sk are in the same Λj.
2 A random vector X is said to be in this information

set when each element of X is in the information set.

If X is in the information set I, and if X takes on different values for all different

Λ (X(si) ̸= X(sk) when si and sk are not in the same Λ), then we say that the

random variable X generates the information set I. If a random vector X is in I,

and if at least one element of X takes on different values for different Λ, then the

random vector X is said to generate the information set I. When a random variable

X or a random vector X generates the information set I, which represents the same

information as a partition F, we define E(Y |I) as E(Y |F). If I is generated by X,

we define E(Y |X) = E(Y |I); and if I is generated by a random vector X, we define

E(Y |X) = E(Y |I). It should be noted that E(Y |I) is in the information set I.

Example 2.4 Continuing Example 2.3, let I be the information set generated by

X1 = (Y1, i1), and let F be the partition that represents the same information as

I. Then F = {Λ1,Λ2,Λ3}, where Λ1 = {s1, s2}, Λ2 = {s3, s4}, and Λ3 = {s5, s6}.
2In the terminology of probability theory, we consider a set of all possible unions of Λ’s in F plus

the null set. This set of subsets of S is called a σ-field, and used to describe information. When a
random variable X is in the information set I, we say that the random variable is measurable with
respect to this σ-field.
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Using (2.3), Pr(s1|s ∈ Λ1) = 0.20
0.20+0.10

= 2
3
and Pr(s2|s ∈ Λ1) = 0.10

0.20+0.10
= 1

3
.

Hence E(Y2|s ∈ Λ1) = 300 × 2
3
+ 150 × 1

3
= 250. Similarly, Pr(s3|s ∈ Λ2) = 3

4
,

Pr(s4|s ∈ Λ2) =
1
4
, Pr(s5|s ∈ Λ3) =

3
10
, Pr(s6|s ∈ Λ3) =

7
10
, E(Y2|s ∈ Λ2) = 262.5,

and E(Y2|s ∈ Λ3) = 195. Hence the random variable E(Y2|I) is given by

E(Y2|I)(s) =


250 if s ∈ Λ1

262.5 if s ∈ Λ2

195 if s ∈ Λ3

.(2.5)

Example 2.5 Continuing Example 2.4, consider the information set J which is gen-

erated by Y1. Then J is a smaller information set than I in the sense that J ⊂ I.

Similar computations as those in Example 2.4 yield

E(Y2|J)(s) =
{

255 if s ∈ {s1, s2, s3, s4}
195 if s ∈ {s5, s6}

.(2.6)

Two properties of conditional expectations are very important in macroeconomics.

Proposition 2.1 (Properties of Conditional Expectations)

(a) If a random variable Z is in the information set I, then

E(ZY |I) = ZE(Y |I)(2.7)

for any random variables Y with finite E(|Y |), assuming that E(|ZY |) is finite.

(b) The Law of Iterated Expectations: If the information set J is smaller than the

information set I (J ⊂ I), then

E(Y |J) = E[E(Y |I)|J](2.8)

for any random variable Y with finite E(|Y |).
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Expectation can be viewed as a special case of conditional expectation in which

the information set consists of constants. Since a constant is a random variable

which takes the same value for all states of the world, any information set includes

all constants. Therefore, the Law of Iterated Expectations implies

E(Y ) = E[E(Y |I)].(2.9)

When we wish to emphasize the difference between expectations and conditional

expectations, expectations are called unconditional expectations. Relation (2.9) states

that an unconditional expected value of a random variable Y can be computed as an

unconditional expected value of the expectation of the random variable conditional

on any information set. For a proof of Proposition 2.1 in the general case, see, e.g.,

Billingsley (1986, Theorem 34.3 and Theorem 34.4).

2.4 Stationary Stochastic Processes

A stochastic process {· · · ,X−1,X0,X1, · · · } is strictly stationary if the joint distri-

bution function of (Xt,Xt+1, · · · ,Xt+h) is the same for all t = 0,±1,±2, · · · and all

h = 0, 1, 2, · · · . A stochastic process {· · · ,X−1,X0,X1, · · · } is covariance station-

ary (or weakly stationary) if Xt has finite second moments (E(XtX
′
t) < ∞) and if

E(Xt) and E(XtX
′
t−h) do not depend on the date t for all t = 0,±1,±2, · · · and all

h = 0, 1, 2, · · · .

Because all moments are computed from distribution functions, if Xt is strictly

stationary and has finite second moments, then it is also covariance stationary. If

Xt is covariance stationary, then its mean E(Xt) and its h-th autocovariance Φ(h) =

E[(Xt − E(Xt))(Xt−h − E(Xt−h)
′] = E(XtX

′
t−h) − E(Xt)E(X

′
t−h) does not depend

on date t.
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Proposition 2.2 If a k-dimensional vector stochastic process Xt is strictly station-

ary, and if a continuous function f(·) : Rk 7−→ Rp does not depend on date t, then

f(Xt) is also strictly stationary.3

This follows from the fact that the distribution function of f(Xt), f(Xt+1), · · · ,

f(Xt+h) is determined by f and the joint distributions of Xt, Xt+1, · · · , Xt+h (see

Appendix 2.A). Proposition 2.2 will be used frequently to derive the cointegrating

properties of economic variables from economic models in Chapter 15.

The next proposition is for covariance stationary processes.

Proposition 2.3 If a k-dimensional vector stochastic process Xt is covariance sta-

tionary, and if a linear function f(·) : Rk 7−→ Rp does not depend on date t, then

f(Xt) is also covariance stationary.

This proposition is true because f(Xt) has finite second moments, and the first

and second moments of f(Xt) do not depend on date t. However, unlike Proposition

2.2 for strictly stationary processes, a nonlinear function of a covariance stationary

process may not be covariance stationary. For example, suppose that Xt is covariance

stationary. Imagine that Xt’s variance is finite but E(|Xt|4) = ∞. Consider Zt =

f(Xt) = (Xt)
2. Then Zt’s variance is not finite, and hence Zt is not covariance

stationary.

In order to model strictly stationary and covariance stationary processes, it is

convenient to consider white noise processes. A univariate stochastic process {et : t =
3This proposition holds for any measurable function f(·) : Rk 7−→ Rp (see Appendix 2.A). The

term “measurable” is avoided because this book does not require knowledge of measure theory. All
continuous functions are measurable but not vice versa. Thus the continuity condition in Proposition
2.2 is more stringent than necessary. This is not a problem for the purpose of this book because
continuous functions are used in all applications of this proposition.
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· · · ,−1, 0, 1, · · · } is white noise if E(et) = 0, and

E(etej) =

{
σ2 if t = j
0 if t ̸= j

,(2.10)

where σ is a constant. For a vector white noise, we require

E(ete
′
j) =

{
Σ if t = j
0 if t ̸= j

,(2.11)

where Σ is a matrix of constants. A white noise process is covariance stationary.

If a process is independent and identically distributed (i.i.d.), then it is strictly

stationary. The simplest example of an i.i.d. process is an i.i.d. white noise. A

Gaussian white noise process {et : −∞ < t < ∞} is an i.i.d. white noise process

for which et is normally distributed with zero mean. In these definitions, et can be a

vector white noise process.

All linear functions of white noise random variables are covariance stationary

because of Proposition 2.3. In addition, by Proposition 2.2, all functions of i.i.d.

white noise random variables are strictly stationary. A simple example of this case

is:

Example 2.6 Let Xt = δ+ et, where et is a white noise process, and δ is a constant.

Then E(Xt) = δ, and Xt is covariance stationary. If et is an i.i.d. white noise process,

then Xt is strictly stationary.

If Xt is strictly stationary with finite second moments, Xt is covariance station-

ary. Therefore, Xt’s first and second moments cannot depend on date t. In empirical

work, the easiest case to see that an observed variable is not strictly stationary is

when a variable’s mean shifts upward or downward over time. A simple example of

this case is:
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Example 2.7 Let Xt = δ+ θt+ et, where et is an i.i.d. white noise random variable

and δ and θ ̸= 0 are constants. Then Xt is not stationary because E(Xt) = δ + θt

depends on time.4

Strictly stationary and covariance stationary processes can be serially correlated,

that is, their h-th order autocovariances can be nonzero for h ̸= 0 as in the next two

examples.

Example 2.8 (The first order Moving Average Process) Let Xt = δ + et + Bet−1,

where et is a white noise which satisfies (2.10), and δ and B are constant. This is a

moving average process of order 1 (see Chapter 4). Then Xt is covariance stationary

for any B because of Proposition 2.3.5 E(Xt) = δ, and its h-th autocovariance is

ϕh = E[(Xt − δ)(Xt−h − δ)] =


σ2(1 +B2) if h = 0
σ2 if |h| = 1
0 if |h| > 1

.(2.12)

In this example, if et is an i.i.d. white noise, then Xt is strictly stationary.

Example 2.9 (The first order Autoregressive Process) Consider a process Xt which

is generated from an initial random variable X0, where

Xt = AXt−1 + et for t ≥ 1,(2.13)

where et is a Gaussian white noise random variable, and A is a constant. This is an

autoregressive process of order 1 (see Chapter 4). If |A| < 1 and X0 is a normally

distributed random variable with mean zero and variance of V ar(et)
1−A2 , then Xt is strictly

4Because Xt is stationary after removing a deterministic trend in this example, we say that
Xt is trend stationary as we will discuss in Chapter 13. Trend stationarity is a way to model
nonstationarity.

5Even though Xt is stationary for any B, it is often convenient to impose a restriction |B| ≤ 1
as explained in Chapter 4.
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stationary (see Exercise 2.3). The methods explained in Chapter 4 can be used to

show that Xt is not strictly stationary when X0’s distribution is different from the

one given above.

2.5 Conditional Heteroskedasticity

Using conditional expectations, we can define variance and covariance conditional on

an information set just as we use unconditional expectations to define (unconditional)

variance and covariance. The variance of Y conditional on an information set I is

V ar(Y |I) = E[(Y − E(Y |I))2|I],(2.14)

and the covariance of X and Y conditional on an information set I is

Cov(X, Y |I) = E[(X − E(X|I))(Y − E(Y |I))|I].(2.15)

Consider a stochastic process [Yt : t ≥ 1]. If the unconditional variance of Yt,

V ar(Yt), depends on date t, then the Yt is said to be heteroskedastic; if not, it is

homoskedastic. If Yt’s variance conditional on an information set It, V ar(Yt|It)), is

constant and does not depend on the information set, then Yt is said to be condition-

ally homoskedastic; if not, it is conditionally heteroskedastic.

Example 2.10 Let Yt = δ+ htet, where et is an i.i.d. white noise with unit variance

(E(e2t ) = 1), and {ht : −∞ < t < ∞} is a sequence of real numbers. Then the

(unconditional) variance of Yt is ht, and Yt is heteroskedastic as long as ht ̸= hj for

some t and j.

A heteroskedastic process is not strictly stationary because its variance depends

on date t. It should be noted, however, that a strictly stationary random variable can
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be conditionally heteroskedastic. This fact is important because many of the financial

time series have been found to be conditionally heteroskedastic. For example, the

growth rates of asset prices and foreign exchange rates can be reasonably modeled

as strictly stationary processes. However, the volatility of such a growth rate at a

point in time tends to be high if it has been high in the recent past. Therefore, such

a growth rate is often modeled as a conditionally heteroskedastic process. A popular

method to model conditional heteroskedasticity, introduced by Engle (1982), is an

autoregressive conditional heteroskedastic (ARCH) process. The following is a simple

example of an ARCH process.

Example 2.11 (An ARCH Process) Let It be an information set, and et be a uni-

variate stochastic process such that et is in It, and E(et|It−1) = 0. Assume that

e2t = η + αe2t−1 + wt,(2.16)

where η > 0, wt is another white noise process in It with E(wt|It−1) = 0 and

E(wkwj|It) =
{
λ2 if k = j
0 if k ̸= j

,(2.17)

where λ is a constant. Relation (2.16) implies that et’s conditional variance depends

on It:

E(e2t |It−1) = η + αe2t−1,(2.18)

and thus et is conditionally heteroskedastic.

In order to see whether or not et’s unconditional variance is constant over time, take

expectations of both sides of (2.18) to obtain

E(e2t ) = η + αE(e2t−1).(2.19)
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Hence if the variance of et is a constant σ2, then σ2 = η+ασ2, and σ2 = η
1−α

. Because

σ2 is positive, this equation implies that α < 1. When α < 1, an ARCH process can

be covariance stationary and strictly stationary.

2.6 Martingales and Random Walks

Consider a stochastic process [Yt : −∞ < t <∞], and a sequence of information sets

[It : −∞ < t <∞] that is increasing (It ⊂ It+1). If Yt is in It and if

E(Yt+1|It) = Yt,(2.20)

then Yt is a martingale adapted to It. Rational expectations often imply that an

economic variable is a martingale (see Section 3.2). If Yt is a martingale adapted

to It and if its conditional variance, E((Yt+1 − Yt)
2|It), is constant (that is, Yt is

conditionally homoskedastic), then Yt is a random walk.

As we will discuss later in this book, most of the rational expectations models

imply that certain variables are martingales. The models typically do not imply that

the variables are conditionally homoskedastic, and hence do not imply that they are

random walks. However, if the data for the variable does not show signs of conditional

heteroskedasticity, then we may test whether or not a variable is a random walk. It is

often easier to test whether or not the variable is a random walk than to test whether

or not it is a martingale.

Consider a stochastic process [et : −∞ < t <∞], and a sequence of information

sets [It : −∞ < t <∞] which is increasing (It ⊂ It+1). If et is in It and if

E(et+1|It) = 0,(2.21)

then et is a martingale difference sequence adapted to It. If Yt is a martingale adapted
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to It, then et = Yt − Yt−1 is a martingale difference sequence (see Exercise 2.4). A

covariance stationary martingale difference sequence is a white noise process (see

Exercise 2.5). However, a white noise process may not be a martingale difference

sequence for any sequence of information sets. An i.i.d. white noise process is a

martingale difference sequence (see Exercise 2.6).

In these definitions, a martingale or a martingale difference sequence can be a

vector stochastic process.

Appendix

2.A A Review of Measure Theory

Let S be an arbitrary nonempty set of points s. An event is a subset of S. A set of

subsets is called a class. A class F of subsets of S is called a field if

(i) S ∈ F;

(ii) A ∈ F implies Ac ∈ F, where Ac is the complement of A;

(iii) A,B ∈ F implies A ∪ B ∈ F.

A class F is a σ-field if it is a field and if

(iv) A1,A2, · · · ∈ F implies A1 ∪ A2 ∪ · · · ∈ F.

A set function is a real-valued function defined on some class of subsets of S. A

set function Pr on a field F is a probability measure if it satisfies these conditions:

(i) 0 ≤ Pr(A) ≤ 1 for A ∈ F;

(ii) Pr(0) = 0, P r(S) = 1;
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(iii) if A1,A2, · · · is a disjoint sequence of F-sets and if
∪∞

k=1Ak ∈ F, then

Pr(
∪∞

k=1Ak) =
∑∞

k=1 Pr(Ak).

If F is a σ-field in S and Pr is a probability measure on F, the triple (S,F, P r) is

called a probability space. Given a class A, consider the class which is the intersection

of all σ-fields containing A. This class is the smallest σ-field which contains A, and

is called the σ-field generated by A and is denoted by σ(A).

Proposition 2.A.1 A probability measure on a field has a unique extension to the

generated σ-field.

In Euclidean k-space Rk, consider the class of the bounded rectangles

[x = (x1, · · · , xk) : ai ≤ x ≤ bi, i = 1, · · · , k].

The σ-field generated from this class is called the k-dimensional Borel sets, and

denoted by Rk.

Let F be a σ-field of subsets of S and F′ be a σ-field of subsets of S′. For a

mapping T : S 7−→ S′, consider the inverse images T−1(A′) = [s ∈ S : T (s) ∈ A′].

The mapping T is measurable F/F′ if T−1(A′) ∈ F for each A′ ∈ F′.

For a real-valued function f , the image space S′ is the line R1, and in this

case R1 is always tacitly understood to play the role of F′. A real-valued function

on S is measurable F (or simply measurable when it is clear from the context what

F is involved) if it is measurable F/R1. If (S,F, P r) is a probability space, then a

real-valued measurable function is called a random variable. For a random variable

X, we can assign a probability to the event that X(s) belongs to a Borel set B by

Pr(X−1(B)).
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For a mapping f : S 7−→ Rk, Rk is always understood to be the σ-field in

the image space. If (S,F, P r) is a probability space, then a measurable mapping

X : S 7−→ Rk is called a random vector. It is known that X is a random vector if and

only if each component of X is a random variable.

A mapping f : Ri 7−→ Rk is defined to be measurable if it is measurable Ri/Rk.

Such functions are called Borel functions.

Proposition 2.A.2 If f : Ri 7−→ Rk is continuous, then it is measurable.

If X is a j-dimensional random vector, and g : Rj 7−→ Ri is measurable, then g(X)

is an i-dimensional random vector. If the distribution of X is µ, the distribution of

g(X) is µg−1. Proposition 2.2 can be proven by taking X = [Y ′
t , · · · , Y ′

t+k]
′.

We now introduce two definitions of conditional expectation. One definition is

standard in measure theory. The other definition is given because it is convenient for

the purpose of stating a version of the conditional Gauss-Markov theorem used in this

book. Intuitively, the conditional Gauss-Markov theorem is obtained by stating all

assumptions and results of the Gauss-Markov theorem conditional on the stochastic

regressors. Formally, it is necessary to make sure that the conditional expectations

of the relevant variables are well defined.

Let S be a probability space, F be a σ-field of S, and Pr be a probability measure

defined on F. The random variables we will consider in this section are defined on

this probability space. Let X = (X1, X2, ..., XT )
′ be a T × K matrix of random

variables, which will be the regressor matrix of the regression to be considered. Let

y = (y1, y2, ..., yT ) and e = (e1, e2, ..., eT ) be T × 1 vectors of random variables. We

are concerned with a linear model of the form: y = Xb0 + e, where b0 is a K × 1

vector of real numbers.
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For s such that X(s)′X(s) is nonsingular, the OLS estimator is

(2.A.1) bT = (X′X)−1X′y.

In order to apply a conditional version of the Gauss-Markov Theorem, it is necessary

to define the expectation and variance of bT conditional on X.

Let Z be an integrable random variable (namely, E(|Z|) <∞), and σ(X) be the

smallest σ-field with respect to which of the random variables in X are measurable.

The standard definition of the expectation of Z given X is obtained by applying the

Radon-Nikodym theorem (see, e.g., Billingsley, 1986). Throughout this paper, we use

the notation E[Z|σ(X)] to denote the usual conditional expectation of Z conditional

on X as defined by Billingsley (1986) for a random variable Z.6 E[Z|σ(X)] is a

random variable, and E[Z|σ(X)]s denotes the value of the random variable at s in S.

It satisfies the following two properties:

(i) E(Z|σ(X)) is measurable and integrable given σ(X).

(ii) E(Z|σ(X)) satisfies the functional equation:

(2.A.2)

∫
G

E(Z|σ(X))dPr =

∫
G

ZdPr, G ∈ σ(X).

There will in general be many such random variables which satisfy these two prop-

erties; any one of them is called a version of E(Z|σ(X)). Any two versions are equal

with probability 1.

It should be noted that this definition is given under the condition that Z is

integrable, namely E(|Z|) < ∞. This condition is too restrictive when we define

6If z is a vector, the conditional expectation is taken for each element in z.
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the conditional expectation and variance of the OLS estimator in many applications7

because the moments of (X′X)−1 may not be finite even when X has many finite

moments. For this reason, it is difficult to confirm that E(bT |σ(X)) can be defined

in each application even if X is normally distributed. Thus, Judge et al. (1985)

conclude that the Gauss-Markov theorem based on E(·|σ(X)) is not very useful.

We avoid this problem by adopting a different definition of conditional expec-

tation based on conditional distribution. For this purpose, we first define conditional

probabilities following Billingsley (1986). Given A in F, define a finite measure v on

σ(X) by v(G) = Pr(A ∩ G) for G in σ(X). Then Pr(G) = 0 implies that v(G) = 0.

The Radon-Nikodym theorem can be applied to the measures v and Pr, and there

exists a random variable f that is measurable and integrable with respect to Pr,

such that Pr(A ∩ G) =
∫
G
fdPr for all G in σ(X). Denote this random variable by

Pr(A|σ(G)). This random variable satisfies these two properties:

(i) Pr(A|σ(X)) is measurable and integrable given σ(X).

(ii) Pr(A|σ(X)) satisfies the functional equation

(2.A.3)

∫
G

Pr(A|σ(X))dPr = Pr(A ∩G), G ∈ σ(X).

There will in general be many such random variables, but any two of them are equal

with probability 1. A specific such random variable is called a version of the condi-

tional probability.

Given a random variable Z, which may not be integrable, we define a conditional

distribution µ(·, s) given X for each s in S. Let R1 be the σ-field of the Borel sets

7Loeve (1978) slightly relaxes this restriction by defining the conditional expectation for any
random variable whose expectation exists (but may not be finite) with an extension of the Radon-
Nikodym theorem. This definition can be used for E(·|σ(X)), but this slight relaxation does not
solve our problem.
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in R1. By Theorem 33.3 in Billingsley (1986, p.460), there exists a function µ(H, s),

defined for H in R1 and s in S, with these two properties:

(i) For each s in S, µ(H, s) is, as a function of H, a probability measure on R1.

(ii) For each H in R1, µ(H, s) is, as a function of s, a version of Pr(Z ∈ H|σ(X))s.

For each s in S, we define E(Z|X)s to be
∫
R1 zµ(dz, s). It should be noted that

E(Z|X)s does not necessarily satisfy the usual properties of conditional expectation

such as the law of iterated expectations. In general, E(Z|X)s may not even exist for

some s. If
∫
R1 |z|µ(dz, s) is finite, then, E(Z|X)s is said to exist and be finite.

Given a T×K matrix of real numbers x,E(Z|X)s is identical for all s inX−1(x).

Therefore, we define E(Z|X = x) as E(Z|X)s for s in X−1(x). This is the definition

of the conditional expectation of Z given X = x in this paper.

We are concerned with a linear model of the form:

Assumption 2.A.1 y = Xb0 + e

where b0 is a K × 1 vector of real numbers. Given a T ×K matrix of real numbers

x, we assume that the conditional expectation of e given X = x is zero:

Assumption 2.A.2 E[e|X = x] = 0.

Next, we assume that e is homoskedastic and et is not serially correlated given X = x:

Assumption 2.A.3 E[ee′|X = x)] = σ2IT .

The OLS estimator can be expressed by (2.A.1) for all s in X−1(x) when the next

assumption is satisfied:

Assumption 2.A.4 x′x is nonsingular.
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Under Assumptions 2.A.1–2.A.4, E[bT |X = x] = b0 and E[(bT − b0)
′(bT −

b0)|X = x] = σ2(x′x)−1. The conditional version of the Best Linear Unbiased Esti-

mator (BLUE) givenX = x can be defined as follows: An estimator bT for b0 is BLUE

conditional on X = x if (1) bT is linear conditional on X = x, namely, bT can be writ-

ten as bT = Ay for all s inX−1(x) whereA is aK×T matrix of real numbers; (2) bT is

unbiased conditional onX = x, namely, E(bT |X = x) = b; (3) for any linear unbiased

estimator b∗ conditional on X = x, E[(bT −b0)(bT −b0)
′|X = x] ≤ E[(b∗−b0)(b

∗−

b0)
′|X = x], namely, E[(b∗−b0)(b

∗−b0)
′|X(s) = x]−E[(bT−b0)(bT−b0)

′|X(s) = x]

is a positive semidefinite matrix.

With these preparations, the following theorem can be stated:

Theorem 2.A.1 (The Conditional Gauss-Markov Theorem) Under Assumptions 2.A.1–

2.A.4, the OLS estimator is BLUE conditional on X = x.

Applying any of the standard proofs of the (unconditional) Gauss-Markov theo-

rem can prove this theorem by replacing the unconditional expectation with E(·|X =

x).

Modifying some assumptions and adding another yields the textbook version of

the conditional Gauss-Markov theorem based on E(·|σ(X)).

Assumption 2.A.2′ E[e|σ(X)] = 0.

Since E[e|σ(X)] is defined only when each element of e is integrable, Assumption

2.A.2′ implicitly assumes that E(e) exists and is finite. It also implies E(e) = 0

because of the law of iterated expectations. Given E(e) = 0, a sufficient condition

for Assumption 2.A.2′ is that X is statistically independent of e. Since Assumption

2.A.2′ does not imply that X is statistically independent of e, Assumption 2.A.2′
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is weaker than the assumption of independent stochastic regressors. With the next

assumption, we assume that e is conditionally homoskedastic and et is not serially

correlated:

Assumption 2.A.3′ E[ee′|σ(X)] = σ2IT .

The next assumption replaces Assumption 2.A.4.

Assumption 2.A.4′ X′X is nonsingular with probability one.

From Assumption 2.A.1, bT = b0 + (X′X)−1X′e. Hence we can prove a version of

the conditional Gauss-Markov theorem based on E(·|σ(X)) when the expectations of

(X′X)−1X′e and (X′X)−1X′ee′X(X′X)−1 exist and are finite. For this purpose, we

consider the following assumption:

Assumption 2.A.5 E[trace((X′X)−1X′ee′X(X′X)−1)] exists and is finite.

The problem with Assumption 2.A.5 is that it is not easy to verify the assumption for

many distributions of X and e that are often used in applications and Monte Carlo

studies. However, a sufficient condition for Assumption 2.A.5 is that the distributions

of X and e have finite supports.

Under Assumptions 2.A.1, 2.A.2′–2.A.4′, and 2.A.5,

E(bT |σ(X)) = b0 + E[(X′X)−1X′e|σ(X)] = b0.

Moreover, E[(bT − b0)
′(bT − b0)|σ(X)] can be defined, and E[(bT − b0)

′(bT −

b0)|σ(X)] = E[(X′X)−1X′ee′X(X′X)−1|σ(X)] = (X′X)−1X′E[ee′|σ(X)]X(X′X)−1 =

σ2(X′X)−1.

We now consider a different definition of the conditional version of the Best

Linear Unbiased Estimator (BLUE). The Best Linear Unbiased Estimator (BLUE)
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conditional on σ(X) is defined as follows. An estimator bT for b0 is BLUE conditional

on σ(X) in H if (1) bT is linear conditional on σ(X), namely, bT can be written as

bT = Ay whereA is aK×T matrix, and each element ofA is measurable given σ(X);

(2) bT is unbiased conditional on σ(X) in G, equivalently, E(bT |σ(X)) = b0, (3) for

any linear unbiased estimator b∗ conditional on σ(X) for which E(b∗b∗′) exists and

is finite, E[(bT −b0)(bT −b0)
′|σ(X)] ≤ E[(b∗−b0)(b

∗−b0)
′|σ(X)] with probability

1, namely, E[(b∗ − b0)(b
∗ − b0)

′|σ(X)] − E[(bT − b0)(bT − b0)
′|σ(X)] is a positive

semidefinite matrix with probability 1.

Proposition 2.A.3 Under Assumptions 2.A.1, 2.A.2′–2.A.4′, and 2.A.5, the OLS

estimator is BLUE conditional on σ(X). Moreover, it is unconditionally unbiased

and has the minimum unconditional covariance matrix among all linear unbiased

estimators conditional on σ(X).

Proof The proof of this proposition is given in Greene (1997, Section 6.7).

In this proposition, the covariance matrix of bT is σ2E[(X′X)−1], which is differ-

ent from σ2[E(X′X)]−1. This property may seem to contradict the standard asymp-

totic theory, but it does not. Asymptotically, (1/T )X′X converges almost surely to

E[X′
tXt] if Xt is stationary and ergodic. Hence the limit of the covariance matrix of

√
T (bT − b0), σ

2E[{(1/T )(X′X)}−1], is equal to the asymptotic covariance matrix,

σ2[E(X′
tXt)]

−1.

In order to study the distributions of the t ratios and F test statistics we need

an additional assumption:

Assumption 2.A.6 Conditional on X, e follows a multivariate normal distribution.
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Given a 1×K vector of real numbers R, consider a random variable

(2.A.4) NR =
R(bT − b0)

σ[R(X′X)−1R]1/2

and the usual t ratio for Rb0

(2.A.5) tR =
R(bT − b0)

σ̂[R(X′X)−1R]1/2
.

Here σ̂ is the positive square root of σ̂2 = (y−XbT )
′(y−XbT )/(T −K). With the

standard argument, NR and tR can be shown to follow the standard normal distri-

bution and Student’s t distribution with T − K degrees of freedom with appropri-

ate conditioning, respectively, under either Assumptions 2.A.1–2.A.6 or Assumptions

2.A.1, 2.A.2′, 2.A.3′, and 2.A.5–2.A.6. The following proposition is useful in order to

derive the unconditional distributions of these statistics.

Proposition 2.A.4 If the probability density function of a random variable Z condi-

tional on a random vector Q does not depend on the values of Q, then the marginal

probability density function of Z is equal to the probability density function of Z

conditional on Q.

This proposition is obtained by integrating the probability density function

conditional on Q over all possible values of the random variables in Q. Since NR

and tR follow a standard normal distribution and a t distribution conditional on X,

respectively, Proposition 2.A.4 implies the following proposition:

Proposition 2.A.5 Suppose that Assumptions 2.A.1, 2.A.5, and 2.A.6 are satisfied

and that Assumptions 2.A.2 and 2.A.3 are satisfied for all x in a set H such that

Pr(X−1(H)) = 1. Then NR is a standard normal random variable and tR is a t

random variable with T −K degrees of freedom.
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Alternatively, the assumptions for Proposition 2.A.3 with Assumption 2.A.6 can

be used to obtain a similar result:

Proposition 2.A.5′ Suppose that Assumptions 2.A.1, 2.A.2′–2.A.3′, 2.A.5, and 2.A.6

are satisfied for s and that Assumptions 2.A.2 and 2.A.3 are satisfied for all x in a set

H such that Pr(X−1(H)) = 1. Then NR is a standard normal random variable and

tR is a t random variable with T −K degrees of freedom.

Similarly, the usual F test statistics also follow (unconditional) F distributions.

These results are sometimes not well understood by econometricians. For example,

a standard textbook, Judge et al. (1985, p.164), states that “our usual test statistics

do not hold in finite samples” on the ground that the (unconditional) distribution of

b′
T s is not normal. It is true that bT is a nonlinear function of X and e, so it does not

follow a normal distribution even if X and e are both normally distributed. However,

the usual t and F test statistics have the usual (unconditional) distributions as a

result of Proposition 2.A.4.

2.B Convergence in Probability

Let c1, c2, · · · , cT , · · · be a sequence of real numbers and c be a real number. The

sequence is said to converge to c if for any ε, there exists an N such that |cT − c| < ε

for all T ≥ N . We write cT → c or limT→∞ cT = c. This definition is extended to a

sequence of vectors of real numbers {c1, c2, · · · , cT , · · · } by interpreting |cT − c| as

the Euclidean distance (cT − c)′(cT − c).

Consider a univariate stochastic process [XT : T ≥ 1], and a random variable

X. Fix s, and then [XT (s) : T ≥ 1] is a sequence of real numbers and X(s) is a real
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number. For each s, verify whether or not XT (s) → X(s). Then collect s such that

XT (s) → X(s), and calculate the probability that XT (s) → X(s). If the probability

is one, we say the sequence of random variables, [XT : T ≥ 1], converges to X almost

surely or with probability one. We write XT → X almost surely. This definition is

extended to a sequence of random vectors by using convergence for a sequence of

vectors for each s. In general, if a property holds for all s except for a set of s with

probability zero, we say that the property holds almost surely or with probability one.

If Ω has finite elements, almost sure convergence is the same thing as conver-

gence of XT (s) to X(s) in all states of the world. In general, however, almost sure

convergence does not imply convergence in all states.

The sequence of random variables [XT : T ≥ 1] converges in probability to the

random variable XT if, for all ε > 0, limT→∞ Prob(|XT − X| > ε) = 0. This is

expressed by writing XT
P→ c or plimT→∞XT = X. This extension to the vector case

is done by using the Euclidean distance. Almost sure convergence implies convergence

in probability.

Slutsky’s Theorem is important for working with probability limits. It states

that, if plimXT = X and if f(·) is a continuous function, then plim(f(XT )) =

f(plim(XT )).

2.B.1 Convergence in Distribution

Consider a univariate stochastic process [XT : T ≥ 1], and a random variable X with

respective distribution functions FT and F . If FT (x) → F (x) for every continuity

point x of F , then XT is said to converge in distribution to X; this is expressed by

writing XT
D→ X. The distribution F is called the asymptotic distribution or the
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limiting distribution of XT .

2.B.2 Propositions 2.2 and 2.3 for Infinite Numbers of R.V.’s
(Incomplete)

In Propositions 2.2 and 2.3, we only allow for a finite number of random variables.

In many applications, we are often interested in infinite sums of covariance or strictly

stationary random variables. We need the convergence concepts explained in Ap-

pendix 2.B. A sequence of real numbers {aj}∞j=0 is square summable if
∑∞

j=0 a
2
j is

finite. A sufficient condition for {aj}∞j=0 is that it is absolutely summable, that is,∑∞
j=0 |aj| is finite. In the following propositions, the infinite sum

∑∞
j=0 ajXt−j means

the convergence in mean square of
∑T

j=0 ajXt−j as T goes to infinity.

Proposition 2.B.1 If Xt is a scalar covariance stationary process, and if {aj}∞j=0 is

square summable, then X =
∑∞

j=0 ajXt−j is covariance stationary.

The vector version of this proposition is:

Proposition 2.B.2 If Xt is a k-dimensional vector covariance stationary process,

and if the absolute value of the i-th row of a sequence of a k × k matrix of real

numbers {Aj}∞j=0 is square summable for i = 1, · · · , k, then Xt =
∑∞

j=0AjXt−j is

covariance stationary.

Exercises

2.1 In Example 2.3, assume that π1 = 0.15, π2 = 0.05, π3 = 0.20, π4 = 0.30,

π5 = 0.10, and π6 = 0.20. As in Example 2.4, compute E(Y2|I)(s) and E(Y2|J)(s).

Then compute E(E(Y2|I)|J)(s). Verify that E(Y2|J)(s) = E(E(Y2|I)|J)(s) for all

s ∈ S.
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2.2 In example 2.9, assume that |A| < 1. This condition does not ensure that Yt

is strictly stationary. In order to see this, suppose that Y0 =0. Then compute the

expected values of Y1 and Y2 and the variance of Y1 and Y2, and show that Yt is not

strictly stationary if A ̸= 0.

2.3 In example 2.9, assume that |A| < 1 and that Y0 is N(0, σ2

1−A2 ). Then compute

the expected values of Y1 and Y2, the variance of Y1 and Y2, and the k-th autoco-

variance of Y . Prove that Yt is strictly stationary in this case. (Hint: Remember

that first and second moments completely determine the joint distribution of jointly

normally distributed random variables.)

2.4 Let Yt be a martingale adapted to It. Then prove that et = Yt − Yt−1 is a

martingale difference sequence.

2.5 Prove that a covariance stationary martingale difference sequence is a white

noise process.

2.6 Prove that an i.i.d. white noise process is a martingale difference sequence.
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Chapter 3

FORECASTING

3.1 Projections

In macroeconomics, forecasting is important in many ways. For structural macroeco-

nomic models, we usually need to specify the forecasting rules that economic agents

are using and the information set used by them to forecast future economic variables.

Taking the conditional expectation is one way to model forecasting. This method

generally requires nonlinear forecasting rules which are difficult to estimate. For the

purpose of testing the models and parameter estimation, it is sometimes possible for

an econometrician to use a simpler forecasting rule and a smaller information set.

In this section, we study projections as a forecasting method. Projections are

used to explain the Wold representation, which forms a basis for studying linear and

nonlinear stochastic processes.

3.1.1 Definitions and Properties of Projections

In this chapter, we consider random variables with finite second moments unless

otherwise noted. We consider the problem of forecasting y, using a set H of random

variables. Typically, y is a future random variable such as the growth rate of the

Gross Domestic Product (GDP) or the growth rate of a stock price, and H contains

33
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current and past economic variables that are observed by economic agents and/or

econometricians. Let us denote a forecast of y based on H by yf , so that the forecasting

error is y− yf . In most economic applications, we choose the forecast, yf , so that yf

minimizes

E[(y − yf )2].(3.1)

In other words, yf is in H, and for all h in H,

E[(y − yf )2] ≤ E[(y − h)2].(3.2)

The expression (3.1) is called the mean squared error associated with the forecast, yf .

When two random variables h1 and h2 satisfy

E(h1h2) = 0,(3.3)

they are said to be orthogonal to each other. When either h1 or h2 has mean zero,

orthogonality means that they are uncorrelated. The concept of orthogonality is

closely related to the problem of minimizing the mean squared error. Under certain

conditions on H, the Classical Projection Theorem (see, e.g., Luenberger, 1969) states

that there exists a unique random variable yf in H that minimizes the mean squared

error, and that yf is the minimizer if and only if the forecasting error is orthogonal

to all members of H:

E((y − yf )h) = 0(3.4)

for all h in H; this is called the orthogonality condition. When such a forecast exists,

we call the forecast, yf , a projection of y onto H, and denote it by Ê(y|H). When

Y is a random vector with finite second moments, we apply the projection to each

element of Y and write Ê(Y|H).
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Some properties of projections are very important:

Proposition 3.1 (Properties of Projections)

(a) Projections are linear: Ê(aX + bY |H) = aÊ(X|H) + bÊ(Y |H) for any random

variables, X and Y , with finite variance and constants, a and b.

(b) If a random variable Z is in the information set H, then

Ê(ZY |H) = ZÊ(Y |H).

(c) The Law of Iterated Projections: If the information set H is smaller than the

information set G (H ⊂ G), then

Ê(Y |H) = Ê[Ê(Y |G)|H].

3.1.2 Linear Projections and Conditional Expectations

The meaning of projection depends on how the information set H used for the pro-

jection is constructed. Let X be a p× 1 vector of random variables with finite second

moments. Let H = {h is a random variable such that h = X′b for some p-dimensional

vector of real numbers b}. Since Ê(y|H) is also a member of H, there exists b0 such

that

Ê(y|H) = X′b0.(3.5)

In this sense, Ê(y|H) uses a linear forecasting rule. When we use an information set

such as H, which only allows for linear forecasting rules, the projection based on such

an information set is called a linear projection. We write Ê(y|H) = Ê(y|X).
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Let HN = {h is a random variable with a finite variance such that h = f(X)

for a function f}.1 In this case, there exists a function f0(·) such that

Ê(y|HN) = f0(X).(3.6)

In this sense, Ê(y|HN) allows for a nonlinear forecasting rule. It can be shown that

Ê(y|HN) = E(y|X).(3.7)

Hence the projection and conditional expectation coincide when we allow for nonlinear

forecasting rules. For this reason, the projections we use in this book are linear

projections unless otherwise noted.

An important special case is when y and X are jointly normally distributed.

In this case, the expectation of y conditional on X is a linear function of X. Hence

the linear projection of y onto the information set generated by X is equal to the

expectation of y conditional on X.

When it is necessary to distinguish the information set I generated by X for

conditional expectations introduced in Chapter 2 and the information set H generated

by X for linear projections, H will be called the linear information set generated by

X. (????? Unclear! from Billy)
Masao

needs to
check this!

Linear projections are important because it is easy to estimate them in many

applications. Note that the orthogonality condition states that

E[(y −X′b0)h] = 0(3.8)

for any h in H. Since each element of X is in H, using the i-th element Xi for h, we

obtain

E[(y −X′b0)Xi] = 0(3.9)

1As in Proposition 2.2, we require that the function f is measurable.
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for i = 1, 2, · · · , p, or

E[X(y −X′b0)] = 0.(3.10)

Therefore

E(Xy) = E(XX′)b0.(3.11)

Assuming that E(XX′) is nonsingular, we obtain

b0 = E(XX′)−1E(Xy)(3.12)

and

Ê(y|H) = X′b0,(3.13)

where H is the linear information set generated by X. As we will discuss, if X and y

are strictly stationary, Ordinary Least Squares (OLS) can be used to estimate b0.

Following examples show differences between conditional expectation and linear

projection.
Youngsoo
needs to
check this!

Example 3.1 Let X and Y be random variables with non-zero mean. The linear

projection of Y on X is

Ê(Y |1, X) = a+ bX.(3.14)

Then, from (3.12) and E(Y ) = a+ bE(X) we have

b =
E(XY )

E(X2)
=
Cov(X,Y )

V ar(X)
(3.15)

a = E(Y )− bE(X).(3.16)
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Note that the linear projection is a population regression; that is, a and b are defined

by population moments. corresponding sample moments can be used to estimate â

and b̂.

Example 3.2 Let X be a standard Normal random variable, and Y = X2. Note

that Y is χ(1) random variable and E(Y ) = 1. The linear projection of Y on X is

Ê(Y |1, X) = a+ bX = 1.(3.17)

This is becasue from Example 3.1, we have

b =
E(XY )

E(X2)
=

E(X3)

V ar(X)
= 0(3.18)

and

a = E(Y ) = E(X2) = 1.(3.19)

Note that E(X3) = 0 because the distribution of X is symmetric. Whereas the

conditional expectation of Y on X is2

E(Y |X) = X2.(3.20)

Example 3.3 Let X0 be a standard Normal random variable, and ε1 be a Normal

random variable with mean 0 and variance σ2. Assume that X0 and ε are independent

each other. Define X1 = a+ bX0 + cX2
0 + ε1. Then, the unconditional expectation of

X1, the linear projection and the conditional expectation ofX1 onX0 are, respectively,

E(X1) = E(a+ bX0 + cX2
0 + ε1) = a+ c,(3.21)

2Note that since X0 = 1, 1 is always in the information set for conditional expectation. However,
1 may not be in the linear information set.
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Ê(X1|1, X0) = Ê(a+ bX0 + cX2
0 + ε1|1, X0)(3.22)

= a+ bX0 + c.

Note that Ê(X2
0 |1, X0) = 1 by (3.17).

E(X1|X0) = a+ bX0 + cX2
0 .(3.23)

3.2 Some Applications of Conditional Expectations

and Projections

This section presents some applications of conditional expectations and projections in

order to illustrate their use in macroeconomics. More explanations of some of these

applications and presentations of other applications will be given in later chapters.

In this chapter, all random variables are assumed to have finite second moments.

3.2.1 Volatility Tests

Many rational expectations models imply

Xt = E(Yt|It)(3.24)

for economic variablesXt and Yt. HereXt is in the information set It which is available

to the economic agents at date t while Yt is not. A testable implication of (3.24) can

be obtained by comparing the volatility of Xt with that of Yt. Relation (3.24) implies

Yt = Xt + ϵt(3.25)

where ϵt = Yt − E(Yt|It) is the forecast error. Since E(ϵt|It) = 0,

E(ϵtht) = 0(3.26)
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for any random variable ht that is in It. We can interpret (3.26) as an orthogonality

condition. The forecast error must be uncorrelated with any variable in the infor-

mation set. Since Xt is in It, (3.26) implies E(ϵtXt) = 0. Therefore, from (3.25) we

obtain

E(Y 2
t ) = E(X2

t ) + E(ϵ2t ).(3.27)

Since (3.24) implies that E(Xt) = E(Yt), (3.27) implies

V ar(Yt) = V ar(Xt) + E(ϵ2t ).(3.28)

Since E(ϵ2t ) ≥ 0, we conclude

V ar(Yt) ≥ V ar(Xt).(3.29)

Thus, if Xt forecasts Yt, Xt must be less volatile than Yt. Various volatility tests have

been developed to test this implication of (3.24).

LeRoy and Porter (1981) and Shiller (1981) started to apply volatility tests to

the present value model of stock prices. Let pt be the real stock price (after the

dividend is paid) in period t and dt be the real dividend paid to the owner of the

stock at the beginning of period t. Then the no-arbitrage condition is

pt = E[b(pt+1 + dt+1)|It],(3.30)

where b is the constant real discount rate, and It is the information set available

to economic agents in period t. Solving (3.30) forward and imposing the no bubble

condition,3 we obtain the present value formula:

pt = E(
∞∑
i=1

bidt+i|It).(3.31)

3It rules out the exploding solution of the difference equation
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Applying the volatility test, we conclude that the variance of
∑∞

i=1 b
idt+i is

greater than or equal to the variance of pt. One way to test this is to directly

estimate these variances and compare them. However,
∑∞

i=1 b
idt+i involves infinitely

many data points for the dividend. When we have data for the stock price and

dividend for t = 1, · · · , T , we use (3.31) to obtain

pt = E(
T−t∑
i=1

bidt+i + bT−tpT |It).(3.32)

Let Yt =
∑T−t

i=1 b
idt+i + bT−tpT . Then we have data on Yt from t = 1 to t = T when

we choose a reasonable number for the discount rate b. We can estimate the variance

of pt and the variance of Yt, and compare them to form a test statistic.4

3.2.2 Parameterizing Expectations

As discussed in Section 3.1, conditional expectations allow for nonlinear forecasting

rules. For example, consider E(Y |I) for a random variable Y and an information set

I generated from a random variable X. Then E(Y |I) can be written as a function of

X : E(Y |I) = f(X). The function f(·) can be nonlinear here. In most applications

involving nonlinear forecasting rules, the functional form of f(·) is not known. In

order to simulate rational expectations models, it is often necessary to have a method

to estimate f(·).

Marcet’s (1989) parameterizing expectations method (also see den Haan and

Marcet, 1990) is based on the fact that the conditional expectation is a projection, and

thus minimizes the mean square error. We take a class of functions that approximate

any function. For example, take a class of polynomial functions and let fN(X) =

a0 + a1X + a2X
2 + · · ·+ aNX

N . We choose a0, · · · , aN to minimize the mean square

4There are some problems with this procedure. One problem is nonstationarity of pt and Yt. For
more detailed explanation of volatility tests, see Campbell, Lo, and MacKinlay (1997).
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error, E[(Y −fN(X))2]. Intuitively, fN(·) should approximate f(X) for a large enough

N . This method is used to simulate economic models with rational expectations.

3.2.3 Noise Ratio

In econometrics, we often test an economic model with test statistics whose probabil-

ity distributions are known under the null hypothesis that the model is true. Hansen’s

J test, which will be discussed in Chapter 9, is an example. Given that all economic

models are meant to be approximations, however, it seems desirable to measure how

good a model is in approximating reality. Durlauf and Hall (1990) and Durlauf and

Maccini (1995) propose such a measure called the noise ratio.5

Consider an economic model which states

E(g(Y)|I) = 0(3.33)

for an information set I and a function g(·) of a random vector Y. For example,

let S be the spot exchange rate of a currency in the next period, F be the forward

exchange rate observed today for the currency to be delivered in the next period,

g(S, F ) = S−F , and I be the information set available to the economic agents today.

Then under the assumption of risk neutral investors, we obtain (3.33).

Let ν = g(Y) − E(g(Y)|I). If the model is true, then g(Y) = ν. Since this

model is an approximation, however, g(Y) deviates from ν. Let N be the deviation:

N = g(Y) − ν, which is called the model noise. A natural measure of how well the

model approximates reality is V ar(N). Durlauf and Hall (1990) propose a method

to estimate a lower bound of V ar(N) using η = V ar(Ê(g(Y)|H)), where H is an

information set generated from some variables in I.6

5See Konuki (1999) for an application of the noise ratio to foreign exchange rate models.
6For example, in the forward exchange rate model mentioned above, some lagged values of S−F
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Using the law of iterated projections7, we have Ê(ν|H) = 0. Thus, Ê(g(Y)|H) =

Ê(N |H), and therefore η = V ar(Ê(N |H)). Because N = Ê(N |H) + (N − Ê(N |H)),

and the forecast error, N−Ê(N |H), is orthogonal to Ê(N |H), E(N2) = E[(Ê(N |H))2]+

E[(N−Ê(N |H))2]. Since E[(N−Ê(N |H))2] ≥ 0, E(N2) ≥ E[(Ê(N |H))2]. Therefore,

V ar(N) = E(N2) − (E(N))2 ≥ E[(Ê(N |H))2] − {E[Ê(N |H)]}2 = η.8 Thus η is a

lower bound of V ar(N).

In a sense, η is a sharp lower bound. Since we do not know much about the model

noise, N , it may or may not be in H. If N happens to be in H, then Ê(N |H) = N .

Therefore, in this case V ar(N) = η.

The noise ratio, NR, is defined by NR = η
V ar(g(Y))

. Since Ê(g(Y)|H) is orthog-

onal to g(Y)− Ê(g(Y)|H),

V ar(g(Y)) = η + V ar(g(Y)− Ê(g(Y)|H)).(3.34)

Therefore, the 0 ≤ NR ≤ 1.

Appendix

3.A Introduction to Hilbert Space

This Appendix explains Hilbert space techniques used in this book.9 Projections

explained in this chapter are defined in a Hilbert space. In Appendix B, we will

consider another Hilbert space, which provides the foundation for the lag operator

methods and the frequency domain analysis which are useful in macroeconomics and

time series econometrics.

and a constant can be used to generate a linear information set H.
7We assume that the second moment exists and is finite. Therefore, the conditional expectation

is a projection.
8Here, we assumed that the constants are included in H, so that E(S) = E[Ê(S|H)].
9All proofs of the results can be found in Luenberger (1969) or Hansen and Sargent (1991).
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A pre-Hilbert space is a vector space on which an inner product is defined.

The inner product is used to define a distance. If all Cauchy sequences of a pre-

Hilbert space converge, then it is said to be complete. A Hilbert space is a complete

pre-Hilbert space. One reason why a Hilbert space is useful is that the notion of

orthogonality can be defined with the inner product. Since a Hilbert space is complete,

we can prove that the limit of a sequence exists once we prove that the sequence is

Cauchy. For example, this technique can be used to prove that a projection can be

defined.

Section 3.A.1 reviews definitions regarding vector spaces. Section 3.A.2 gives

an introduction to Hilbert space.

3.A.1 Vector Spaces

Given a set of scalars K (either the real line, R, or the complex plane, C )10, a vector

space (or a linear space) X on K is a set of elements, called vectors, together with two

operations (addition and scalar multiplication) which satisfy the following conditions:

For any x,y, z in X and for any α, β in K , we require

x+ y = y + x (commutative law)(3.A.1)

(x+ y) + z = x+ (y + z) (associative law)(3.A.2)

There is a null vector 0 in X such that x+ 0 = x for all x in X .(3.A.3)

α(x+ y) = αx+ αy
(α + β)x = αx+ βx

}
(distributive laws)(3.A.4)

(αβ)x = α(βx) (associative law)(3.A.5)

0x = 0, 1x = x.(3.A.6)

10In general, an additive group X for which scalar multiplication satisfies (3.A.4)-(3.A.6) for any
field K is a vector space on K . In this book K is either the real line or the complex plane.
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Using α = −1, we define x− y = x+ (−1)y. In this Appendix, we give examples of

vector spaces on R, but state results that are applicable when K = C . Examples of

vector spaces on C are given in Appendix B.

A nonempty subset H of a vector space X is called a (linear) subspace of X if

every vector of the form αx+ βy is in H whenever x and y are both in H and α and

β are in K . A subspace always contains the null vector 0, and satisfies conditions

(3.A.1)-(3.A.6). Hence a subspace is itself a vector space.

If a subset H of X is not a subspace, it is often convenient to construct the

smallest subspace containing H. For this purpose, we use linear combinations of

vectors in H. A linear combination of the vectors x1,x2, · · · ,xn is a sum of the form

α1x1 + α2x2 + · · · + αnxn where αi is a scalar (i = 1, · · · , n). The set consisting of

all vectors in X which are linear combinations of vectors in H is called the (linear)

subspace generated by H.

A normed vector space is a vector space X on which a norm is defined. The

norm is a real-valued function that maps each element of x in X into a real number

∥x∥, which satisfies

∥x∥ ≥ 0 for all x in X and ∥x∥ = 0 if and only if x = 0.(3.A.7)

∥x+ y∥ ≤ ∥x∥+ ∥y∥ (The triangle inequality)(3.A.8)

∥αx∥ = |α| ∥x∥ for all α in K and x in X .(3.A.9)

A norm can be used to define a metric d on X by d(x,y) = ∥x− y∥.

A sequence {xn}∞n=1 in a normed vector space converges to x0 if the sequence

{∥xn − x0∥}∞n=1 of real numbers converges to zero, which is denoted by xn → x0 or

limxn = x0. A sequence {xn}∞n=1 in a normed vector space is a Cauchy sequence if
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for any ϵ > 0, there exists an integer N such that ∥xn−xm∥ < ϵ for all n,m > N . In

a normed vector space, every convergent sequence is a Cauchy sequence. A space in

which every Cauchy sequence has a limit is said to be complete. A complete normed

vector space is called a Banach space.

Example 3.A.1 The real line, R, is a vector space on K = R with addition and

scalar multiplication defined in the usual way. When the norm of a real number is

defined as its absolute value, R is a Banach space.

Example 3.A.2 Vectors in the space consist of sequences of n real numbers, Rn,

which is a vector space on R when x+y for x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′

is defined by (x1+y1, x2+y2, · · · , xn+yn)′ and αx for α in R is defined by (αx1, αx2, · · · , αxn)′.

When we define a norm of x as ∥x∥ =
√∑n

i=1 x
2
i ,R

n is a Banach space.

3.A.2 Hilbert Space

A pre-Hilbert space is a vector space X on K for which an inner product is defined.

The inner product is a scalar-valued function that maps each element of (x,y) in

X × X into an element (x|y) in K , which satisfies

(x|y) = (y|x)(3.A.10)

(x+ z |y) = (x|y) + (z|y)(3.A.11)

(αx|y) = α(x|y)(3.A.12)

(x|x) ≥ 0 and (x|x) = 0 if and only if x = 0.(3.A.13)

for any x,y, z in X and α in K . The bar on the right side on (3.A.10) denotes

complex conjugation, which can be ignored if K is R. By (3.A.10), (x|x) is real for

each x even when K is C .
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A norm can be defined from an inner product by ∥x∥ =
√

(x|x). Thus a pre-

Hilbert space is a normed vector space. A complete pre-Hilbert space is called a

Hilbert space.

Example 3.A.3 When we define (x|y) =
∑n

i=1 xiyi, R
n is a Hilbert space on R.

The following Hilbert space of random variables with finite second moments is

the one we used in Chapter 3.

Example 3.A.4 Let (S,F, P rob) be a probability space. Let L2(Prob) = {h : h

is a (real-valued) random variable and E(|h|2) < ∞}. Then with an inner product

defined by (h1|h2) = E(h1h2), L
2(Prob) is a Hilbert space on R. If two different

random variables h1 and h2 satisfy E[(h1 − h2)
2] = 0, then h1 and h2 are the same

element in this space. If E[(h1 − h2)
2] = 0, then h1 = h2 with probability one. Hence

this definition does not cause problems for most purposes. In this space, the distance

is defined by the mean square, so the convergence in this space is the convergence in

mean square.

One reason why an inner product is useful is that we can define the notion of

orthogonality. In a Hilbert space, two vectors x and y are said to be orthogonal if

(x|y) = 0. A vector x is said to be orthogonal to a set H if x is orthogonal to each

element h in H. Some useful results concerning the inner product are:11

Proposition 3.A.1 (The Cauchy-Schwarz Inequality) For all x, y in a Hilbert space,

|(x|y)| ≤ ∥x∥ ∥y∥. Equality holds if and only if x = λy for some λ in K , or y = 0.

11These three propositions hold for a pre-Hilbert space. See Luenberger (1969, p.47 and p.49).
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Proposition 3.A.2 (Continuity of the Inner Product) Suppose that xn → x and

yn → y in a Hilbert space. Then (xn|yn) → (x|y).

Proposition 3.A.3 If x is orthogonal to y in a Hilbert space, then ∥x + y∥2 =

∥x∥2 + ∥y∥2.

Example 3.A.5 In L2(Prob), the Cauchy-Schwarz Inequality becomes |E(xy)| ≤√
E(x2)

√
E(y2) for any random variables with finite second moments. Proposition

3.A.3 states that if x and y satisfy E(xy) = 0, then E[(x+ y)2] = E(x2) + E(y2).

Projections can be defined on a Hilbert space due to the following result:

Proposition 3.A.4 (The Classical Projection Theorem) Let X be a Hilbert space

and H be a closed linear subspace of X . Corresponding to any vector x in X , there

is a unique vector h0 in H such that ∥x− h0∥ ≤ ∥x− h∥. Furthermore, a necessary

and sufficient condition that h0 in H be the unique minimizing vector is that x− h0

be orthogonal to H.

Given a closed linear space H, we define a function Ê(·|H) on X by Ê(x|H) = h0

where h0 is an element in H such that x − h0 is orthogonal to H. Ê(x|H) is the

projection of x onto H. The projection defined in Section 3.1 in L2(Prob) is one

example.

If a sequence {et}∞t=1 in a Hilbert space satisfies ∥et∥ = 1 for all t and (et|es) = 0

for all t ̸= s, then it is said to be an orthonormal sequence. We are concerned with

an infinite series of the form
∑∞

t=1 αtet. An infinite series of the form
∑∞

t=1 xt is

said to converge to the element x in a Hilbert space if the sequence of partial sums

sT =
∑T

t=1 xt converges to x. In that case we write x =
∑∞

t=1 xt. A necessary
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and sufficient condition for an infinite series of orthonormal sequence to converge in

Hilbert space is known (see Luenberger, 1969, p.59):

Proposition 3.A.5 Let {ej}∞j=1 be an orthonormal sequence in a Hilbert space X . A

series of the form
∑∞

j=1 αjej converges to an element x in X if and only if
∑∞

j=1 |αj|2 <

∞, and in that case we have αj = (x|ej).

Example 3.A.6 Applying the above proposition in L2(Prob), we obtain a necessary

and sufficient condition for an MA(∞) representation
∑∞

j=0 bjvt−j to converge for a

white noise process {vt−j}∞j=0 with E(v2t ) = σ2
v > 0. Define et =

vt
σv
, and αj = bjσv,

so that {et−j}∞j=0 is orthonormal because E(e2t ) = 1 and E(etes) = 0 for t ̸= s. From

the above proposition,
∑∞

j=1 bjvj =
∑∞

j=1 αjej converges in L2(Prob), if and only if∑∞
j=1 |αj|2 < ∞. Since

∑∞
j=1 |αj|2 < ∞ if and only if

∑∞
j=1 |bj|2 < ∞,

∑∞
j=1 bjvj

converges in mean square if and only if {bj}∞j=1 is square summable.

Given an orthonormal sequence {ej}∞j=1, we started from a square summable

sequence {αj} and constructed x =
∑∞

j=1 αjej in X in the above proposition. We

now start with a given x in X and consider a series

∞∑
j=1

(x|ej)ej.(3.A.14)

The series is called the Fourier series of x relative to {ej}∞j=1, and (x|ej) is called the

Fourier coefficient of x with respect to ej.

In general, x is not equal to its Fourier series. Given a subset H of a Hilbert

space, the closed subspace generated by H is the closure of the linear subspace gener-

ated by H. Let M be the closed subspace generated by {ej}∞j=1. If x is in M, then x

is equal to its Fourier series as implied by the next proposition:
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Proposition 3.A.6 Let x be an element in a Hilbert space X and {ej}∞j=1 be an

orthonormal sequence in H. Then the Fourier series
∑∞

j=1(x|ej)ej converges to an

element x̂ in the closed subspace M generated by {ej}∞j=1. The difference vector x− x̂

is orthogonal to M .

This proposition shows that the Fourier series of x is the projection of x onto M :

Ê(x|M ) =
∑∞

j=1(x|ej)ej.12

Exercises

3.1 Let St be a spot exchange rate at time t and Ft be a forward exchange rate

observed at time t for delivery of one unit of a currency at t + 1. Assume that

Ft = E(St+1|It) where It is the information set available for the economic agents at t.

Prove that V ar(Ft) ≤ V ar(St+1).

3.2 Let in,t be the n year interest rate observed at time t. The expectations hypoth-

esis of the term structure of interest rates states that in,t = E(At|It) where

At =
1

n

n−1∑
τ=0

i1,t+τ ,(3.E.1)

where It is the information available at time t. Imagine that data on interest rates

clearly indicate that V ar(in,t) ≤ V ar(At). Does the data support the expectations

theory? Explain your answer.

3.3 Let pt be the real stock price, dt be the real dividend, and b be the constant ex

ante discount rate. Assume that pt and dt are stationary with zero mean and finite

12See Luenberger (1969, p.60).
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second moments. Let

pet =
∞∑
τ=1

bτE(dt+τ |It),(3.E.2)

where It is the information set available in period t that includes the present and past

values of pt and dt. Let Ê(·|Ht) be the linear projection onto an information set Ht.

Define the model noise Nt by

Nt = pt − pet .(3.E.3)

Let η = V ar(Ê(Nt|Ht)).

(a) Assume that Ht is generated by {dt}. Show that η ≤ V ar(Nt) for any noise Nt.

(b) Assume that Ht is generated by {dt, dt−1, dt−2}. Show that η ≤ V ar(Nt) for any

noise Nt.

3.4 Derive (3.34) in the text.

References

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997): The Econometrics of Financial
Markets. Princeton University Press, Princeton, New Jersey.

den Haan, W. J., and A. Marcet (1990): “Solving the Stochastic Growth Model by Parame-
terizing Expectations,” Journal of Business and Economic Statistics, 8, 31–34.

Durlauf, S. N., and R. E. Hall (1990): “Bounds on the Variances of Specification Errors in
Models with Expectations,” Manuscript.

Durlauf, S. N., and L. J. Maccini (1995): “Measuring Noise in Inventory Models,” Journal of
Monetary Economics, 36, 65–89.

Hansen, L. P., and T. J. Sargent (1991): Rational Expectations Econometrics. Westview,
London.

Konuki, T. (1999): “Measuring Noise in Exchange Rate Models,” Journal of International Eco-
nomics, 48(2), 255–270.

LeRoy, S. F., and R. D. Porter (1981): “The Present-Value Relation: Tests Based on Implied
Variance Bounds,” Econometrica, 49(3), 555–574.



52 CHAPTER 3. FORECASTING

Luenberger, D. G. (1969): Optimization by Vector Space Methods. Wiley, New York.

Marcet, A. (1989): “Solving Non-Linear Stochastic Models by Parameterizing Expectations,”
Manuscript.

Shiller, R. J. (1981): “Do Stock Prices Move Too Much to be Justified by Subsequent Changes
in Dividends?,” American Economic Review, 71, 421–436.



Chapter 4

ARMA AND VECTOR
AUTOREGRESSION
REPRESENTATIONS

4.1 Autocorrelation

The Wold representation of a univariate process {Xt : −∞ < t < ∞} provides

us with a description of how future values of Xt depend on its current and past

values (in the sense of linear projections). A useful description of this dependence is

autocorrelation. The j-th autocorrelation of a process (denoted by ρj) is defined as

the correlation between Xt and Xt−j:

Corr(Xt, Xt−j) =
Cov(Xt, Xt−j)√

V ar(Xt)
√
V ar(Xt−j)

.

In general, ρj depends on t. If the process is covariance stationary, ρj does not depend

on t, and is equal to its j-th autocovariance divided by its variance:

ρj =
γj
γ0
,(4.1)

where γj = Cov(Xt, Xt−j) is the j-th autocovariance, and γ0 = V ar(Xt). For covari-

ance stationary processes, γj = γ−j, hence ρj = ρ−j. When we view ρj as a function

of j, it is called the autocorrelation function. Note that ρ0 = 1 for any process by

53
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definition. For a white noise process, ρj = 0 for j ̸= 0. The autocorrelation function

is a population concept, and can be estimated by its sample counterpart as explained

in Chapter 5.

4.2 The Lag Operator

In order to study ARMA representations, it is convenient to use the lag operator,

denoted by the symbol L. When the operator is applied to a sequence {Xt : −∞ <

t <∞} of real numbers, it results in a new sequence {Yt : −∞ < t <∞}, where the

value of Y at date t is equal to the value X at date t− 1:

Yt = Xt−1,

and we write

LXt = Xt−1.(4.2)

When we apply the lag operator to a univariate stochastic process {Xt : −∞ < t <

∞}, the lag operator is applied to all sequences of real numbers {Xt(ω) : −∞ <

t <∞} given by fixing the state of the world ω to generate a new stochastic process

{Xt : −∞ < t <∞} that satisfies Xt−1(ω) = LXt(ω) for each ω.

When the lag operator is applied twice to a process {Xt : −∞ < t < ∞}, we

write L2Xt = Xt−2. In general, for any integer k > 0, LkXt = Xt−k. It is convenient

to define L0 = 1 as the identity operator that gives L0Xt = Xt, and to define L−k as

the operator that moves the sequence forward: L−kXt = Xt+k for any integer k > 0.

We define a p-th order polynomial in the lag operator B(L) = B0+B1L+B2L
2+

· · ·+BpL
p, where B1, · · · , Bp are real numbers, as the operator that yields

B(L)Xt = (B0 +B1L+B2L
2 + · · ·+BpL

p)Xt = B0Xt +B1Xt−1 + · · ·+BpXt−p.
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When an infinite sum B0Xt +B1Xt−1 +B2Xt−2 + · · · converges in some sense (such

as convergence in L2),(?????? Need to use other expressions instead of L2 because we

use L for the lag operator in this paragraph) we write B(L) = B0+B1L+B2L
2+· · · ,

Masao
needs to
check this!

and

B(L)Xt = (B0 +B1L+B2L
2 + · · · )Xt = B0Xt +B1Xt−1 +B2Xt−2 + · · · .

For a vector stochastic process {Xt : −∞ < t < ∞}, a polynomial in the lag

operator B0 +B1L+B2L
2 + · · ·+BpL

p for matrices B0, · · · ,Bp with real numbers

is used in the same way, so that

(B0 +B1L+B2L
2 + · · ·+BpL

p)Xt = B0Xt +B1Xt−1 + · · ·+BpXt−p.

Using the lag operator, Xt = Φ0et +Φ1et−1 + · · · can be expressed as

Xt = Φ(L)et,(4.3)

where Φ(L) = Φ0 +Φ1L+Φ2L
2 + · · · .

4.3 Moving Average Representation

If Xt is linearly regular and covariance stationary with mean µ, then it has a Moving

Average (MA) representation of the form Xt = µ+ Φ(L)et or

Xt = µ+ Φ0et + Φ1et−1 + Φ2et−2 + · · · ,(4.4)

where Φ0 = 1. If Φ(L) is a polynomial of infinite order, Xt is a moving average

process of infinite order (denoted MA(∞)). If Φ(L) is a polynomial of order q, Xt is

a moving average process of order q (denoted MA(q)). In this section, we study how

some properties of Xt depend on Φ(L).
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An MA(1) process Xt has a representation Xt = µ+ et + Φet−1 as in Example

2.8, where et is a white noise process that satisfies (2.10), and µ and Φ are constants.

The mean, variance, and autocovariance of this process are given in Example 2.8,

E(Xt) = µ, and its k-th autocorrelation is ρk =
Φ

1+Φ2 if |k| = 1, and ρk = 0 if |k| > 1.

An MA(q) process Xt satisfies

Xt = µ+ et + Φ1et−1 + · · ·+ Φqet−q,(4.5)

where et is a white noise process that satisfies (2.10), and µ and Φ1, · · · ,Φq are real

numbers. A moving average process is covariance stationary for any (Φ1, · · · ,Φq).
1

Using (2.10), we obtain the mean of an MA(q) process:

E(Xt) = µ,(4.6)

its variance:

γ0 = E[(Xt − µ)2] = σ2(1 + Φ2
1 + · · ·+ Φ2

q),(4.7)

and its j-th autocovariance:

γj = E[(Xt − µ)(Xt−j − µ)](4.8)

=

{
σ2(Φj + Φj+1Φ1 + · · ·+ ΦqΦq−j) for |j| ≤ q
0 for |j| > q

.

Hence the j-th autocorrelation of an MA(q) process is zero when |j| > q.

When a vector stochastic process {· · · ,X−2,X−1,X0,X1, · · · ,Xt, · · · } can be

written as

Xt = µ+Φ0et +Φ1et−1 + · · ·+Φqet−q,(4.9)

1We often impose conditions on (Φ1, · · · ,Φq) as we will discuss later in this chapter.
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for a white noise process et, then Xt has a q-th order (one-sided) moving average

(MA(q)) representation. For any Φ0, · · · ,Φq, a process with MA(q) representation is

covariance stationary. As q goes to infinity, an MA(∞) representation

Xt = µ+Φ0et +Φ1et−1 + · · ·(4.10)

is well defined and covariance stationary if
∑∞

j=0 |Φi
j|2 < ∞ for the i-th row of Φj,

Φi
j. In this case, Xt has a moving average representation of infinite order.

4.4 The Wold Representation

Let {· · · ,X−2,X−1,X0,X1, · · · ,Xt, · · · } be a covariance stationary n-dimensional

vector process with mean zero. Let Ht be the linear information set generated by

the current and past values of Xt.
2 We use the notation, Ê(y|Xt,Xt−1,Xt−2, · · · )

for Ê(y|Ht). Note that the information set grows larger over time and the sequence

{Ht : −∞ < t < ∞} is increasing in the sense that Ht ⊂ Ht+1 for all t. Let H−∞ be

the set of random variables that are in Ht for all t: H−∞ =
∩∞

n=1Ht−n. Then 0 = 0′Xt

is a member of Ht. Therefore, the constant zero is always a member of H−∞. The

stochastic process Xt is linearly regular if H−∞ contains only the constant zero when

H−∞ =
∩∞

n=1Ht−n, in which Ht is generated by the current and past values of Xt.

The stochastic process Xt is linearly deterministic if Ht = H−∞ for all t. For example,

if Xt is an n-dimensional vector of constants, then Xt is linearly deterministic.

We can now state the Wold decomposition theorem, which states that any

covariance stationary process can be decomposed into linearly regular and linearly

deterministic components:

2We only define the linear information set for a finite number of random variables. See Appendix
3.A for further explanation.
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Proposition 4.1 (The Wold Decomposition Theorem) Let {· · · ,X−1,X0,X1, · · · ,Xt, · · · }

be a covariance stationary vector process with mean zero. Then it can be written as

Xt =
∞∑
j=0

Φjet−j + gt,(4.11)

where Φ0 = In,
∑∞

j=0 |Φi
j|2 <∞ for the i-th row of Φj, Φ

i
j, and

et = Xt − Ê(Xt|Xt−1,Xt−2,Xt−3, · · · )(4.12)

and

gt = Ê(Xt|H−∞).(4.13)

It can be shown that
∑∞

j=0Φjet−j is a linearly regular covariance stationary

process and gt is linearly deterministic. Hence if Xt is not linearly regular, it is

possible to remove gt and work with a linearly regular process as long as gt can be

estimated.

Proposition 4.2 (The Wold Representation) Let {· · · ,X−1,X0,X1, · · · ,Xt, · · · } be

a linearly regular covariance stationary vector process with mean zero. Then it can

be written as

Xt =
∞∑
j=0

Φjet−j,(4.14)

where Φ0 = In,
∑∞

j=0 |Φi
j|2 < ∞ for the i-th row of Φj, Φ

i
j, and et is defined by

(4.12).

The Wold representation gives a unique MA representation when the MA inno-

vation et is restricted to the form given by Equation (4.12). There may exist infinitely
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many other MA representations when the MA innovation is not restricted to be given

by (4.12) as we will discuss below.

In many macroeconomic models, stochastic processes that we observe (real

GDP, interest rates, stock prices, etc.) are considered to be generated from the

nonlinear function of underlying shocks. In this sense, the processes in these models

are nonlinear, but Proposition 4.1 states that even a nonlinear stochastic process has

a linear moving average representation as long as it is linearly regular and covariance

stationary.

In order to give a sketch of a proof of the Wold Representation Theorem, con-

sider a linearly regular stochastic process {Xt}∞−∞ that may not be necessarily a linear

function of underlying shocks. Define ut = Xt − Ê(Xt|Ht−1), and
Youngsoo
needs to
check this!

Ut = {z|z = but for b ∈ R}(4.15)

where Ht is the linear information set generated by the current and past values of Xt.

Then, we have the following relationship

Ht = Ht−1 +Ut,(4.16)

and each element of Ht is orthogonal to each element of Ut. In this case,

Ê(h|Ht) = Ê(h|Ht−1 +Ut)(4.17)

= Ê(h|Ht−1) + Ê(h|Ut)

for any h. Because Ht−1 = Ht−2 +Ut−1, we have

Ht = Ht−2 +Ut +Ut−1,(4.18)

and by continuing this process, we have

Ht =
∞∑
j=0

Ut−j.(4.19)
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Therefore, Xt can be written as

Xt = Ê(Xt|Ht) = Ê(Xt|
∞∑
j=0

Ut−j) =
∞∑
j=0

Φjut−j,(4.20)

which is the Wold representation of Xt.

Example 4.1 Suppose that ut is a Gaussian white noise with variance of 1. Let

Xt = u2t − 1. Then the Wold representation of Xt is Xt = et, where et = u2t − 1.

In this example, Xt is a nonlinear transformation of a Gaussian white noise. The

shock that generates Xt, ut, is normally distributed. However, the innovation in

its Wold representation, et, is not normally distributed. Thus, the innovation in the

Wold representation of a process can have a different distribution from the underlying

shock that generates the process.

Even when the underlying shocks that generate processes are i.i.d., the innova-

tions in the Wold representation may not be i.i.d. as in the next example.

Example 4.2 Suppose that ut is an i.i.d Gaussian white noise with variance of 1, so

that E(u3t ) = 0. Let Xt be generated by Xt = ut + Φ(u2t−1 − 1). Then E(XtXt−1) =

E[utut−1 +Φu3t−1 − Φut−1 +Φutu
2
t−2 − Φut +Φ2(u2t−1 − 1)(u2t−2 − 1)] = 0. Hence the

Wold representation of Xt is Xt = et, where et = ut + Φ(u2t−1 − 1).

Note that the Wold representation innovation et in this example is serially un-

correlated, but not i.i.d. because et(= ut+Φu2t−1) and et−1(= ut−1+Φu2t−2) are related

nonlinearly through the Φu2t−1 and ut−1 terms.

The Wold representation states that any linearly regular covariance stationary

process has an MA representation. Therefore, it is useful to estimate an MA rep-

resentation in order to study how linear projections of future variables depend on
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their current and past values. Higher order MA representations and vector MA rep-

resentations are hard to estimate, however, and it is often convenient to consider AR

representations and ARMA representations, which are closely related to MA repre-

sentations.

4.5 Autoregression Representation

A process Xt, which satisfies B(L)Xt = δ + et with B0 = 1 or

Xt +B1Xt−1 +B2Xt−2 + · · · = δ + et

for a white noise process et, is an autoregression. If B(L) is a polynomial of infinite

order, Xt is an autoregression of infinite order (denoted AR(∞)). If B(L) is a poly-

nomial of order p, Xt is an autoregression of order p (denoted AR(p)). In this section,

we study how some properties of Xt depend on B(L).

4.5.1 Autoregression of Order One

Consider a process Xt that satisfies

Xt = δ +BXt−1 + et for t ≥ 1,(4.21)

where et is a white noise process with variance σ2 and X0 is a random variable that

gives an initial condition for (4.21). Such a process is called an autoregression of order

1, denoted by AR(1). It is often convenient to consider (4.21) in a deviation-from-

the-mean form:

Xt − µ = B(Xt−1 − µ) + et for t ≥ 1,(4.22)
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where µ = δ
1−B

. Substituting (4.22) recursively, we obtain X1 − µ = B(X0 − µ) + e1

and X2 − µ = B(X1 − µ) + e2 = B2(X0 − µ) +Be1 + e2, so that

Xt − µ = Bt(X0 − µ) +Bt−1e1 +Bt−2e2 + · · ·+Bet−1 + et for t ≥ 1.(4.23)

In this way, Xt is defined for any real number B.

Suppose that X0 is uncorrelated with e1, e2, · · · . When the absolute value of B

is greater than or equal to one, then the variance of Xt increases over time. Hence

Xt cannot be covariance stationary. In macroeconomics, the case in which B = 1 is

of importance, and will be discussed in detail in Chapter 13.

Consider the case where the absolute value of B is less than one. In this case,

BtX0(ω) becomes negligible as t goes to infinity for a fixed ω. As seen in Example 2.9,

however, the process Xt is not covariance stationary in general. Whether or not Xt

is stationary depends upon the initial condition X0. In order to choose X0, consider

an MA process

Xt = µ+ et +Bet−1 +B2et−2 + · · · ,(4.24)

and choose the initial condition for the process Xt in (4.21) by

X0 = µ+ e0 +Be−1 +B2e−2 + · · · .(4.25)

When this particular initial condition is chosen, Xt is covariance stationary.

With the lag operator, (4.22) can be written as

(1−BL)(Xt − µ) = et.(4.26)

We define the inverse of (1−BL) as

(1−BL)−1 = 1 + BL+B2L2 +B3L3 + · · · ,(4.27)
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when the absolute value of B is less than one. When a process Xt has an MA

representation of the form (4.24), we write

Xt = µ+ (1−BL)−1et,(4.28)

which is the MA(∞) representation of an AR(1) process.

4.5.2 The p-th Order Autoregression

A p-th order autoregression satisfies

Xt = δ +B1Xt−1 +B2Xt−2 + · · ·+BpXt−p + et for t ≥ 1.(4.29)

The stability condition is that all the roots of

1−B1z −B2z
2 − · · · −Bpz

p = 0(4.30)

are larger than one in absolute value, or equivalently, all the roots of

zp −B1z
p−1 −B2z

p−2 − · · · −Bp = 0(4.31)

are smaller than one in absolute value.

Consider, for instance, the special case of a AR(1) process with B1 = 1 and

X0 = 0:

Xt = Xt−1 + et(4.32)

= e1 + e2 + · · ·+ et−1 + et for t ≥ 1,(4.33)

where E(Xt) = 0 and E(Xt−iXt−j) = σ2 for i = j. Note that V ar(X1) = σ2,

V ar(X2) = 2σ2, · · · , V ar(Xt) = tσ2. Since the variance of Xt varies over time, Xt is

nonstationary. Note also that its first difference is stationary since et(= Xt −Xt−1)
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is stationary. Such a process is called difference stationary. When a (possibly infinite

order) polynomial in the lag operator Φ(L) = Φ0 + Φ1L + Φ2L
2 + · · · is given, we

consider a complex valued function Φ(z−1) = Φ0 +Φ1z
−1 +Φ2z

−2 + · · · by replacing

the lag operator L by a complex number z. Consider a condition

Φ(z) = Φ0 + Φ1z + Φ2z
2 + · · · = 0.(4.34)

If a complex number zi satisfies the condition (4.34), then zi is a zero of Φ(z). We

also say that zi is a root of the equation Φ(z) = 0.

4.6 ARMA

An ARMA(p, q) process satisfies

Xt = δ +B1Xt−1 +B2Xt−2 + · · ·+BpXt−p + et + θ1et−1 + θ2et−2 + · · · .(4.35)

If B(1) = 1−B1 − · · · −Bp ̸= 1, we have the deviation-from-the-mean form

B(L)(Xt − µ) = θ(L)et,(4.36)

where µ = δ
B(1)

. We define the inverse of B(L) = B0 + B1L + . . . + BpL
p as the lag

polynomial B(L)−1 such that
Kyungho
needs to

check this!

B(L)−1B(L) = 1.(4.37)

As long as B0 ̸= 0, B(L)−1 exists always. However, B(L)−1εt may or may not be

defined. Provided that the p-th order polynomial B(z) satisfies stability conditions,

the ARMA(p, q) process yields the MA(∞) representation

Xt = µ+ Φ(L)et,(4.38)
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where Φ(L) = B(L)−1θ(L) = Φ0 + Φ1L+ θ2L
2 + · · · and

∑∞
j=0 |θj|2 ≤ ∞.

On the other hand, if θ(z) satisfies stability conditions that all roots of θ(z) = 0

lie outsize the unit circle, then θ(L) is invertible and the ARMA(p, q) process yields

the AR(∞) representation3

θ(L)−1B(L)Xt = δ∗ + et,(4.39)

where δ∗ = δ
θ(1)

. Therefore, if both B(z) and θ(z) satisfy stability conditions, then

the ARMA(p, q) process has both the MA(∞) and AR(∞) representations.

4.7 Fundamental Innovations

Let Xt be a covariance stationary vector process with mean zero that is linearly

regular. Then the Wold representation in (4.14) gives an MA representation. There

are infinitely many other MA representations.

Example 4.3 let ut be a white noise, and Xt = ut. Then Xt = ut is an MA

representation. Let u∗t = ut+1. Then Xt = u∗t−1 is another MA representation.

In this example, another MA representation is obtained by adopting a different dating

procedure for the innovation.

It is often convenient to restrict our attention to the MA representations for

which the information content of the current and past values of the innovations is the

same as that of the current and past values of Xt. Let

Xt =
∞∑
j=0

Φjut−j = Φ(L)ut(4.40)

3Without any loss of generality, we assume that there are no common roots of B(z) = 0 and
θ(z) = 0. In such a case, we can write the ARMA(p, q) process by the ARMA(p−m, q−m) process
that has no common roots, where m is the number of common roots. See Hayashi (2000, p. 382)
for further discussion.
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be an MA representation forXt. Let Ht be the linear information set generated by the

current and past values of Xt, and Hu
t be the linear information set generated by the

current and past values of ut. Then Ht ⊂ Hu
t because of (4.40). The innovation process

ut is said to be fundamental if Ht = Hu
t . The innovation in the Wold representation

is fundamental.

In Example 4.3, Xt = ut is a fundamental MA representation while Xt = u∗t−1

is not. As a result of the dating procedure used for Xt = u∗t−1, the information set

generated by the current and past values of u∗t : {u∗t , u∗t−1, · · · } is equal to Ht+1, and

is strictly larger than the information set generated by Ht.

The concept of fundamental innovations is closely related to the concept of

invertibility. If the MA representation (4.40) is invertible, then ut = Φ(L)−1Xt.

Therefore, Hu
t ⊂ Ht. Since (4.40) implies Ht ⊂ Hu

t , Ht = Hu
t . Thus if the MA

representation (4.40) is invertible, then ut is fundamental.

If all the roots of det[Φ(z)] = 0 lie outside the unit circle, thenΦ(L) is invertible,

and ut is fundamental. If all the roots of det[Φ(z)] = 0 lie on or outside the unit circle,

then Φ(L) may not be invertible, but ut is fundamental. Thus for fundamentalness,

we can allow some roots of det[Φ(z)] = 0 to lie on the unit circle.

In the univariate case, if Xt = Φ(L)ut and all the roots of Φ(z) = 0 lie on or

outside the unit circle, then ut is fundamental. For example, let Xt = ut + Φut−1. If

|Φ| < 1, then this MA representation is invertible, and ut is fundamental. If Φ = 1

or if Φ = −1, then this MA representation is not invertible, but ut is fundamental. If

|Φ| > 1, then ut is not fundamental.

The MA representations with fundamental innovations are useful; it is easier to

express projections of variables onto Ht with them than if they had non-fundamental
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innovations. For example, let Xt be a univariate process with an MA(1) represen-

tation: Xt = ut + Φut−1. It is natural to assume that economic agents observe

Xt, but not ut. Therefore, the economic agents’ forecast for Xt+1 can be mod-

eled as Ê(Xt+1|Ht) rather than Ê(Xt+1|Hu
t ). If |Φ| ≤ 1, ut is fundamental, and

Ê(Xt+1|Ht) = Ê(Xt+1|Hu
t ) = Φut. On the other hand, if |Φ| > 1, ut is not funda-

mental, and Ê(Xt+1|Ht) ̸= Ê(Xt+1|Hu
t ) = Φut, and there is no easy way to express

Ê(Xt+1|Ht).

4.8 The Spectral Density

Consider a covariance stationary process Yt such that Yt − E(Yt) is linearly regular.

Then Yt−E(Yt) = b(L)et =
∑∞

j=0 bjet−j for a square summable {bj} and a white noise

process et such that E(e2t ) = 1 and E(etes) = 0 for t ̸= s. Its k-th autocovariance

Φ(k) = E[(Yt−E(Yt))(Yt−k−E(Yt−k)
′] does not depend on date t. For a real number

r, define

exp(ir) = cos(r) + i sin(r),(4.41)

where i =
√
−1. The spectral density of Yt, f(λ) is defined by

f(λ) = (
∞∑
j=0

bj exp(−iλj))(
∞∑
j=0

bj exp(iλj)).(4.42)

Then

f(λ) =
1

2π

∞∑
k=−∞

Φ(k) exp(iλk)(4.43)

for a real number λ (−π < λ < π) when the autocovariances are absolutely summable.

The spectral density is a function of λ, which is called the frequency. Using the
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properties of the cos and sin functions and the fact that Φ(k) = Φ(−k), it can be

shown that

f(λ) =
1

2π
Φ(0) + 2

∞∑
k=1

Φ(k) cos(λk),(4.44)

where f(λ) = f(−λ) and f(λ) is nonnegative for all λ.

Equation (4.43) gives the spectral density from the autocovariances. When the

spectral density is given, the autocovariances can be calculated form the following

formula: ∫ π

−π

f(λ) exp(iλk)dλ = Φ(k).(4.45)

Thus the spectral density and the autocovariances contain the same information

about the process. In some applications, it is more convenient to examine the spectral

density than the autocovariances. For example, it requires infinite space to plot the

autocovariance for k = 0, 1, 2, · · · , whereas the spectral density can be concisely

plotted.

An interpretation of the spectral density is given by the special case of (4.45)

in which k = 0: ∫ π

−π

f(λ)dλ = Φ(0).(4.46)

This relationship suggests an intuitive interpretation that f(λ) is the contribution of

the frequency λ to the variance of Yt.

This intuition can be formalized by the spectral representation theorem which

states that any covariance stationary process Yt with absolutely summable autoco-

variances can be expressed in the form

Yt = µ+

∫ π

0

[α(λ) cos(λt) + δ(λ) sin(λt)]dλ,(4.47)
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where α(λ) and δ(λ) are random variables with mean zero for any λ in [0, π]. These

variables have the further properties that for any frequencies 0 < λ1 < λ2 < λ3 <

λ4 < π, the variable
∫ λ2

λ1
α(λ) is uncorrelated with

∫ λ4

λ3
α(λ), and the variable

∫ λ2

λ1
δ(λ)

is uncorrelated with
∫ λ4

λ3
δ(λ). For any 0 < λ1 < λ2 < π and 0 < λ3 < λ4 < π, the

variable
∫ λ2

λ1
α(λ) is uncorrelated with

∫ λ4

λ3
δ(λ). For such a process, the portion of the

variance due to cycles with frequency less than or equal to λ1 is given by

2

∫ λ1

0

f(λ)dλ.(4.48)

Exercises

4.1 Let ut be a white noise, and xt = ut + 0.8ut−1. Is xt covariance stationary? Is

ut fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past

ut’s. Is it possible to give an expression for Ê(xt|xt−1, xt−2, ...) in terms of past ut’s?

If so, give an expression. Explain your answers.

4.2 Let ut be a white noise, and xt = ut + 1.2ut−1. Is xt covariance stationary? Is

ut fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past

ut’s. Is it possible to give an expression for Ê(xt|xt−1, xt−2, · · · ) in terms of past ut’s?

If so, give an expression. Explain your answers.

4.3 Let ut be a white noise, and xt = ut + ut−1. Is xt covariance stationary? Is ut

fundamental for xt? Give an expression for Ê(xt|ut−1, ut−2, · · · ) in terms of past ut’s.

Is it possible to give an expression for Ê(xt|xt−1, xt−2, · · · ) in terms of past ut’s? If

so, give an expression. Explain your answers.
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Chapter 5

STOCHASTIC REGRESSORS IN
LINEAR MODELS

This chapter introduces the conditional Gauss-Markov Theorem, asymptotic theory,

Monte Carlo, and Bootstrap as tools to evaluate estimators and tests. These tools are

illustrated in the form that is convenient for most applications of structural econo-

metrics for linear time series models in this chapter although they will be useful for

nonlinear models as explained in later chapters.

In most applications in macroeconomics, regressors are stochastic, and the

Gauss Markov Theorem for nonstochastic regressors do not apply. It is still pos-

sible to use the conditional Gauss Markov Theorem in some applications if a strict

version of the exogeneity assumption (which will be called the strict exogeneity as-

sumption) can be made to show that the OLS estimator is unbiased and efficient

conditional on the realization of the regressors. If a normality assumption is added,

it the estimator’s exact small sample distributions can be obtained.

In some applications such as those of dynamic cointegrating regression explained

in Chapter 14, the strict exogeneity assumption is typically made. So the conditional

Gauss Markov Theorem can be used. However, in many other time series applications,

70
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the strict exogeneity assumption is not attractive. If lagged dependent variables

are included in regressors, the assumption cannot be made because it causes logical

inconsistency. If the strict exogeneity assumption does not apply, then estimators are

biased.

In rational expectations models, stringent distributional assumptions, such as an

assumption that the disturbances are normally distributed, are unattractive. Without

such assumptions, however, it is not possible to obtain the exact distributions of esti-

mators in finite samples. For this reason, asymptotic theory describes the properties

of estimators as the sample size goes to infinity.

Many researchers use asymptotic theory at initial stages of an empirical research

project. Given the difficulties of obtaining the exact small sample distributions of

estimators in many applications, this utilization seems to be a sound strategy. If

the sample size is “large”, then asymptotic theory must be a good approximation of

the true properties of estimators. The problem is that no one knows how large the

sample size should be, because the answer depends on the nature of each application.

After the importance of a research project is established, small sample properties of

the estimators used in the project are often studied. For this purpose, Monte Carlo

experiments can be used.

When asymptotic theory gives poor approximations in small sample, Bootstrap

methods can be very useful. Bootstrap methods often give more accurate approxima-

tions of the exact small sample properties than asymptotic theory in applications to

cross sectional data. In time series applications, there are some difficult issues that

Bootstrap methods can have. This chapter explains such a difficulty that applied

researchers should be aware of.
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5.1 The Conditional Gauss Markov Theorem

In regressions (5.4????????) and (5.7???????), Xt is strictly exogenous in the time
Masao

needs to
check this!

series sense if E(et| · · · ,Xt+2,Xt+1,Xt,Xt−1,Xt−2, · · · ) = 0. This is a very restrictive

assumption that does not hold in all applications of cointegration discussed in Chapter

15. For example, E(et|Xt,Xt−1,Xt−2, · · · ) = 0 in some applications because et is a

forecast error. However, the forecast error is usually correlated with future values of

Xt. Hence the strict exogeneity assumption is violated. Nevertheless, as Choi and

Ogaki (1999) argue, it is useful to observe that the Gauss Markov theorem applies

to cointegrating regressions in order to understand small sample properties of various

estimators for cointegrating vectors. Moreover, this observation leads to a Generalized

Least Squares (GLS) correction to spurious regressions.

Let σ(X) be the smallest σ-field with respect to which the random variables in

X are measurable. We use the notation E[Z|σ(X)] to denote the usual conditional

expectation of Z conditional on X as defined by Billingsley (1986) for a random

variable Z. E[Z|σ(X)] is a random variable, and E[Z|σ(X)](s) denotes the value

of the random variable at s in S (????? what is s?). It should be noted that the
Masao

needs to
check this!

definition is given under the condition that Z is integrable, namely E(|Z|) < ∞.

This condition can be too restrictive when we define the conditional expectation of

the OLS estimator in some applications as we discuss later. ?????1
Masao

needs to
check this!

Masao
needs to

check this!

For this reason, we will also use a different concept of expectation conditional

on X that can be used when Z and vec(X) have probability density functions fZ(z)

1Loeve (1978) slightly relaxes this restriction by defining the conditional expectation for any
random variable whose expectation exists (but may not be finite) with an extension of the Radon-
Nikodym theorem. This definition can be used for E(·|σ(X)), but this slight relaxation does not
solve our problem which we describe later.?????
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and fX(vec(x)), respectively. In this case, if fX(vec(x)) is positive, we define the

expectation of Z conditional on X(s) = x as

E[Z|X(s) = x] =

∫ ∞

−∞

fZ(z)

fX(vec(x))
dz.(5.1)

For this definition, we use the notation E[Z|X(s) = x]. This definition can only be

used when the probability density functions exist and fX(vec(x)) is positive, but the

advantage of this definition for our purpose is that the conditional expectation can be

defined even when E(Z) does not exist. For example let Z = Y
X

where Y and X are

independent random variables with a standard normal distribution. Then Z has the

Cauchy distribution, and E(Z) does not exist. Thus, E[Z|σ(X)] cannot be defined.2

However, we can define E[Z|X(s) = x] for all s in the probability space because the

density function of X is always positive.

In the special case in which both types of conditional expectations can be de-

fined, they coincide. More precisely, suppose that Z and vec(X) have probability

density functions, that the probability density function of vec(X) is always positive,

and that Z is integrable. Then E[Z|σ(X)](s) = E[Z|X(s)] with probability one.

Let y = (y1, y2, · · · , yT )′ be a T × 1 vector of random variables, and e =

(e1, e2, · · · , eT )′ be a T × 1 vector of random variables. We are concerned with a

linear model of the form:

Assumption 5.1 y = Xb0 + e,

where b0 is a K × 1 vector of real numbers. We assume that the expectation of e

conditional on X is zero:

2It should be noted that we cannot argue that E(Z) = E(E( YX |σ(X))) = E(E(Y |σ(X))
X ) = 0 even

though 1
X is measurable in σ(X) because E( YX |σ(X)) is not defined.
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Assumption 5.2 E[e|σ(X)] = 0.

Since E[e|σ(X)] is only defined when each element of e is integrable, Assumption 5.2

implicitly assumes that E(e) exists and is finite. It also implies E(e) = 0 because

of the law of iterated expectations. Given E(e) = 0, a sufficient condition for As-

sumption 5.2 is that X is statistically independent of e. Since Assumption 5.2 does

not imply that X is statistically independent of e, Assumption 5.2 is weaker than the

assumption of the independent stochastic regressors. With the next assumption, we

assume that e is conditionally homoskedastic and et is not serially correlated:

Assumption 5.3 E[ee′|σ(X)] = σ2IT .

Let G = {s in S : X(s)′X(s) is nonsingular}. Since the determinant of a matrix

is a continuous function of the elements of a matrix, G is a member of the σ-field

F?????.
Masao

needs to
check this!

For any s in G, the OLS estimator is

bT = (X′X)−1X′y.(5.2)

From Assumption 5.1, bT = b0 + (X′X)−1X′e. Hence the conditional Gauss-Markov

theorem can be proved when the expectation of (X′X)−1X′e and (X′X)−1X′ee′X(X′X)−1

can be defined. For this purpose, we consider the following two alternative assump-

tions:

Assumption 5.4 E[(X′X)−1X′ee′X(X′X)−1] exists and is finite.

Assumption 5.4′ e and vec(X) have probability density functions, and the proba-

bility density functions of vec(X) are positive for all s in G.
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A sufficient condition for Assumption 5.4 is that the distributions of X and e

have finite supports. Under Assumption 5.4, E[(X′X)−1X′e] also exists and is finite.

Hence E(bT |σ(X)) can be defined. From Assumptions 5.1-5.3, E(bT |σ(X)) = b0 +

E[(X′X)−1X′e|σ(X)] = b0 for s in G with probability Pr(G). Under Assumptions

5.1-5.4, E[(bT−b0)
′(bT−b0)|σ(X)] can be defined, and E[(bT−b0)

′(bT−b0)|σ(X)] =

E[(X′X)−1X′ee′X(X′X)−1|σ(X)] = (X′X)−1X′E[ee′|σ(X)]X(X′X)−1 = σ2(X′X)−1

for s in G with probability Pr(G). The problem with Assumption 5.4 is that it is

not easy to verify Assumption 5.4 for many distributions of X and et that are often

used in applications and Monte Carlo studies.

Under Assumptions 5.1-5.3 and 5.4′, E[bT |X(s)] = b0 and E[(bT − b0)
′(bT −

b0)|X(s)] = σ2(X(s)′X(s))−1 for any s in G.

Corresponding with Assumption 5.4 and 5.4′, we consider two definitions of the

conditional version of the Best Linear Unbiased Estimator (BLUE). Given a set H in

the σ-field F , the Best Linear Unbiased Estimator (BLUE) conditional on σ(X) in H

is defined as follows. An estimator bT for b0 is the BLUE conditional on σ(X) in H

if (1) bT is linear conditional on σ(X), namely, bT can be written as bT = Ay where

A is a K × T matrix, and each element of A is measurable σ(X); (2) bT is unbiased

conditional on σ(X) in G, namely, E(bT |σ(X)) = b0 for s in H with probability

Pr(H); (3) for any linear unbiased estimator b∗ conditional on X(s) = x for which

E(b∗b∗′) exists and is finite, E[(bT − b0)(bT − b0)
′|X(s) = x] ≤ E[(b∗ − b0)(b

∗ −

b0)
′|X(s) = x] in H with probability Pr(H), namely, E[(b∗ − b0)(b

∗ − b0)
′|X(s) =

x]−E[(bT −b0)(bT −b0)
′|X(s) = x] is a positive semidefinite matrix with probability

one for s in H with probability Pr(H).

An estimator bT for b0 is the BLUE conditional on X(s) = x in H if (1) bT



76 CHAPTER 5. STOCHASTIC REGRESSORS

is linear conditional on X(s) in H, namely, bT can be written as bT = Ay where A

is a K × T matrix, and each element of A is measurable σ(X); (2) bT is unbiased

conditional on X(s) = x in H, namely, E(bT |X(s) = x) = b0 for any s in H; (3) for

any linear unbiased estimator b∗ conditional on X(s) = x for which E(b∗b∗′|X(s) =

x) exists and is finite, E[(bT−b0)(bT−b0)
′|X(s) = x] ≤ E[(b∗−b0)(b

∗−b0)
′|X(s) =

x] in H, namely, E[(b∗ −b0)(b
∗ − b0)

′|X(s) = x]−E[(bT − b0)(bT − b0)
′|X(s) = x]

is a positive semidefinite matrix for any s in H.

With these preparations, the following theorem can be stated:

Theorem 5.1 (The Conditional Gauss-Markov Theorem) Under Assumptions 5.1-

5.4, the OLS estimator is the BLUE conditional on σ(X) in G. Under Assumptions

5.1-5.3 and 5.4′, the OLS estimator is the BLUE conditional on X(s) = x in G.

The theorem can be proved by applying any of the standard proofs of the

(unconditional) Gauss-Markov theorem by replacing the unconditional expectation

with the appropriate conditional expectation.

Under Assumptions 5.1-5.4, the unconditional expectation and the uncondi-

tional covariance matrix of bT can be defined. With an additional assumption that

Pr(G) = 1 or

Assumption 5.5 X′X is nonsingular with probability one,

we obtain the following corollary of the theorem:

Proposition 5.1 Under Assumptions 5.1-5.5, the OLS estimator is unconditionally

unbiased and has the minimum unconditional covariance matrix among all linear

unbiased estimators conditional on σ(X).
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Proof Using the law of iterated expectations, E(bT ) = E{E[bT |σ(X)]} = E(b0) = b0, and
E[(bT − b0)(bT − b0)

′] = E{E[(bT − b0)(bT − b0)
′|σ(X)]} = σ2E[(X′X)−1]. For the minimum

covariance matrix part, let b∗ be another linear unbiased estimator conditional on σ(X). Then

E[(b∗ − b0)(b
∗ − b0)

′|σ(X)] = E[(bT − b0)(bT − b0)
′|σ(X)] + ∆,(5.3)

where ∆ is a positive semidefinite matrix with probability one. Then E[(b∗−b0)(b
∗−b0)

′]−E[(bT−
b0)(bT −b0)

′] = [E(b∗b∗′)−b0b
′
0]− [E(bTb

′
T )−b0b

′
0] = E[E(b∗b∗′|σ(X))−E[E(bTb

′
T |σ(X)] =

E(∆) is a positive semidefinite matrix. (?????)

Masao
needs to
check this!

A few remarks for this proposition are in order:

Remark 5.1 Assumption 5.4 cannot be replaced by Assumption 5.4′ for this propo-

sition. Under Assumption 5.4′, E(bT ) and E[(bT − b0)(bT − b0)
′] may not exist.

Remark 5.2 In this proposition, the covariance matrix of bT is σ2E[(X′X)−1], which

is different from σ2[E(X′X)]−1. This result may seem to contradict the standard

asymptotic theory, but it does not. Asymptotically, 1
T
X′X converges almost surely

to E[XtX
′
t] if Xt is stationary and ergodic. Hence the limit of the covariance matrix

of
√
T (bT − b0), σ

2E[{ 1
T
(X′X)}−1], is equal to the asymptotic covariance matrix,

σ2[E(XtX
′
t)]

−1.

5.2 Unconditional Distributions of Test Statistics

In order to study distributions of the t ratios and F test statistics, we need an

additional assumption:

Assumption 5.6 Conditional on X, e follows a multivariate normal distribution.

Given a 1×K vector of real numbers R, consider a random variable

NR =
R(bT − b0)

σ[R(X′X)−1R′]
1
2

(5.4)
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and the usual t ratio for Rb0

tR =
R(bT − b0)

σ̂[R(X′X)−1R′]
1
2

.(5.5)

Here σ̂ is the positive square root of σ̂2 = 1
T−K

(y−XbT )
′(y−XbT ). With the stan-

dard argument, NR and tR can be shown to follow the standard normal distribution

and Student’s t distribution with T −K degrees of freedom conditional on X, respec-

tively, under either Assumptions 5.1-5.6 or Assumptions 5.1-5.3, 5.4′, and 5.5-5.6.

The following proposition is useful in order to derive the unconditional distributions

of these statistics.

Proposition 5.2 If the probability density function of a random variable Z condi-

tional on a random vector Q does not depend on the values of Q, then the marginal

probability density function of Z is equal to the probability density function of Z

conditional on Q.

This proposition is obtained by integrating the probability density function condi-

tional on Q over all possible values of the random variables in Q. Since NR and

tR follow the standard normal and the Student’s t distribution conditional on X,

respectively, Proposition 5.2 implies the following proposition:

Proposition 5.3 Under the Assumptions 5.1-5.6, or under the Assumptions 5.1-5.3,

5.4′, and 5.5-5.6, NR is the standard normal random variable and tR is the Student’s

t random variable with T −K degrees of freedom.

Similarly, the usual F test statistics also follow (unconditional) F distributions.

These results are sometimes not well understood by econometricians. For example,

a standard textbook, Judge et al. (1985, p.164), states that “our usual test statistics
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do not hold in finite samples” on the grounds that bT ’s (unconditional) distribution

is not normal. It is true that bT is a nonlinear function of X and e, so it does not

follow a normal distribution even if X and e are both normally distributed. However,

the usual t and F test statistics have usual (unconditional) distributions as a result

of Proposition 5.2.

5.3 The Law of Large Numbers

If an estimator bT converges almost surely to a vector of parameters b0, then bT is

strongly consistent for b0. If an estimator bT converges in probability to a vector of

parameters b0, then bT is weakly consistent for b0.

Consider a univariate stationary stochastic process {Xt}. WhenXt is stationary,

E(Xt) does not depend on date t. Therefore, we often write E(X) instead of E(Xt).

Assume that E(|X|) is finite, and consider a sequence of random variables [YT : T ≥

1], where YT = 1
T

∑T
t=1Xt is the sample mean of X computed from a sample of size T .

In general, the sample mean does not converge to its unconditional expected value,

but converges almost surely to an expectation of X conditional on an information

set. For the sample mean to converge almost surely to its unconditional mean, we

require the series to be ergodic. A stationary process {Xt} is said to be ergodic if, for

any bounded functions f : Ri+1 7−→ R and g : Rj+1 7−→ R,

lim
T→∞

|E[f(Xt, · · · , Xt+i)g(Xt+T , · · · , Xt+T+j)]|(5.6)

= |E[f(Xt, · · · , Xt+i)]||E[g(Xt, · · · , Xt+j)]|.

Heuristically, a stationary process is ergodic if it is asymptotically independent: that

is, if (Xt, · · · , Xt+i) and (Xt+T , · · · , Xt+T+j) are approximately independent for large

enough T .



80 CHAPTER 5. STOCHASTIC REGRESSORS

Proposition 5.4 (The strong law of large numbers) If a stochastic process [Xt : t ≥

1] is stationary and ergodic, and if E(|X|) is finite, then 1
T

∑T
t=1Xt → E(X) almost

surely.

5.4 Convergence in Distribution and Central Limit

Theorem

This section explains a definition of convergence in distribution and presents some

central limit theorems. These central limit theorems are based on martingale differ-

ence sequences, and are useful in many applications of rational expectations models.

Central limit theorems establish that the sample mean scaled by T converges

in distribution to a normal distribution3 under various regularity conditions. The

following central limit theorem by Billingsley (1961) is useful for many applications

because we can apply it when economic models imply that a variable is a martingale

difference sequence.

Proposition 5.5 (Billingsley’s Central Limit Theorem) Suppose that et is a station-

ary and ergodic martingale difference sequence adapted to It, and that E(|e|2) <∞.

Assume that It−1 ⊂ It for all t. Then

1√
T

T∑
t=1

et
D→ N(0, E(e2)).

If et is an i.i.d. white noise, then it is a stationary and ergodic martingale differ-

ence sequence adapted to It which is generated from {et, et−1, · · · }. Hence Billingsley’s

3In some central limit theorems, the limiting distribution is not normal.
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Central Limit Theorem is more general than the central limit theorems for i.i.d. pro-

cesses such as the Lindeberg- Levy theorem, which is usually explained in econometric

text books. However, Billingsley’s Central Limit Theorem cannot be applied to any

serially correlated series.

A generalization of the theorem to serially correlated series is due to Gordin

(1969):

Proposition 5.6 (Gordin’s Central Limit Theorem) Suppose that et is a univariate

stationary and ergodic process with mean zero and E(|e|2) <∞, that E(et|et−j, et−j−1, · · · )

converges in mean square to 0 as j → ∞, and that

∞∑
j=0

[E(r2tj)]
1
2 <∞,(5.7)

where

rtj = E(et|It−j)− E(et|It−j−1),(5.8)

where It is the information set generated from {et, et−1, · · · }. Then et’s autocovari-

ances are absolutely summable, and

1√
T

T∑
t=1

et
D→ N(0,Ω),(5.9)

where

Ω = lim
T→∞

T−1∑
j=−T+1

E(etet−j).(5.10)

When et is serially correlated, the sample mean scaled by T still converges to a normal

distribution, but the variance of the limiting normal distribution is affected by serial

correlation as in (5.10).
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In (5.10), Ω is called a long-run variance of et. Intuition behind the long-run

variance can be obtained by observing

E[(
1√
T

T∑
t=1

et)
2] =

T−1∑
j=−T+1

T − |j|
T

E(etet−j)(5.11)

and that the right hand side (5.11) is the Cesaro sum of
∑T−1

j=−T+1E(etet−j). Thus

when
∑T−1

j=−T+1E(etet−j) converges, its limit is equal to the limit of the right hand

side of (5.11) (Apostol, 1974).

Another expression for the long-run variance can be obtained from an MA

representation of et. Let et = Ψ(L)ut = Ψ0ut+Ψ1ut−1+ · · · be an MA representation.

Then E(etet−j) = (ΨjΨ0+Ψj+1Ψ1+Ψj+2Ψ2+ · · · )E(u2t ), and Ω = {(Ψ2
0+Ψ2

1+Ψ2
2+

· · · ) + 2(Ψ1Ψ0 +Ψ2Ψ1 +Ψ3Ψ2 + · · · ) + 2(Ψ2Ψ0 +Ψ3Ψ1 +Ψ4Ψ2 + · · · ) + · · · }E(u2t ) =

(Ψ0 +Ψ1 +Ψ2 + · · · )2E(u2t ). Hence

Ω = Ψ(1)2E(u2t ).(5.12)

In the next example, we consider a multi-period forecasting model. For this

model, it is easy to show that Gordin’s Theorem is applicable to the serially correlated

forecast error.

Example 5.1 (The Multi-Period Forecasting Model) Suppose that It is an informa-

tion set generated by {Yt,Yt−1,Yt−2, · · · }, where Yt is a stationary and ergodic

vector stochastic process. In typical applications, economic agents are assumed to

use current and past values of Yt to generate their information set. Let Xt be a

stationary and ergodic random variable in the information set It with E(|Xt|2) <∞.

We consider an s-period ahead forecast of Xt, E(Xt+s|It), and the forecast error,

et = Xt+s − E(Xt+s|It).
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It is easy to verify that all the conditions for Gordin’s Theorem are satisfied for

et. Moreover, because E(et|It) = 0 and et is in the information set It+s, E(etet−j) =

E(E(etet−j|It)) = E(et−jE(et|It)) = 0 for j ≥ s. Hence Ω = limj→∞
∑j

−j E(etet−j) =∑s−1
j=−s+1E(etet−j).

Hansen (1985) generalized Gordin’s Central Limit Theorem to vector processes.

In this book, we call the generalized theorem Gordin and Hansen’s Central Limit

Theorem.

Proposition 5.7 (Gordin and Hansen’s Central Limit Theorem) Suppose that et is

a vector stationary and ergodic process with mean zero and finite second moments,

that E(et|et−j, et−j−1, · · · ) converges in mean square to 0 as j → ∞, and that

∞∑
j=0

[E(r′tjrtj)]
1
2 <∞,(5.13)

where

rtj = E(et|It−j)− E(et|It−j−1),(5.14)

where It is the information set generated from {et, et−1, · · · }. Then et’s autocovari-

ances are absolutely summable, and

1√
T

T∑
t=1

et
D→ N(0,Ω)

where

Ω = lim
T→∞

T−1∑
j=−T+1

E(ete
′
t−j).(5.15)
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The matrix Ω in Equation (5.15) is called the long-run covariance matrix of et.

As in the univariate case, another expression for the long-run covariance can be

obtained from an MA representation of et. Let et = Ψ(L)ut = Ψ0ut +Ψ1ut−1 + · · ·

be an MA representation. Then E(ete
′
t−j) = (Ψj +Ψj+1 +Ψj+2 + · · · )E(utu

′
t)(Ψ0 +

Ψ1+Ψ2+ · · · )′, and Ω = (Ψ0+Ψ1+Ψ2+ · · · )E(utu
′
t)(Ψ0+Ψ1+Ψ2+ · · · )′. Hence

Ω = Ψ(1)E(utu
′
t)Ψ(1)′.(5.16)

In the next example, Gordin and Hansen’s Central Limit Theorem is applied to

a serially correlated vector process:

Example 5.2 Continuing Example 5.1, let Zt be a random vector with finite second

moments in the information set It. Define ft = Ztet. Then E(ft|It) = E(Ztet|It) =

E(ZtE(et|It)) = 0. In empirical work, it is often necessary to apply a central limit

theorem to a random vector such as ft. It is easy to verify that all conditions for

Gordin and Hansen’s Theorem are satisfied for ft. Moreover, E(ft|It) = 0 and ft is

in the information set It+s, thus E(ftf
′
t−j) = E(E(ftf

′
t−j|It)) = E(E(ft|It)f ′t−j) = 0 for

j ≥ s. Hence Ω = limj→∞
∑j

−j E(ftf
′
t−j) =

∑s−1
j=−s+1E(ftf

′
t−j).

We assumed that the process is stationary and ergodic for the law of large

numbers and central limit theorems. In most applications, this ergodic stationarity

assumption is general enough. However, in some applications, such an assumption

may not be convenient. For example, suppose that data of a process of interest shows

an initial rapid growth and then stabilizes. It is not attractive to assume eargodic

stationarity because the expected value of the process seems initially rising. In such

cases, we can use an alternative assumption that the process is mixing. Mixing can

be regarded as an asymptotic independence. For stationary and ergodic processes,
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we used the concept of martingale difference sequence for central limit theorems. For

mixing processes, the corresponding concept is mixingale processes. The concepts of

mixing and mixingale are explained in Appendix A.

5.5 Consistency and Asymptotic Distributions of

OLS Estimators

Consider a linear model,

yt = x′
tb0 + et,(5.17)

where yt and et are stationary and ergodic random variables, and xt is a p-dimensional

stationary and ergodic random vector. We assume that the orthogonality conditions

E(xtet) = 0(5.18)

are satisfied, and that E(xtx
′
t) is nonsingular.

4 Imagine that we observe a sample of

(yt,x
′
t) of size T . Proposition 5.4 shows that 1

T

∑T
t=1 xtx

′
t converges to E(xtx

′
t) almost

surely. Hence with probability one,
∑T

t=1 xtx
′
t(s) is nonsingular for large enough T ,

and the Ordinary Least Squares (OLS) estimator for (5.17) can be written as

bT = (
T∑
t=1

xtx
′
t)

−1(
T∑
t=1

xtyt).(5.19)

In order to apply the Law of Large Numbers to show that the OLS estimator is

strongly consistent, rewrite (5.19) from (5.17) after scaling each element of the right

side by T :

bT − b0 = (
1

T

T∑
t=1

xtx
′
t)

−1(
1

T

T∑
t=1

(xtet)).(5.20)

4Appendix 3.A explains why these types of conditions are called orthogonality conditions.
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Applying Proposition 5.4, we obtain

bT − b0 → [E(xtx
′
t)]

−1(E(xtet)) = 0 almost surely.(5.21)

Hence the OLS estimator, bT , is a strongly consistent estimator. In order to obtain

the asymptotic distribution of the OLS estimator, we make an additional assumption

that a central limit theorem applies to xtet. In particular, assuming that Gordin

and Hansen’s Martingale Approximation Central Limit Theorem is applicable, we

multiply both sides of (5.20) by the square root of T :

√
T (bT − b0) = (

1

T

T∑
t=1

xtx
′
t)

−1(
1√
T

T∑
t=1

(xtet)).(5.22)

Therefore,

√
T (bT − b0)

D→ N(0, [E(xtx
′
t)]

−1Ω[E(xtx
′
t)]

−1)(5.23)

where Ω is the long-run covariance matrix of xtet:

Ω =
∞∑

j=−∞

E(etet−jxtx
′
t−j).(5.24)

5.6 Consistency and Asymptotic Distributions of

IV Estimators

Consider the linear model (5.17) for which the orthogonality conditions (5.18) are not

satisfied. In this case, we try to find a p-dimensional stationary and ergodic random

vector zt, which satisfies two types of conditions: the orthogonality condition

E(ztet) = 0,(5.25)

and the relevance condition that E(ztx
′
t) is nonsingular. We define the Linear Instru-

mental Variable (IV) estimator as

bT = (
T∑
t=1

ztx
′
t)

−1

T∑
t=1

ztyt.(5.26)
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Then

bT − b0 = (
1

T

T∑
t=1

ztx
′
t)

−1(
1

T

T∑
t=1

ztet).(5.27)

Applying Proposition 5.4, we obtain

bT − b0 → [E(ztx
′
t)]

−1(E(ztet)) = 0 almost surely.(5.28)

Hence the linear IV estimator, bT , is a strongly consistent estimator. Assuming that

the Vector Martingale Approximation Central Limit Theorem is applicable to ztet,

√
T (bT − b0)

D→ N(0, [E(ztx
′
t)]

−1Ω[E(ztx
′
t)]

−1)(5.29)

where Ω is the long-run covariance matrix of ztet:

Ω =
∞∑

j=−∞

E(etet−jztz
′
t−j).(5.30)

5.7 Nonlinear Functions of Estimators

In many applications of linear models, we are interested in nonlinear functions of b0,

say a(b0). This section explains the delta method, which is a convenient method to

derive asymptotic properties of a(bT ) as an estimator for b0 where bT is a weakly

consistent estimator for b0. In many applications, bT is an OLS estimator or a linear

IV estimator. Later????? in this book we will use the proof of the delta method
Masao
needs to
check this!

to prove the asymptotic normality of the GMM estimator. (????? a not bold, f is

better?) Masao
needs to
check this!

Proposition 5.8 Suppose that {bT} is a sequence of p-dimensional random vectors

such that
√
T (bT −b0)

D→ z for a random vector z. If a(·) : Rp 7−→ Rr is continuously

differentiable at b, then

√
T [a(bT )− a(b0)]

D→ d(b0)z,
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where d(b0) = ∂a(b)
∂b′ |b=b0 denotes the r × p matrix of first derivatives evaluated at

b0. In particular, if z ∼ N(0,Σ), then

√
T [a(bT )− a(b0)]

D→ N(0,d(b0)Σd(b0)
′).

Proof ????????????

Masao
needs to

check this!

5.8 Remarks on Asymptotic Theory

When we use asymptotic theory, we do not have to make restrictive assumptions

that the disturbances are normally distributed. Serial correlation and conditional

heteroskedasticity can be easily taken into account as long as we can estimate the

long-run covariance matrix (which is the topic of the next chapter).

It is a common mistake to think that the linearity of the formula for the long-

run covariance matrix means a linearity assumption for the process of xtet (for the

OLS estimator) or ztet (for the IV estimator). It should be noted that we did not

assume that xtet or ztet was generated by linear functions (i.e., a moving average

process in the terminology of Chapter 4) of independent white noise processes. Even

when xtet or ztet is generated from nonlinear functions of independent white noise

processes, the distributions based on the long-run covariance matrices give the correct

limiting distributions. This point is related to the Wold representation for nonlinear

processes discussed in Chapter 4. Even when ztet is generated as a nonlinear process,

as long as it is a linearly regular and covariance stationary process, it has the Wold

representation: ztet = Ψ(L)ut, and its long-run covariance matrix is given by (5.30).
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5.9 Monte Carlo Methods

This section gives an introduction to Monte Carlo methods. An important advanced

Monte Carlo method called the Markov Chain Monte Carlo (MCMC)5 will be ex-

plained in Chapter 12 for the Bayesian Approach. The MCMC method is a very

powerful numerical integration method that can be used for both the Bayesian statis-

tics and the Classical statistics even though most applications of the method so fare

have been in the Bayesian statistics. Asymptotic theory is used to obtain approxima-

tions of the exact finite sample properties of estimators and test statistics. In many

time series applications, the exact finite sample properties cannot be obtained. For

example, in a regression with lagged dependent variables, we can assume neither that

the regressor is nonrandom nor that the error term is strictly exogenous in the time

series sense. In many applications with financial variables, the assumption that the

error term in a regression is normal is inappropriate because many authors have found

evidence against normality for several financial variables. Asymptotic theory gives

accurate approximations when the sample size is “large,” but exactly how “large” is

enough depends on each application. One method to study the quality of asymptotic

approximations is the Monte Carlo simulations.

5.9.1 Random Number Generators

In relatively simple Monte Carlo studies, data are generated with computer pro-

grams called pseudo-random number generators. These programs generate sequences

of values that appear to be draws from a specified probability distribution. Mod-

ern pseudo-random generators are accurate enough that we can ignore the fact that

5It is important to the extent that its emergence is called the MCMC revolution.
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numbers generated are not exactly independent draws from a specified probability

distribution for most purposes.6 Hence in the rest of this appendix, phrases such as

“values that appear to be” are often suppressed.

Recall that when a probability space Ω is given, the whole history of a stochastic

process {et(s)}Nt=1 is determined when a point in the probability space s is given. For

a random number generator, we use a number called the starting seed to determine

s. Then the random number generator automatically updates the seed each time

a number is generated. It should be noted that the same sequence of numbers is

generated whenever the same starting seed is given to a random number generator.

Generated random numbers are used to generate samples. From actual data,

we obtain only one sample, but in Monte Carlo studies, we can obtain many samples

from generated random numbers. Each time a sample is generated, we compute esti-

mators or test statistics of interest. After replicating many samples, we can estimate

small sample properties of the estimators or test statistics by studying the generated

distributions of these variables and compare them with predictions of asymptotic

theory.

Most programs offer random number generators for the uniform distribution

and the standard normal distribution. One can produce random numbers with other

distributions by transforming generated random numbers. See the Appendix for more

explanations.

6One exception is that a pseudo-random number generator ultimately cycles back to the initial
value generated and repeats the sequence when too many numbers are generated. Most modern
pseudo-random number generators cycle back after millions of values are drawn, and this tendency
is not a problem for most Monte Carlo studies. However, in some studies in which millions or billions
of values are needed, there can be a serious problem.
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5.9.2 Estimators

When a researcher applies an estimator to actual data without the normality assump-

tion, asymptotic theory is used as a guide of small sample properties of the estimator.

In some cases, asymptotic theory does not give a good approximation of the exact

finite sample properties. A Monte Carlo study can be used to estimate the true finite

sample properties. For example, the mean, median, and standard deviation of the

realized values of the estimator over generated samples can be computed and reported

as estimates of the true values of these statistics. For example, N independent sam-

ples are created and an estimate bi (i ≥ 1) for a parameter b0 is calculated for the

i-th sample. Then the expected value of the estimator E(bi) can be estimated by its

mean over the samples: 1
N

∑N
i=1 bi. By the strong law of large numbers, the mean

converges almost surely to the expected value.

Other properties can also be reported, depending on the purpose of the study.

For example, Nelson and Startz (1990) report estimated 1%, 5%, 10%, 50%, 90%,

and 99% fractiles for an IV estimator and compared them with fractiles implied by

the asymptotic distribution. This influential paper uses Monte Carlo simulations to

study the small sample properties of IV estimator and its t-ratio when instruments

are poor in the sense that the relevance condition is barely satisfied.

When the deviation from the normal distribution is of interest, the skewness

and kurtosis are often estimated and reported. The skewness of a variable Y with

mean µ is

E(Y − µ)3

[V ar(Y )]
3
2

.(5.31)

A variable with negative skewness is more likely to be far below the mean than it is
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to be far above, and conversely a variable with positive skewness is more likely to be

far above the mean than it is to be below. If Y has a symmetric distribution such as

a normal distribution, then the skewness is zero. The kurtosis of Y is

E(Y − µ)4

[V ar(Y )]2
.(5.32)

If Y is normally distributed, the kurtosis is 3. If the kurtosis of Y exceeds 3, then its

distribution has more mass in the tails than the normal distribution with the same

variance.

5.9.3 Tests

When a researcher applies a test to actual data without the normality assumption,

asymptotic theory is typically used. For example, the critical value of 1.96 is used

for a test statistic with the asymptotic normal distribution for the significance level

of 5%. The significance level and critical value based on the asymptotic distribution

are called the nominal significance level and the nominal critical value, respectively.

The probability of rejecting the null hypothesis when it is true is called the size of the

test. Since the asymptotic distribution is not exactly equal to the exact distribution

of the test statistic, the true size of the test based on the nominal critical value is

usually either larger or smaller than the nominal significance level. This property is

called the size distortion. If the true size is larger than the nominal significance level,

the test overrejects the null hypothesis and is said to be liberal. If the true size is

smaller than the nominal significance level, the test underrejects the null hypothesis

and is said to be conservative. Using the distribution of the test statistic produced

by a Monte Carlo simulation, one can estimate the true critical value.

The power of the test is the probability of rejecting the null hypothesis when
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the alternative hypothesis is true. In Monte Carlo studies, two versions of the power

can be reported for each point of the alternative hypothesis: the power based on the

nominal critical value and the power based on the estimated true critical value. The

latter is called the size corrected power. The power based on the nominal critical

value is also of interest because it is the probability of rejecting the null hypothesis

in practice if asymptotic theory is used. On the other hand, the size corrected power

is more appropriate for the purpose of comparing tests. For example, a liberal test

tends to have a higher power based on the nominal critical value than a conservative

test. However, we cannot conclude the liberal test is better from this observation

because the probability of Type I error is not equal for the two tests.

5.10 Bootstrap

When the asymptotic distribution of a random variable such as a parameter esti-

mate and test statistic is unknown or unreliable, an estimation method called the

bootstrap is used as an alternative to the asymptotic theory. The bootstrap esti-

mates the unknown underlying probability distribution of interest using a known

distribution function generated by a random sampling procedure. In this sense, the

bootstrap distribution treats the random sample as if it is a good representation of

the population. Under mild regularity conditions and with the sample sizes typically

encountered in applied work, this method can provide as accurate an approximation

as that obtained from the asymptotic theory. Moreover, often in cross-sectional appli-

cations, the bootstrap approximations can achieve the level of accuracy comparable

to higher-order asymptotic approximations. When the bootstrap improves upon first-

order asymptotic approximations, it is said to benefit from asymptotic refinements.
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Asymptotic refinements are an important feature of the bootstrap in reducing or

eliminating finite-sample bias of an estimator or finite-sample errors in the rejection

probabilities of statistical tests. For these reasons, since its introduction by Efron

(1979), the bootstrap has become a practical and increasingly popular tool in applied

econometrics.7

To illustrate how the bootstrap is implemented in a simple setting, suppose you

have a random sample {x1, x2, ..., xT} of an i.i.d. random variable x with cumulative

distribution function (CDF) F0. Let QT = QT (x1, x2, ..., xT ) denote the statistic of

interest, and GT (q, F0) ≡ Pr(QT ≤ q) the exact, finite-sample CDF of QT . Because

F0 is usually unknown in applications, the bootstrap method replaces F0 with its

estimator FT , and approximates GT (q, F0) by the bootstrap distribution GT (q, FT )

based on which you can make inferences about QT .

There are two possible specifications of FT . The nonparametric bootstrap uses

the empirical distribution function of the data as FT . The other approach, the para-

metric bootstrap, uses a parametric estimator of F0 as FT . For instance, if x is

assumed to be normally distributed with mean µ and variance σ2, then FT is defined

as N(µ̂, σ̂2) where µ̂ and σ̂2 are consistent estimates of µ and σ2, respectively.

In most applications, GT (q, FT ) cannot be evaluated analytically, but is approx-

imated using a Monte Carlo simulation. The steps for this procedure are as follows.

1. Draw a bootstrap sample of size T , X∗ = {x∗1, x∗2, ..., x∗T}, from the distribution

corresponding to FT randomly. For the nonparametric bootstrap, the obser-

vations are resampled from the original data set with replacement, with each

point in the sample having the equal probability 1/T of being drawn. Clearly,

7See, e.g., Jeong and Maddala (1993) and Horowitz (2001) for survey and details of different
bootstrap methods and their theoretical justification.
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some of the original data points may be included in X∗ once or more than once,

while others may not be included at all. For the parametric bootstrap, X∗ is

generated using a random number generator.

2. Using X∗, compute the bootstrap statistic Q∗
T,1 ≡ QT (x

∗
1, x

∗
2, ..., x

∗
T ).

3. Repeat steps 1 and 2 B times to obtain observations {Q∗
T,1, ..., Q

∗
T,B}.

4. The bootstrap distribution GT (q, FT ) is estimated by G∗
T (q, FT ) = Pr(Q∗

T ≤ q)

putting mass 1/B at each point of {Q∗
T,1, ..., Q

∗
T,B}.

The resulting bootstrap distribution G∗
T (q, FT ) is then used to compute p-values or

confidence intervals, and make inferences about QT which is computed in conventional

ways.

In order for the bootstrap distribution GT (·, FT ) to be an adequate estimator of

GT (·, F0), it must be consistent. That is, GT (·, FT ) must converge in probability to

the asymptotic CDF of QT , G∞(·, F0), as T → ∞. Essentially, the conditions for the

consistency of GT (·, FT ) require that FT is a consistent estimator of F0, and GT (·, F )

is continuous in F in an appropriate sense. It then follows that GT (·, FT ) approaches

GT (·, F0) for a sufficiently large sample size.8

Although these conditions are likely to be satisfied in many cases of interest in

econometrics, they can be violated in some applications. For instance, for the heavy-

tailed distributions of Athreya (1987) or the unit root AR(1) model of Basawa, Mallik,

McCormick, Reeves, and Taylor (1991), the standard bootstrap method results in

poor approximations to the asymptotic distribution of interest. Thus, although the

8For a precise definition of consistency, see Appendix A. For conditions for consistency and a
detailed discussion on consistency, see Section 2.1 of Horowitz (2001).
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bootstrap methods serve as an attractive alternative to the asymptotic theory in many

applications, it must be borne in mind that, just as with any econometric methods,

they, too, cannot be used blindly.

The following example illustrates an application of the bootstrap to an autore-

gressive (AR) model, and shows why it requires a non-standard procedure. Consider

the AR process of order 1 with an intercept and time trend,

xt = θ + µt+ αxt−1 + ϵt for 1 ≤ t ≤ T,

where ϵt is i.i.d., |α| < 1, and x0 is a random variable with a stationary distribution

so that xt is stationary. Let α̂ be the ordinary least square (OLS) estimator of the

autoregressive root α. The usual asymptotic theory indicates that T 1/2(α̂ − α) con-

verges in distribution to a normal random variable with zero mean. On the contrary,

the OLS estimator is significantly downward biased, and the exact, finite-sample dis-

tribution of α is asymmetric and has fatter tails than the normal distribution.9 In

this case, if ϵt is i.i.d. and normally distributed, then the exact, finite-sample CDF

of α̂ only depends on α, and can be computed numerically using Andrews’ (1993)

procedure without relying on Monte Carlo or bootstrap simulations. The deviations

from the prediction of the asymptotic theory are considerable especially when α is

close to one. For example, for the sample size of 60, the OLS estimator has down-

ward median-biases of 0.08, 0.09, and 0.15 when α is 0.7, 0.85, and 0.99, respectively.

Clearly, using the asymptotic distribution leads to an inaccurate approximation to

the exact, finite-sample distribution of α̂ and hence results in misleading inferences.10

9It should be noted that the strict exogeneity assumption is violated because of the lagged
dependent variable. Hence the argument for the conditional Gauss-Markov theorem cannot be
applied.

10An alternative asymptotic theory called the local-to-unity asymptotic theory can be applied in
this case as in Chan and Wei (1987) and Phillips (1987)



5.10. BOOTSTRAP 97

If ϵt is not i.i.d. or normally distributed, the exact, finite-sample distribution is es-

timated using bootstrap methods. Tables of the 0.05, 0.5, and 0.95 quantiles of α̂

can be found in Andrews (1993) for different sample sizes, AR specifications, and

distributions of ϵt.
11

An important characteristic of the AR models with a near unit root is that the

asymptotic distribution of and hence quantile functions for the test statistic depend

on α. Nevertheless, the conventional bootstrap approximates quantile functions by

evaluating them at the point estimate α̂ and thereby making an implicit assumption

that these functions are constant, which is false in the AR models. Consequently, the

standard bootstrap confidence intervals fail to provide asymptotically correct coverage

probabilities.

Table 1 summarizes the 0.05, 0.5, and 0.95 true quantiles of the nonstudentized

test statistic ST (α) = α̂ − α for the sample sizes of 40 and 150 over the values of α

from 0.70 to 1, assuming that the errors are i.i.d. and normally distributed.12

Table 1

T=40 T=150
α q0.05 q0.5 q0.95 q0.05 q0.5 q0.95

0.70 -0.390 -0.118 0.071 -0.144 -0.029 0.062
0.80 -0.403 -0.135 0.038 -0.137 -0.031 0.045
0.85 -0.412 -0.146 0.019 -0.133 -0.033 0.035
0.90 -0.425 -0.160 -0.002 -0.129 -0.036 0.023
0.93 -0.436 -0.172 -0.017 -0.127 -0.038 0.015
0.97 -0.457 -0.194 -0.040 -0.127 -0.045 0.000
0.99 -0.472 -0.209 -0.055 -0.133 -0.052 -0.010
1.00 -0.481 -0.218 -0.065 -0.140 -0.060 -0.018

11For a probability p, the p quantile of a random variable X is the minimum value of x for which
Pr(X ≤ x) = p is satisfied.

12Following Andrews (1993), we restrict the parameter space to be α ∈ (−1, 1]. This assumption
is made in order to avoid the dependence of the distribution of the OLS estimator on the initial
condition.
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These values are computed from table 3 in Andrews (1993) by subtracting the true

value of α from the quantile values in the corresponding row. It is clear from the above

table that the quantile functions are varying for different values of α. An appropriate

bootstrap quantile function must therefore be a function of α rather than α̂:

q∗0.05(α) ≤ ST (α) ≤ q∗0.95(α),

such that

Pr(q∗0.05(α) ≤ ST (α) ≤ q∗0.95(α)) = 0.90.

The above statement is exact in the sense that once we know the exact finite distribu-

tion of the quantiles for a given α, then this set has the correct coverage probability.

The upper and lower bounds are thus given by

−q∗0.95(α) + α̂ ≤ α ≤ −q∗0.05(α) + α̂.

Table 1 can be used to compute the median-unbiased estimator and the two-

sided 90% and one-sided 95% confidence intervals for α. Because the grid of α values

is finite, interpolation may be necessary for the values of α in between those reported.

To see how the table can be used in applications, suppose you have the OLS estimate

α̂ of 0.781 and the sample size T of 40. The median-unbiased estimate of α is the

intersection of ST (α) and q
∗
0.5(α). That is, α is such that α̂− α = q∗0.5(α). According

to table 1, this occurs when α = 0.99 (0.781-0.99=-0.209). The lower and upper

bounds of the 90% confidence interval can be found in the same way. For the lower

bound, the endpoint is the value of α such that α̂ − α = q∗0.95(α). You see that

α + q∗0.95(α) = 0.771 for α = 0.7, and α + q∗0.95(α) = 0.838 for α = 0.8. Because

α̂ = 0.781, the lower bound must lie between 0.7 and 0.8. By interpolation, this is

0.715. The upper bound can be found by α̂ − α = q∗0.05(α). Because the parameter
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space is restricted to be α ∈ (−1, 1], any value of α̂ that is above 0.519 for T=40

and 0.860 for T=150 corresponds to the upper bound of 1. Thus, in this example,

α̂ > 0.519, and hence the upper bound of the confidence interval is 1.

This interval is equivalent to Hansen’s (1999) grid bootstrap for the case of the

i.i.d. Gaussian errors. He proposes a nonparametric bootstrap method for construct-

ing confidence intervals for α from bootstrap quantile functions of α, and reports that

it has improved performance over the standard bootstrap method when α is close to

one.

The condition under which the grid bootstrap confidence interval is first-order

accurate only requires that the nuisance parameters are consistently estimated, and

no restriction is imposed on the estimate of the parameter of interest. On the other

hand, the consistency of the standard bootstrap confidence interval requires that the

parameters are consistently estimated and the test statistic of the hypothesis has an

asymptotic distribution, where the convergence to the asymptotic distribution is lo-

cally uniform in the parameter space. Thus, the conditions for the grip bootstrap are

strictly less restrictive than those for the latter in the sense of first-order asymptotic

coverage, suggesting that the grid bootstrap is more broadly applicable.

Appendix

5.A Weakly dependence process

Weakly dependence process is a stochastic process where serial dependence exists,

but it is restricted suitably so that the limit theorems, such as LLN, CLT, and FCLT,

can be applied. There are many different types of weakly dependence processes
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depending on its degree of serial dependence. In this section, we review some of the

most commonly used ones in the nonstationary econometrics.

The reason why we study weakly dependence process for the nonstationary

econometrics is that the nonstationary econometrics is also time-series econometrics,

and in time-series econometrics, serial dependence exists in almost all applications.

Therefore, we want our asymptotic theories for the nonstationary econometrics can

also be applied to the data that has serial dependence.

5.A.1 Independent Process

Definition 5.A.1 A stochastic process {Xt}∞−∞ is said to be independent if P (A ∩

B) = P (A)P (B) for a pair of A ∈ Ft
−∞ and B ∈ F∞

t+m for all t and m.

Independence implies that there is no relatioship between Xt and Xt′ for any t ̸= t′,

therefore each observation can be treated as an observation from a random sample.

From the time series econometrics perspective, independence is the most stringent

restriction on the behavior of a stochastic process. It is difficult to find a case where

independence assumption is appropriate. However, it can be used as a benchmark

against which asymptotic theories of other dependent processes might be compared.

5.A.2 Mixing Process

The idea of independence that there is no relationship between any pair of Xt and

Xt′ is rather special, especially for time series data. However, it might be reasonable

to expect that the degree of dependence between Xt and Xt′ is decreasing as the time

t and t′ are getting farther separated from each other. We formalize this idea by

introducing the concept of mixing.
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Definition 5.A.2 A stochastic process {Xt}∞−∞ is said to be mixing (or regular) if,

for every B ∈ F,

sup
A∈Ft

−∞

|P (A ∩B)− P (A)P (B)| → 0 as t→ −∞.

Mixing can be regarded as an asymptotic independence. Note that an independent

process is also mixing. An alternative definition of mixing can be described in terms

of remote event. Remote event is defined as an event contained in the remote σ-field,

F−∞ =
∩

t F
t
−∞.

Definition 5.A.3 A stochastic process {Xt}∞−∞ is said to be mixing (or regular) if

every remote event has probability 0 or 1.

Since mixing is defined by remote events as in Definition 5.A.3, it can hardly

provide us with useful description of dependence between events that are widely

separated in time, but not in the remote events. Therefore, for a workable theory

we need the concepts of mixing coefficients. In this section, we introduce only two

most important mixing coefficients, α-mixing and ϕ-mixing although there are several

other different versions available. Let G and H be σ-subfields of F. The α-mixing

(strong mixing) coefficient is defined by

α(G,H) = sup
G∈G,H∈H

|P (G ∩H)− P (G)P (H)|,

the uniform mixing coefficient is defined by

ϕ(G,H) = sup
G∈G,H∈H;P (G)>0

|P (H|G)− P (H)|

Then, the sequence {Xt}∞−∞ is said to be α-mixing (or strong mixing) if

αm = sup
t
α(Ft

−∞,F
∞
t+m) → 0 as m→ ∞,
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similary, it is said to be ϕ-mixing (or uniform mixing) if

ϕm = sup
t
ϕ(Ft

−∞,F
∞
t+m) → 0 as m→ ∞

Note that if αm = 0 for all m, the sequence becomes independent. Measure of the

dependence can be based on the rate of convergence at which the mixing coefficients

tend to zero. The rate of convergence is quantified by that for some number φ >

0, αm(ϕm) → 0 sufficiently fast that

∞∑
m=1

α
1
φ
m <∞ or

∞∑
m=1

ϕ
1
φ
m <∞.

A sequence is said to be α-mixing (ϕ-mixing) of size −φ0 if αm = O(m−φ) (ϕm =

O(m−φ)) for some φ > φ0.

5.A.3 Martingale Difference Process

Independence and mixing are conditions for every event in F. Since sup is taken

over all the events in F, usually it is the most peculiar event that determines the

properties. However, in many case, those peculiar event that determine the properties

of a stochastic process may not be our main interest. Therefore, sometimes it is more

useful if we confine our attention to more restricted measure of dependence, and admit

more stochastic process into consideration. Martingale difference and mixingale are

two key concepts.

Definition 5.A.4 A stochastic process {Xt}∞−∞ is said to be a martingale difference

(m.d.) sequence if Xt is integrable and

E(Xt|Ft−1
−∞) = 0 a.s.
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Table 5.1: Dependence between Xt and Xt+m

For all m As m→ ∞
Every events Independent ⇒ Mixing

⇓ ⇓
1-period ahead predictability Martingale Difference ⇒ Mixingale

This implies that {. . . , Xt−1} have no impact on the prediction of Xt. It can be

thought thatXt’s are independent each other in terms of one-period ahead predictabil-

ity.

5.A.4 Mixingale Process

Although martingale difference restrict our attention to more restricted measure of

dependence, namely predictability, it is still rather special in time series setting that

Xt has no prediction power on Xt+m at all. Similarly in mixing, it might be more

natural to expect that the degree of dependence between between Xt and Xt+m in

term of predictablity is getting smaller as the time m increases. Mixingale captures

this idea.

Definition 5.A.5 {Xt}∞−∞ is said to be an Lp-mixingale if

||E(Xt|Ft−m
−∞ )||p ≤ ζm → 0 as m→ ∞

This is the most general dependence concept for that most of asymptotic theories go

through.

It can be said that mixingales are to mixing as matingale differences are to

independent. Table 1 summarize the relationship among these dependence concepts.
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5.A.5 Near-Epoch Dependent (NED) Process

Definition 5.A.6 Let {Vt}∞−∞ be a stochastic process on a probability space (S,F, P ).

Define σ-subfields Ft
s = σ(Vs, . . . , Vt). A stochastic process {Xt}∞−∞ is said to be Lp-

NED on {Vt}∞−∞ for p > 0, if for m ≥ 0,

||Xt − E(Xt)|Ft+m
t−m)||p ≤ dtν(m),

where dt is a sequence of positive constants, and ν(m) → 0 as m→ ∞.

We say that Xt is NED of size −λ on the process Vt if ν(m) = O(m−λ−ε) for some

ε > 0. In the application, Vt usually is a mixing process.

The near-epoch dependence concept is most useful due to the following theorem

Theorem 5.2 Let {Vt}∞−∞ be α-mixing of size −a. If {Xt}∞−∞ is an Lr-bounded

zero-mean sequence and Lp-NED of size −b on Vt with constant {dt} for r > p ≥ 1,

then {Xt,F
t
−∞} is an Lp-mixingale of size −min

[
b, a(1

p
− 1

r
)
]
with constant ct <<

max||Xt||r, dt.

Theorem 5.3 Let {Vt}∞−∞ be ϕ-mixing of size −a. If {Xt}∞−∞ is an Lr-bounded

zero-mean sequence and Lp-NED of size −b on Vt with constant {dt} for r > p ≥ 1,

then {Xt,F
t
−∞} is an Lp-mixingale of size −min

[
b, a(1− 1

r
)
]
with constant ct <<

max [||Xt||r, dt].

5.B Functional Central Limit Theorem

The functional central limit theorem (FCLT) is a generalization of the central limit

theorem (CLT) to a stochastic process; in the CLT, a sequence of distributions of
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random variables converges to its limit, meanwhile, in the FCLT, a sequence of dis-

tributions of stochastic processes converges to its limit.

To see the difference, consider a sequence of stationary random variables ut

where E(ut) = 0 and E(u2t ) = σ2:

u1, u2, . . . , un.

From them, we can construct the following sequence of random variables:

Xn =
1√
n

n∑
t=1

ut.

Note that for every n, Xn is a well-defined random variable, therefore it has a dis-

tribution denoted by Fn(x). In the CLT, we are concerned about the limit of the

sequence of the distributions. What the CLT imply is that for every x where F∞(x)

is continuous, as n→ ∞,

F1(x), F2(x), . . . , Fn(x), . . .→ F∞(x)

where F∞(x) is a normal distribution.

From the sequence of ut’s, we can also construct the following sequence of ran-

dom function of r ∈ [0, 1]:

Xn(r) =
1√
n

[nr]∑
t=1

ut.

Although it is not a simple task to define the distributions of the random functions, by

abuse of notation, we can define Fn(x) be a distribution of Xn(r). Then, what we are

concerned about with the FCLT is limit of the sequence of the distributions, Fn(x).

What the FCLT imply is that for every x where F∞(x) is continuous, as n→ ∞,

F1(x), F2(x), . . . , Fn(x), . . .→ F∞(x).
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where F∞(x) is the distribution of the Wiener process. Formal definitions and theo-

rems are given in the subsequent sub-sections.

For the notational convenience, we introduce a triangular stochastic array. Ar-

ray notation is especially convenient when the points of a sample are subjected to scale

transformations, depending on the whole sample. A typical example is {{Xnt}nt=1}∞n=1

where Xnt =
Xt

n
. A triangular stochastic array is a doubly-indexed collection of ran-

dom variables, 

X11 X21 X31 . . .
X12 X22 X32 . . .
...

...
...

X1,k1

...
...

X2,k2

...
X3,k3

. . .


,

which is compactly written as {{Xmn}knm=1}∞n=1, where kn is an increasing integer

sequence.

5.B.1 Central Limit Theorem

Since the FCLT is a generalization of the CLT, we can understand the FCLT through

the comparison with the CLT. Therefore, we review the CLT first. In below, we

present two versions of the CLT: one for the martingale difference sequence, and the

other for NED functions of strong mixing processes.

Theorem 5.4 Let {Unt,Fnt} be a martingale difference array with finite uncondi-

tional variances {σ2
nt}, and

∑n
t=1 σ

2
nt = 1. Define Xn =

∑n
t=1 Unt. If the following

assumptions holds:

1.
∑n

t=1 U
2
nt

p−→ 1
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2. max1≤t≤n |Unt|
p−→ 0

then, Xn
d−→ N(0, 1).

It is instructive to apply the above theorem to the i.i.d. data, which is the

simplest case. Let u1, u2, . . . , ut, . . . be a i.i.d. sequence with E(ut) = 0 and E(u2t ) =

σ2. Also, define Unt =
ut
σ
√
n
, and Fnt = σ(ut, ut−1, . . .). Then, Unt has the finite

unconditional variance

σ2
nt = E(U2

nt) = E

(
u2t
σ2n

)
=

1

n
<∞,

and its sum is equal to one

n∑
t=1

σ2
nt =

n∑
t=1

1

n
= 1

Also, it can be shown that two conditions are satisfied:

1.
∑n

t=1 U
2
nt =

∑n
t=1

u2t
σ2n

=
1

n

∑n
t=1

(ut
σ

)2 p−→ 1 by the LLN.

2. max1≤t≤n |Unt| = max1≤t≤n

∣∣∣∣ ut
σ
√
n

∣∣∣∣ = ∣∣∣∣ ut
σ
√
n

∣∣∣∣ p−→ 0. Note that the last equality

holds because ut is identically distributed, and it converges to zero because any

random variable is finite.

Therefore, Xn =
∑n

t=1 Unt =
1√
n

∑n
t=1

ut
σ

d−→ N(0, 1).

Theorem 5.5 Let {{Unt}nt=1}∞n=1 be a triangular stochastic array, let {{Vnt}∞t=−∞}∞n=1

be a stochastic array, and let F t+m
n,t−m = σ(Vn,s, t − m ≤ s ≤ t + m). Define

Xn =
∑n

t=1 Unt. If the following assumptions holds:

1. Unt is F t
n,−∞/B-measurable, with E(Unt) = 0 and E(X2

n) = 1
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2. There exists a positive constant array {cnt} such that supn,t ||Unt/cnt||r <∞ for

r > 2

3. Unt is L2-NED of size -1 on {Vnt}, which is α-mixing of size −r/(r − 2)

4. supn nM
2
n <∞, where Mn = max1≤t≤n{cnt}

then, Xn
d−→ N(0, 1)

5.B.2 Functional Central Limit Theorem

In the FCLT, a sequence of distributions of stochastic processes converges to the limit.

In below, we present two versions of the FCLT: one for the martingale difference

sequence, and the other for NED functions of mixing processes.

Theorem 5.6 Let {Unt,Fnt} be a martingale difference array with finite uncondi-

tional variances {σ2
nt}, and

∑n
t=1 σ

2
nt = 1. Define Xn(r) =

∑[nr]
t=1 Unt for r ∈ [0, 1]. If

the following assumptions holds:

1.
∑n

t=1 U
2
nt

p−→ 1

2. max1≤t≤n |Unt|
p−→ 0

3. limn→∞
∑[nr]

t=1 σ
2
nt = r for all r ∈ [0, 1]

then, Xn ⇒ W (r)

Theorem 5.7 Let {{Unt}Kn
t=1}∞n=1 be a zero-mean stochastic array, {{cnt}Kn

t=1}∞n=1 be

an array of positive constants, and {Kn(r)}∞n=1 be a sequence of integer-valued, right-

continuous and increasing function of r ∈ [0, 1] with Kn(0) = 0 for all n and Kn(r)−

Kn(s) → ∞ as n → ∞ if r > s. Define XK
n (r) =

∑Kn(r)
t=1 Unt. If the following

assumptions hold:
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1. supn,t

∥∥∥Unt

cnt

∥∥∥
r
<∞ for r > 2

2. Unt is L2-NED of size −γ ∈ [−1,−1
2
] with respect to the constants cnt on an

array {Vnt} which is α-mixing of size −r/(r − 2)

3. supr∈[0,1),δ∈(0,1−r]

{
lim supn→∞

v2n(r, δ)

δ

}
<∞, where v2n(r, δ) =

∑Kn(r+δ)
t=Kn(r)+1 c

2
nt

4. max1≤i≤Kn(1) cnt = O(Kn(1)
γ−1), where γ is defined in (2)

5. E(XK
n (r)2) → r as n→ ∞, for each r ∈ [0, 1]

then, XK
n (r) ⇒ W (r)

In Theorem 5.7, we use a general increasing function of r, Kn(r). It is instructive

to consider the standard case where Kn(r) = [nr] and Xn(r) =
1√
n

∑[nr]
t=1 ut. This

case is presented in the following theorem

Theorem 5.8 Let {ut} be a stochastic process with E(ut) = 0, uniformly Lr-bounded,

and L2-NED of size −1
2
on an α-mixing process of size −r/(r − 2) for r > 2. Define

Xn(r) =
1√
n

∑[nr]
t=1 ut. If the following assumption holds:

E

(
1√
n

n∑
t=1

ut

)2

→ σ2 <∞

then, Xn(r) ⇒W (r)

5.C Consistency of Bootstrap

Definition: Let PT denote the joint probability distribution of the sample {x1, x2, ..., xT}.

Let Φ denote the space of permitted distribution functions. The bootstrap estimator

GT (·, FT ) is consistent if for ε > 0 and F0 ∈ Φ,

lim
T→∞

PT

(
sup
q

|GT (q, FT )−G∞(q, F0)| > ε

)
= 0
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5.D Hansen’s (1999) Grid Bootstrap

A sample XT of size n is generated from a distribution GT (x|α, ν) = P (XT ≤ x|α, ν)

which depends on a parameter of interest α ∈ R and a nuisance parameter ν ∈ Ξ.

Denote by α̂ an estimate of α with standard error s(α̂). We assume that, for each

α, there is some estimator ν̂ ∈ Ξ of the nuisance parameter ν, which may or may

not depend on α. Let S(α) be a test statistic of the hypothesis H0 : α0 = α, and

FT (x|α, ν) = P (ST (α) ≤ x|α, ν) be a distribution function of S(α). Examples of

S(α) include the nonstudentized estimate b(α) = α̂ − α and the t-statistic t(α) =

(α̂−α)/s(α̂). The quantile function qT (θ|α, ν) is the θ quantile of the distribution of

ST (α), and satisfies

FT (qT (θ|α, ν)|α, ν) = θ.

qT (θ|α, ν) is approximated by the bootstrap quantile function q∗T (θ|α) = qT (θ|α, ν̂(α)),

which is evaluated at the estimate ν̂(α) and is thus random. The β-level grid-

bootstrap confidence interval for α is defined as the set

Cg = {α ∈ R : q∗T (θ1|α) ≤ ST (α) ≤ q∗T (θ2|α)}

where θ1 = 1− (1− β)/2 and θ2 = (1− β)/2; so β = θ2 − θ1.

In order to calculate Cg, we need to estimate the bootstrap quantile functions

q∗T (θ|α), which are generally unknown, by simulation as follows. For a given α, let

G∗
T (x|α) = GT (x|α, ν̂(α)) be the bootstrap distribution of the sample.

1. Generate random samples X∗
T from G∗

T (x|α) by simulation.

2. Using X∗
T , calculate the test statistic S∗

T (α).

3. Repeat steps 1 and 2 B times.
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4. Sort the B simulated test statistics S∗
T (α). The 100θ% order statistic q̂∗T (θ|α)

is the simulation estimate of q∗T (θ|α) as a function of α.

5. Pick a grid AG = [α1, ..., αG], and calculate q̂∗T (θ|α) at each α ∈ AG by simula-

tion.

6. For a given α, smooth the estimated function q̂∗T (θ|α) using the kernel estimate:

q̃∗n(θ|α) =

∑G
j=1K

(
α−αj

γ

)
q̂∗n(θ|αj)∑G

j=1K
(

α−αj

γ

)
where K(z) is the Epanechnikov kernel K(z) = 3

4
(1− z2)I(|z| ≤ 1), and γ is a

bandwidth chosen by least-square cross-validation.

5.E Monte Carlo Methods with GAUSS

This appendix explains how Monte Carlo methods explained in this chapter are imple-

mented with GAUSS, that is explained in Appendix A. The concepts and programs

are similar in other computer languages such as MATLAb.

5.E.1 Random Number Generators

Most programs offer random number generators for the uniform distribution and the

standard normal distribution. For example,

y=RNDN(r,c);

in GAUSS generates r × c values that appear to be a realization of independent

standard normal random variables that will be stored in an r×c matrix. The starting

seed for RNDN can be given by a statement

RNDSEED n;
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where the value of the seed n must be in the range 0 < n < 231 − 1.

One can produce random numbers with other distributions by transforming

generated random numbers. The following examples are some of the transformations

that are often used.

Example 5.E.1 A χ2 random variable with d degrees of freedom can be created

from d independent random variables with the standard normal distribution. If ei ∼

N(0, 1), and if ei is independent from ej for j ̸= i, then
∑d

i=1 e
2
i follows the χ2

distribution with d degrees of freedom.

For example, in GAUSS one can generate a T × 1 vector with values that appear to

be a realization of an i.i.d. {x}Tt=1 of random variables with the χ2 distribution with

d degrees of freedom by the following program:

e=RNDN(T,d);

x=sumc((e^2)’);

Example 5.E.2 A random variable that follows the Student’s t distribution with d

degrees of freedom can be generated from d + 1 independent random variables with

the standard normal distribution. If ei ∼ N(0, 1), and if ei is independent from ej for

j ̸= i, then x = e1/
√∑d+1

i=2 e
2
i /d follows the t distribution with d degrees of freedom.

For example, in GAUSS one can generate a T × 1 vector with values that appear to

be a realization of an i.i.d. {x}Tt=1 of random variables with the t distribution with d

degrees of freedom by the following program:

e=RNDN(T,d+1);

c=sumc((e[.,2:d+1]^2)’);

x=e[.,1]./sqrt(c/d);



5.E. MONTE CARLO METHODS WITH GAUSS 113

Example 5.E.3 A K-dimensional random vector which follows N(0,Ψ) for any pos-

itive definite covariance matrix Ψ can be generated from K independent random

variables with the standard normal distribution. Let Ψ = PP′ be the Cholesky de-

composition of Ψ, in which P is a lower triangular matrix. If ei ∼ N(0, 1), and if ei is

independent from ej for j ̸= i, then X = Pe ∼ N(0,Ψ) where e = (e1, e2, · · · , eK)′.

For example, in GAUSS one can generate a T ×K matrix with values that appear to

be a realization of an i.i.d. {Xt}Tt=1 ofK-dimensional random vectors with theN(0, C)

distribution with the following program provided that the matrix C is already defined.

e=RNDN(T,K);

P=chol(C)’;

x=eP;

Note that the Cholesky decomposition in GAUSS gives an upper triangular matrix.

Thus, the above program transposes the matrix to a lower triangular matrix.

5.E.2 Estimators

5.E.3 A Pitfall in Monte Carlo Simulations

Common mistakes are made by many graduate students when they first use Monte

Carlo simulations. These mistakes happen when they repeatedly use a random num-

ber generator to conduct simulations. These mistakes are caused by updating seeds

arbitrarily in the middle of a simulation. Recall that once the starting seed is given,

a random number generator automatically updates the seed whenever it creates a

number. The way the seed is updated depends on the program.

The following example illustrates common mistakes in a simple form:

Example 5.E.4 A Monte Carlo Program with a Common Mistake (I)
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ss=3937841;

i=1;

vecm=zeros(100,1);

do until i>100;

RNDSEED ss;

y=RNDN(50,1);

m=meanc(y);

vecm[i]=m;

i=i+1;

endo;

In this example, the programmer is trying to create 100 samples of the sample mean

of a standard normal random variable y when the sample size is 50. However, exactly

the same data are generated 100 times because the same starting seed is given for

each replication inside the do-loop. This mistake is innocuous because it is easy to

detect. The following program contains a mistake which is harder to detect:

Example 5.E.5 A Monte Carlo Program with a Common Mistake (II)

ss=3937841;

i=1;

vecm=zeros(100,1);

do until i>100;

RNDSEED ss+i;

y=RNDN(50,1);

m=meanc(y);

vecm[i]=m;

i=i+1;

endo;

The problem is that the seed is updated in an arbitrary way in each sample by giving

a different starting seed. There is no guarantee that one sample is independent from

the others. A correct program would put the RNDSEED statement before the do

loop. For example, the RNDSEED statement inside the do loop should be removed

and the statement
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RNDSEED ss;

can be added after the first line.

In Monte Carlo simulations, it is also important to control the starting seed so

that the simulation results can be replicated. When you publish Monte Carlo results,

it is advisable to put enough information in the publication so that others can exactly

replicate the results.13 At the very least, a record of the information should be kept.

If no RNDSEED statement is given before the RNDN command is used, GAUSS will

take the starting seed from the computer clock. Then there is no way to exactly

replicate these Monte Carlo results.

5.E.4 An Example Program

This section describes basic Monte Carlo methods with an example program. In the

following example, the sample mean is calculated as an estimator for the expected

value of Xt, E(Xt), where Xt = µ+ et and et is drawn from the t distribution with 3

degrees of freedom. The t distribution with 3 degrees of freedom has thick tails and

large????? , outlying values have high probability. Hence the t distribution is often
Masao
needs to
check this!

considered a better distribution to describe some financial variables. Because Xt is

not normally distributed, the standard theory for the exact finite sample properties

cannot be applied. The example is concerned with the t test of the null hypothesis that

µ = 0. Because a random variable with the t distribution with 3 degrees of freedom

has zero mean and a finite second moment, asymptotic theory predicts that the t test

statistic of the sample mean divided by the estimated standard error approximately

follows the standard normal distribution.

13This information is also relevant because different computer specifications and different versions
of the program (such as GAUSS) can produce different results.
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Example 5.E.6 The program.

@MCMEAN.PRG @ @Monte Carlo Program for the sample mean@

@This example program is a GAUSS program to calculate

the empirical size and power of the t-test for H0: E(X)=0,

where X follows t-distribution with 3 degrees of freedom.

The power is calculate for the case when E(X)=0.2. @

RNDSEED 382974;

output file=mc.out reset;

tend=25; @the sample size@

nor=1000; @the number of replications@

df=3; @ d.f. for the t-distribution of X@

i=1;

tn=zeros(nor,1); @used to store t-values under H0@

ta=zeros(nor,1); @used to store t-values under H1@

do until i>nor;

nrv=RNDN(tend,df+1); @normal r.v.’s@

crv=nrv[.,2:df+1]^2; @chi square r.v.’s@

x0=nrv[.,1]./sqrt(sumc(crv’)/df); @t distribution: used under H0@

x1=x0+0.2; @used for H1@

mx0=meanc(x0);

mx1=meanc(x1);

sighat0=sqrt((x0-mx0)’(x0-mx0)/(tend-1)); @simgahat under H0@

sighat1=sqrt((x1-mx1)’(x1-mx1)/(tend-1)); @sigmahat under H1@

tn[i]=meanc(x0)*sqrt(tend)/sighat0; @t-value under H0@

ta[i]=meanc(x1)*sqrt(tend)/sighat1; @t-value under H1@

i=i+1;

endo;

? "***** When H0 is true *****";

? "The estimated size with the nominal critical value";

? meanc(abs(tn).>1.96);

? "The estimated true 5-percent critical value";

sorttn=sortc(abs(tn),1);

etcv=sorttn[int(nor*0.95)];

? etcv;

? "***** When H1 is true *****";

? "The estimated power with the nominal critical value";

? meanc(abs(ta).>1.96);

? "The estimated size corrected power";

? meanc(abs(ta).>etcv);
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output off;

Some features of the example are important. Before the do-loop of the replications,

the program set up an output file by

output file=mc.out;

Then to avoid the common mistake explained in 5.E.3, it makes the RNDNSEED

statement before the do-loop.

It is a good idea to minimize the content inside the do-loop to speed up repli-

cations. Everything that can be done outside the do-loop should be done there. For

example, the program defines variables to store the test results:

tn=zeros(nor,1);

ta=zeros(nor,1);

In GAUSS, the do-loop can be set up as follows:

i=1;

do until i>250;

... (Program for each replication)

i=i+1;

endo;

After the do-loop, the program calculates characteristics of the generated distributions

of test statistics under the null hypothesis and the alterative hypothesis such as the

frequency of rejecting the null with the nominal critical value.

Exercises

5.1 Show that all conditions of Gordin’s Central Limit Theorem are satisfied for et

in Example 5.1.
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5.2 Show that all conditions of Gordin and Hansen’s Central Limit Theorem are

satisfied for ft in Example 5.2.

5.3 Let et = Ψ(L)ut = Ψ0ut +Ψ1ut−1 + · · · be an MA representation. What is the

long-run variance of ft = (1− L)et?

5.4 Explain what it means to say that “a test under-rejects in small samples” (or “a

test is conservative”). When a test is conservative, which is greater, the true critical

value or the nominal critical value?

5.5 Consider the linear model

yt = x′
tβ + et.

where xt is a k-dimensional vector.

Let zt be a k × 1 vector of instrumental variables. We will adopt the following

set of assumptions:

(A1) (et,xt, zt)
∞
t=1 is a stationary and ergodic stochastic process.

(A2) ztet have finite second moments.

(A3) E(e2t |zt) = σ2, where σ is a constant.

(A4) E(et|It) = 0 for a sequence of information sets (It)
∞
t=1 which is increasing (i.e.,

It ⊂ It+1), zt and xt are in It, and yt is in It+1.

(A5) E(ztx
′
t) is nonsingular.

Note that E(et) = 0 is implied by (A4) if zt includes a constant.
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Note that many rational expectations models imply (A4). For the following

problems, prove the asymptotic properties of the instrumental variable (IV) estimator,

bIV , for β under (A1)-(A5). Use a central limit theorem and a strong law of large

numbers given in this chapter, and indicate which ones you are using and where you

are using them in your proof.

(a) Express the IV estimator bIV in terms of zt,xt, and yt(t = 1, . . . , T ) when

ΣT
t=1ztx

′
t is nonsingular.

(b) Let gt = ztet. Prove that gt is a martingale difference sequence.

(c) Prove that the IV estimator is consistent under (A1)-(A5).

(d) Prove that the IV estimator is asymptotically normally distributed. Derive the

formula of the covariance matrix of the asymptotic distribution.

(e) Explain what happens if yt is in It+2 in (A4).

5.6 Consider the linear model

yt = x′
tβ + ϵt,

where xt is a k-dimensional vector. Following Hayashi (2000), suppose that this model

satisfies the classical linear regression model assumptions for any sample size (n) as

follows:

(A1) Linearity: yt = x′
tβ + et.

(A2) Ergodic stationarity: {yt,xt} is jointly stationary and ergodic.

(A3) Predetermined regressors: E(etxt) = 0.
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(A4) Rank condition: E(xtx
′
t) is nonsingular (and hence finite).

(A5) xtet is a martingale difference sequence with finite second moments.

(A6) Finite fourth moments for regressors: E[(xitxjt)
2] exists and finite for all i, j

(= 1, 2, · · · , k).

(A7) Conditional homoskedasticity: E(e2t |xt) = σ2 > 0.

Further, assume that et is normally distributed conditional on X, where X is an n×k

matrix with x′
t in its t-th row. Let

tk =
bk − β̄k
SE(bk)

=
bk − β̄k√

s2[(X′X)−1]kk

be the t statistic for the null hypothesis βk = β̄k.

(a) Prove that tk converges in distribution to the standard normal distribution as

the sample size goes to infinity. You do not have to prove that s2 is consistent

σ2 for this question. You can assume that s2 is consistent.

(b) Based on the asymptotic result in (a), suppose that you set the nominal size to

be 5 percent and reject the null hypothesis when |tk| is greater than 1.96. Does

this test overreject or underreject. How do you know? Suppose that k = 3. Is

the actual size larger than 10 percent when n = 4. What if n = 8, 9, 10, 11?

Explain.

5.7 Consider the linear model

y = Xβ + e(5.E.1)
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Let k×1 matrix x′
t be the t-th row of the regressor matrix X. The model (5.E.1) can

be written as

yt = x′
tβ + et(5.E.2)

We will adopt the following set of assumptions:

(A1) (et,xt)
∞
i=t are independent and identically distributed (i.i.d.) random vectors.

(A2) xt and et have finite second moments.

(A3) E(e2t |xt) = σ2 which is a constant.

(A4) E(xtet) = 0 for all t ≥ 1

(A5) E(xtx
′
t) is nonsingular.

Note that E(et) = 0 is implied by (A4) if xt includes a constant.

Consider the model (5.E.1) with k = 1. Assume that xt follows N(0,1). Assume

that xt and et are independent. Under the null hypothesis H0, the true value of β is

0, so that yt = et.

Consider the standard t statistic,

t1 =
b− β

σ̂1
√
X′X)−1

(5.E.3)

where σ̂2
1 = (Y −Xb)′(Y −Xb)/(n− k). Consider another version of the t statistic

t2 =
b− β

σ̂2
√
X′X)−1

(5.E.4)

where σ̂2
2 = (Y−Xb)′(Y−Xb)/n. Note that both t1 and t2 converge in distribution

to a random variable with the standard normal distribution.

Consider two alternative assumptions for et.

(A6) et follows the t distribution with 4 degrees of freedom.

(A6′) et follows the standard normal distribution.
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Note that Assumptions 1.1 - 1.5 are satisfied with (A6′), so that t1has the exact t

distribution with n− k degrees of freedom.

Using GAUSS, conduct a Monte Carlo simulation with the sample size of 26

and 500 replications under Assumption (A6).

(a) Use the t1 in (5.E.3) to estimate

(i) the true size of the t test for H0 : β = 0 based on the nominal significance

level of 5% and the nominal critical value based on the standard normal

distribution are used.

(ii) the true size of the t test for H0 : β = 0 based on the nominal significance

level of 5% and the nominal critical value based on the t distribution with

25 degrees of freedom.

(iii) the true critical value of the t test for the 5% significance level,

(iv) the power of the test at β = 0.15 based on the nominal critical value,

(v) the size corrected power of the test.

(b) Use the t2 in (5.E.4) and repeat the exercises (a)− (e).

For the starting seed, use 3648xxxx, where xxxx is your birth date, such as 0912 for

September 12. Submit your program and output. For each t ratio, discuss whether it

is better to use the standard distribution or the t distribution critical values for this

application. Also discuss whether t1 or t2 is better for this application.
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Chapter 6

ESTIMATION OF THE
LONG-RUN COVARIANCE
MATRIX

An estimate of the long-run covariance matrix, Ω, is necessary to calculate asymp-

totic standard errors for the OLS and linear IV estimators presented in Chapter 5.

Estimation of the long-run covariance matrix will be important for GMM estimators

introduced later in Chapter 9 and many of the estimation and testing methods for

nonstationary variables. Chapter 13 shows that an estimate of the long-run variance

of a random variable is also useful in estimating the importance of the random walk

component of some nonstationary random variables. This chapter discusses estima-

tion methods for the long-run covariance matrix.

Let {ut : −∞ < t < ∞} be a stationary and ergodic vector stochastic process

with mean zero. We will discuss estimation methods of the long-run covariance matrix

of ut:

Ω = lim
j→∞

j∑
−j

E(utu
′
t−j).(6.1)

Depending on the application, we take different variables as ut. When Ω is used

for the calculation of the asymptotic standard errors for the OLS estimator, we take

124
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ut = xt(yt − x′
tb0). For the calculation of the asymptotic standard errors for the

linear IV estimator, we take ut = zt(yt − x′
tb0). Because b0 is unknown, the sample

counterpart of ut, zt(yt − x′
tbT ), is used to estimate Ω where bT is a consistent

estimator for b0. For the application in Chapter 13, ut is a random variable such

as the first difference of the log real GNP minus its expected value, and the first

difference minus its estimated mean is used for the sample counterpart. Thus in

many applications, ut is unobservable and its sample counterpart is constructed from

a consistent estimator for a parameter vector. When ΩT is a consistent estimator

for Ω, Ω∗
T = f(T )ΩT is also a consistent estimator as long as limT→∞ f(T ) = 1 for

any real valued function f(T ). Therefore, we can consider various forms of f(T )

to improve small sample properties. If p parameters are estimated to compute the

sample counterpart of ut, then f(T ) = T
T−p

is a small sample degrees of freedom

adjustment that is often used for each ΩT presented in this chapter.1

6.1 Serially Uncorrelated Variables

This section treats the case where E(utu
′
t−τ ) = 0 for τ ̸= 0. Many rational ex-

pectations models imply this property. In this case, Ω = E(utu
′
t) can be esti-

mated by 1
T

∑T
t=1 utu

′
t. For linear IV estimators, this is White’s (1980) heteroskedas-

ticity consistent estimator. In this case, ut = zt(yt − x′
tbT ) and 1

T

∑T
t=1 utu

′
t =

1
T

∑T
t=1(yt − x′

tbT )
2ztz

′
t.

In some cases, conditional homoskedasticity is assumed in the economic model,

and an econometrician may wish to impose this property on the estimate for Ω =

E(e2t )E(ztz
′
t). Then 1

T

∑T
t=1(yt − x′

tbT )
2 1
T

∑T
t=1 ztz

′
t with a small sample degree of

1Some other forms of small sample adjustments have been used (see, e.g., Ferson and Foerster,
1994).
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freedom adjustment such as T
T−p

is used to estimate Ω.

6.2 Serially Correlated Variables

This section treats the case where the disturbance is serially correlated in the context

of time series analysis.

6.2.1 Unknown Order of Serial Correlation

In many applications, the order of serial correlation is unknown. The estimators of

the long-run covariance matrix in the presence of conditional heteroskedasticity and

autocorrelation are called Heteroskedasticity and Autocorrelation Consistent (HAC)

estimators.

Let Φ(τ) = E(utu
′
t−τ ). Many HAC estimators use the sample version of Φ(τ),

ΦT (τ) =
1

T

T∑
t=τ+1

utu
′
t−τ for 0 ≤ τ ≤ T − 1(6.2)

and ΦT (τ) = ΦT (−τ)′ for τ < 0. Given the data of u1, ...,uT , ΦT (τ) for a large

lag τ cannot be estimated with many observations. For example, we have only one

observation for ΦT (T − 1). Hence it is natural to put much less weight on ΦT (τ)

with large τ than on ΦT (τ) with small τ . The weights are described by a real valued

function called a kernel function. The kernel HAC estimators for Ω in the literature

have the form

ΩT =
T−1∑

τ=−T+1

k(
τ

ST

)ΦT (τ),(6.3)

where k(·) is a real-valued kernel, and ST is a band-width parameter.2 Examples of

2These terminologies follow Andrews (1991), and are somewhat different from those in kernel
estimations in other contexts.
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kernels that have been used by econometricians include the following:

k(x) =

{
1 for |x| ≤ 1 Truncated kernel,
0 otherwise

(6.4)

k(x) =

{
1− |x| for |x| ≤ 1 Bartlett kernel,
0 otherwise

k(x) =


1− 6x2 + 6|x|3 for |x| ≤ 1

2
Parzen kernel,

2(1− |x|)3 for 1
2
< |x| ≤ 1

0 otherwise

k(x) =
25

12π2x2
(
sin(6πx/5)

6πx/5
− cos(

6πx

5
)) QS kernel.

The estimators of Hansen (1982) and White (1984, p.152) use the truncated kernel;

the Newey and West (1987) estimator uses the Bartlett kernel; and the estimator

of Gallant (1987, p.533) uses the Parzen kernel. The estimators corresponding to

these kernels place zero weights on Φ(τ) for τ ≥ ST , so that ST − 1 is called the lag

truncation number. Andrews (1991) advocates an estimator which uses the Quadratic

Spectral (QS) kernel, which does not place zero weights on any Φ(τ) for |τ | ≤ T −1.3

One important problem is how to choose the bandwidth parameter ST . Andrews

(1991) provides formulas for the optimal choice of the bandwidth parameter, S∗
T , for

a variety of kernels. The S∗
T is optimal in the sense of minimizing the MSE for a given

positive semidefinite matrix W:4

S∗
T =


1.1447(α(1)T )

1
3 Bartlett kernel

2.6614(α(2)T )
1
5 Parzen kernel

1.3221(α(2)T )
1
5 QS kernel,

(6.5)

3Hansen (1992) relaxes an assumption made by these authors to show the consistency of the
kernel estimators.

4To be exact, the optimal bandwidth parameter minimizes the asymptotic truncated MSE. See
Andrews (1991).
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and

α(q) =
2(vecf (q))′Wvecf (q)

trW(I+Kpp)f (0) ⊗ f (0)
,(6.6)

f (q) =
1

2π

∞∑
j=−∞

|j|qΦ(τ),

where W is a p2 × p2 weight matrix and Kpp is the p
2 × p2 commutation matrix that

transforms vec(A) into vec(A′), i.e., Kpp =
∑p

i=1

∑p
j=1 eie

′
j⊗eje

′
i, where ei is the i-th

elementary p-vector. Here f (0) is the spectral density at frequency zero, and the long-

run covariance matrix Ω is equal to 2πf (0). Unfortunately, these formulas include the

unknown parameters we wish to estimate. This outcome presents a serious circular

problem.

Andrews proposes automatic bandwidth estimators in which these unknown

parameters are estimated from the data by a parameterized model. His method

involves two steps. The first step is to parameterize the model to estimate the law of

motion of ut. For example, we can use an AR(1) model for each element of ut or a

VAR(1) model for ut. The second step is to calculate the parameters for the optimal

bandwidth parameter from the estimated law of motion. For example, we calculate

the unknown parameters by assuming that the estimated AR(1) model is true. In

his Monte Carlo simulations, Andrew uses an AR(1) parameterization for each term

of the disturbance, which seems to work well in the models he considers. Newey and

West (1994) propose an alternative method based on truncated sums of the sample

autocovariances; this method avoids the use of any parametric model.

Another issue is the choice of the kernel. One serious problem with the trun-

cated kernel is that the corresponding estimator is not guaranteed to be positive

semidefinite. Andrews (1991) shows that the QS kernel is an optimal kernel in the
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sense that it minimizes the asymptotic MSE among the kernel estimators that are

guaranteed to be positive semidefinite. His Monte Carlo simulations show that the

QS kernel and the Parzen kernel work better than the Bartlett kernel in most of the

models he considers. He also finds that even the estimators based on the QS kernel

and the Parzen kernel are not satisfactory in the sense that the standard errors cal-

culated from these estimators are not accurate in small samples when the amount of

autocorrelation is large.

Since the kernel HAC estimators do not seem satisfactory in many cases, An-

drews and Monahan (1992) propose an estimator based on VAR prewhitening. The

intuition behind this proposition is that the kernel HAC estimators only take care

of the MA components of ut and cannot handle the AR components well in small

samples. The first step in the VAR prewhitening method is to run a VAR of the form

ut = A1ut−1 +A2ut−2 + · · ·+Aput−p + vt.(6.7)

Note that the model (6.7) need not be a true model in any sense. The estimated

VAR is used to form an estimate vt and a kernel HAC estimator is applied to the

estimated vt to estimate the long-run variance of vt, Ω
∗
T . The estimator based on

the QS kernel with the automatic bandwidth parameter can be used to find vt for

example. Then the sample counterpart of the formula

Ω = [I−
p∑

τ=1

Aτ ]
−1Ω∗[I−

p∑
τ=1

A′
τ ]

−1(6.8)

is used to form an estimate of Ω. Andrews and Monahan use the VAR of order one

in their Monte Carlo simulations. Their results suggest that the prewhitened kernel

HAC estimator performs better than the non-prewhitened kernel HAC estimators for
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the purpose of calculating the standard errors of estimators.5

In a recent paper, den Haan and Levin (1996) propose a HAC estimator based

on (6.7) without using any kernel estimation, which is called the Vector Autoregres-

sion Heteroskedasticity and Autocorrelation Consistent (VARHAC) estimator. This

estimator has an advantage over any estimator that involves kernel estimation in that

the circular problem associated with estimating the optimal bandwidth parameter can

be avoided. For the VARHAC estimator, a usual method is to choose the order of

AR such as the AIC is applied to (6.7). Then the sample counterpart of (6.8) with

Ω∗ = E(vtv
′
t) is used to estimate Ω. Their Monte Carlo evidence indicates that

the VARHAC estimator performs better than the non-prewhitened and prewhitened

kernel estimators in many cases. On the other hand, Cochrane (1988) basically ar-

gues that kernel estimators are better than VARHAC estimators for his purpose of

estimating the random walk component as discussed in Chapter 13. Thus, it seems

necessary to compare VARHAC estimators with other estimators in different contexts

for various applications.

In sum, existing Monte Carlo evidence for estimation of Ω recommends VAR

prewhitening and either the QS or Parzen kernel estimator together with Andrews’

(1991) automatic bandwidth parameter if a kernel HAC estimator is to be utilized.

Though the QS kernel estimator may be preferred to the Parzen kernel estimator

because of its asymptotic optimality, it takes more time to calculate the QS kernel

estimators than the Parzen kernel estimators. This difference may be important

when estimation is repeated many times. The VARHAC estimator of den Haan and

Levin (1996) seems to have important advantages over estimators involving kernel

5Park and Ogaki’s (1991) Monte Carlo simulations suggest that the VAR prewhitening improves
estimators of Ω in the context of cointegrating regressions.
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estimation, even though it is a relatively new method, and has more Monte Carlo

evidence for various applications.

6.2.2 Known Order of Serial Correlation

In some applications, the order of serial correlation is known in the sense that the

economic model implies a particular order. Assume that the order of serial correlation

is known to be s.

In this case, there exist the zero restrictions on the autocovariances that Φ(τ) =

0 for |τ | > s. Imposing these zero restrictions on the estimator of Ω leads to a more

efficient estimator.6 Since Ω =
∑s

τ=−s Φ(τ) in this case, a natural estimator is

ΩT =
s∑

τ=−s

ΦT (τ),(6.9)

which is the truncated kernel estimator.

Hansen and Hodrick (1980) study a multi-period forecasting model that leads

to s ≥ 1. They use (6.9) with conditional homoskedasticity imposed (as discussed at

the end of Section 6.1 above). Their method of calculating the standard errors for

linear regressions is known as Hansen-Hodrick correction.

A possible problem with the estimator (6.9) is that ΩT is not guaranteed to be

positive semidefinite if s ≥ 1. In applications, researchers often encounter cases where

ΩT is invertible but is not positive semidefinite. If this happens, ΩT should not be

used to form the optimal GMM estimator (e.g., Newey and West, 1987). There exist

at least two ways to handle this problem. One way is to use Eichenbaum, Hansen,

and Singleton’s (1988) modified Durbin method. The first step of this method is

6In some applications, the order of serial correlation may be different for different terms of ut.
The econometrician may wish to impose these restrictions.
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to estimate the VAR (6.7) for a large p by solving the Yule Walker equations. The

second step is to estimate an MA(s) representation

ut = B1vt−1 + ...+Bsvt−s + et,(6.10)

by regressing the estimated ut on estimated lagged vt’s. Then the sample counterpart

of

Ω = (I+B1 + ...+Bs)E(ete
′
t)(I+B1 + ...+Bs)

′(6.11)

is used to form an estimate of Ω that imposes the zero restrictions. This method is

not reliable when the number of elements in ut is large relative to the sample size

because too many parameters in (6.7) need to be estimated. The number of elements

in ut need to be kept as small as possible when using this method.

Another method uses one of the kernel HAC estimators (or VAR prewhitened

kernel estimators if s is large) that is guaranteed to be positive semidefinite. When

employing this method, the zero restrictions should not be imposed even though Φ(τ)

is known to be zero for |τ | > s. In order to illustrate this method in a simple example,

consider the case where s = 1 and Newey and West’s (1987) Bartlett kernel estimator

is used. Then

ΩT =
ℓ∑

τ=−ℓ

ST − |τ |
ST

ΦT (τ),(6.12)

where ℓ = ST − 1 is the lag truncation number. If ℓ = 1 is used to impose the

zero restrictions, then ΩT converges to Φ(0)+ 1
2
Φ(1)+ 1

2
Φ(−1), which is not equal to

Ω = Φ(0)+Φ(1)+Φ(−1). Thus ℓ must increase as T increases to obtain a consistent

estimator. On the other hand, if ℓ > 1 is used and the zero restrictions are imposed

by setting ΦT (τ) in (6.6) equal to zero for |τ | > 1, then the resulting estimator is no

longer guaranteed to be positive semidefinite.
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In this chapter, we focused on consistent estimators for the long-run covariance

matrix. Recently, some researchers have pointed out that we may not need to have

consistent estimators for some purposes such as computing standard errors for regres-

sion estimators or computing Wald tests. For example, small sample properties of

Wald tests computed form inconsistent estimates of the long-run covariance matrix

may be better for some data generating processes. See Kiefer, Vogelsang, and Bunzel

(2000), Kiefer and Vogelsang (2002a,b), and Müller (2004).

Exercises

6.1 (The Multi-Period Forecasting Model) Suppose that It is an information set gen-

erated by {Yt,Yt−1,Yt−2, · · · }, whereYt is a stationary and ergodic vector stochastic

process. Economic agents are assumed to use current and past Yt to generate their

information set. Let Xt be a stationary and ergodic random variable in the informa-

tion set It with E(|Xt|2) <∞. We consider a 3-period forecast of Xt, E(Xt+3|It), and

the forecast error, et = Xt+3 − E(Xt+3|It).

(a) Give an expression for the long-run variance of et. Which methods do you

suggest to use in order to estimate the long-run variance?

(b) Let Zt be a random vector with finite second moments in the information set It.

Define ft = Ztet Give an expression for the long covariance matrix of ft. Which

methods do you suggest to use in order to estimate the long-run variance?
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Chapter 7

TESTING LINEAR
FORECASTING MODELS

Some economic models imply that a linear function of a variable Xt is a forecaster of

Yt+1 in the sense that

E(Yt+1|It) = a+ bXt,(7.1)

where a and b are constants, and It is an information set. Typically, It is the infor-

mation set available to economic agents at date t, and includes the current and past

values of Xt and Yt. Equation (7.1) is called a linear forecasting model. In some

cases, a linear function of a variable Xt is a forecaster of Yt+s :

E(Yt+s|It) = a+ bXt.(7.2)

If Yt+s is in It+s, (7.2) is a multi-period linear forecasting model. In this chapter, we

discuss some standard methods to test these linear forecasting models.

7.1 Forward Exchange Rates

In usual market transactions (called spot transactions), transactions are carried out

immediately. In forward contracts, two parties agree to carry out transactions at a

135
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specified future date. In foreign exchange forward contracts, a party agrees to deliver

specified units of a currency to another party who agrees to pay a specified price.

Let Ft,1 be the forward exchange rate at date t of a foreign currency to be

delivered at date t+1: at date t a contract is made in which Ft,1 units of the domestic

currency is promised to be paid when one unit of the foreign currency is delivered at

date t+1. Let St be the spot exchange rate at date t which is expressed as the price of

one unit of the foreign currency in terms of the domestic currency. Assume that the

domestic investors are risk neutral. For now, assume that risk neutrality is defined

about gambles involving the domestic currency. Given that preferences are defined

over goods rather than currencies, risk neutrality should be defined about gambles

involving goods. The assumption of risk neutrality over the domestic currency leads

to Siegel’s (1972) Paradox as discussed below. Under this assumption,

Ft,1 = E(St+1|It)(7.3)

should hold in equilibrium, where It is the information set available at date t. To see

this relation suppose that Ft,1 > E(St+1|It). Then the domestic investors’ expected

profit is positive when they sell the foreign currency with forward contracts. The sup-

ply of foreign currency will be infinite, and therefore equilibrium cannot be attained.

If Ft,1 < E(St+1|It), then the domestic investors’ expected profit is positive when they

buy the foreign currency with forward contracts.

Let Ft,s be the forward exchange rate at date t of a foreign currency to be

delivered at date t+s. Then with a similar argument,

Ft,s = E(St+s|It)(7.4)

should hold. Relation (7.4) is implied by the uncovered interest parity (UIP) if we
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assume the covered interest parity (CIP)1, and Relation (7.3) is a special case of UIP

when s = 1.

Given (7.4), a natural way to test UIP is to consider a regression

St+s = a+ bFt,s + et.(7.5)

Then (7.4) implies that E(et|It) = 0 when a = 0 and b = 1. Since Ft,s is in It, if St+s

and Ft,s are stationary, then the asymptotic theory of OLS in Chapter 5 applies to this

regression. In the data of exchange rates, it is often observed that the first difference

of ln(St+s), the first difference ln(Ft,s), and ln(St+s)− ln(Ft,s) appear to be stationary.

However, St+s and Ft,s do not appear to be stationary, hence the asymptotic theory

of Chapter 5 does not apply to (7.5). One solution found in the literature is to apply

cointegration to (7.5) or the log version of (7.5).2

We consider transforming the data to obtain a regression with stationary vari-

ables. For this purpose, we first take the natural log of both sides of (7.4) to obtain

an approximate relation

ln(Ft,s) = a+ E(ln(St+s)|It),(7.6)

where a is a constant. This relation is an approximation because the log of the

expected value of a random variable is not the expected value of the log of the variable.

The approximation error for (7.6) can be significant and may lead to the re-

jection of the model when the exchange rate is conditionally heteroskedastic even

when UIP holds. This problem may be serious because conditional heteroskedasticity

1CIP says that 1 + it+s =
Ft,s

St
(1 + i∗t,s) while UIP says that 1 + it+s =

E(St,s|It)
St

(1 + i∗t,s), where
it,s and i∗t,s are interest rates on domestic deposit and foreign deposit, respectively.

2This solution is, however, problematic for the purpose of testing UIP as discussed in Chapter
14.
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is detected for most exchange rate series especially when high frequency data (e.g.,

weekly or daily) are used. To illustrate this point, assume that St+s is log normally

distributed conditional on It, then ln(E(St+s|It)) = E(ln(St+s)|It)+ 1
2
V ar(ln(St+s)|It).

Hence (7.6) is exact with a = 1
2
V ar(ln(St+s)) if ln(St+s) is conditionally ho-

moskedastic. However, if ln(St+s) is conditionally heteroskedastic, V ar(ln(St+s)|It) is

not constant. Hence (7.6) is an approximation, and the approximation error is more

important for data with stronger conditional heteroskedasticity effects.

Assuming that this approximation error is negligible, we consider a regression

ln(St+s)− ln(Ft,s) = a+X′
tb+ et,(7.7)

where Xt is a stationary random vector that is in It. Then (7.6) implies that b = 0

and E(et|It) = 0 (note that a ̸= 0 here). Assuming that ln(St+s) − ln(Ft,s) is sta-

tionary, the asymptotic theory in Chapter 5 applies to (7.7). For example, Xt is a

vector of lagged values of ln(St+s) − ln(Ft,s) : Xt = (ln(St) − ln(Ft−s,s), ln(St−1) −

ln(Ft−1−s,s), · · · , ln(St−k) − ln(Ft−k−s,s))
′. UIP can be tested by testing the null hy-

pothesis H0 : b = 0.

The assumption of risk neutrality over the domestic currency leads to Siegel’s

Paradox. Assume that foreign investors are risk neutral over their currency. Then

the same argument made for (7.3) for the domestic investors imply

1

Ft,1

= E(
1

St+1

|It).(7.8)

Since 1
X

is a convex function, (7.3) and (7.8) cannot hold at the same time. This

property is known as Siegel’s Paradox.3

3Because preferences are defined over goods, risk neutrality should be defined over goods. Siegel’s
Paradox is a result of defining risk neutrality over currencies. In order to illustrate this point, imagine
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7.2 The Euler Equation

Consider an economy with a single good, in which the current and past values of a

random vector Xt generate the information set It, which is available to the economic

agents. The random vector Ht = [X′
0,X

′
1, · · · ,X′

t]
′ summarizes It. Let Prob(Ht)

denote the probability of Ht. For simplicity, we assume that the economy ends at

date T , and that there exist N possible values of HT . With this notation, HT plays

the role of the state of the world s in Chapter 2, and Ht specifies the subset in the

partition of S at date t. The history notation is more convenient for the purpose of

this section to ensure that consumption is in the information available at date t.

We assume that the representative consumer maximizes the lifetime utility func-

tion

U =
T∑
t=0

∑
Ht

Prob(Ht)β
tu(Ct(Ht)),(7.9)

where β is a discount factor, u(·) is the utility function, and Ct(Ht) is the consumption

at date t with history Ht. As a bench mark case, we assume that there exists a

complete set of contingent security markets at date 0. Assuming that there are N

states of the world, and the contingent security for one unit of Ct(Ht) costs Pt(Ht)

in terms of the good at date 0, the lifetime budget constraint is

T∑
t=0

∑
Ht

Pt(Ht)Ct(Ht) =
T∑
t=0

∑
Ht

Pt(Ht)C
e
t (Ht),(7.10)

where Ce
t (Ht) is the endowment. Let λ be the Lagrange multiplier for the budget

constraint (7.10). Then the first order conditions for the consumer’s maximization

that there are two consumption goods in the world economy: a good purchased with the domestic
currency, and another good purchased with the foreign currency. The real version of (7.3), expressed
in terms of the domestic good, and the real version of (7.8), expressed in terms of the foreign good,
are not subject to Siegel’s Paradox (see, e.g. Frankel, 1979, 1980). Engel (1984) empirically tests the
absence of expected real profits from forward market speculation and shows that Siegel’s paradox is
not empirically important in this case.
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problem include

βtProb(Ht)mu(Ct(Ht)) = λPt(Ht),(7.11)

where mu(·) is the derivative of the utility function (marginal utility). Hence

βt+1Prob(Ht+1)mu(Ct+1(Ht+1))

βtProb(Ht)mu(Ct(Ht))
=
Pt+1(Ht+1)

Pt(Ht)
,(7.12)

which we call the state-by-state intertemporal first order condition. This type of

condition is useful in testing for complete risk sharing as we will discuss in Chapter

17.

The first order condition (7.12) does not necessarily hold when markets are

incomplete. We derive the asset pricing equation and Euler equation, which can be

shown to hold for some incomplete market models, from this first order condition.

For this purpose, imagine that a security pays off Dt+1(Ht+1) units of the good at

date t+1 when the history Ht+1 is realized. Let Vt(Ht) be the price of the security

in terms of the good at date t when the history Ht is realized. Then an arbitrage

condition gives

Vt(Ht) =

∑
Ht+1|Ht

Pt+1(Ht+1)Dt+1(Ht+1)

Pt(Ht)
,(7.13)

where the summation in the numerator sums up allHt+1’s that followHt. The numer-

ator is the price of the security in terms of the good at date 0, and the denominator

is the price of the good at date t, so that the security price is expressed in terms of

the good at date t. Substituting (7.12) into (7.13) yields

Vt(Ht) =

∑
Ht+1|Ht

β prob(Ht+1)mut+1Dt+1(Ht+1)

prob(Ht)mut
,(7.14)

where mut denotes mu(Ct(Ht)). Noting that Prob(Ht+1)
Prob(Ht)

is the probability of Ht+1
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conditional on Ht, we can rewrite (7.14) as

Vt =
E(β mut+1Dt+1|It)

mut
,(7.15)

which we call the asset pricing equation.

Dividing both sides of the asset pricing equation (7.15) by Vt yields

E(β mut+1Rt+1|It)
mut

= 1,(7.16)

which is called the Euler equation where Rt+1 =
Dt+1

Vt
is the real gross asset return. It

should be noted that the asset pricing equation and the Euler equation hold for any

asset while the state-by-state intertemporal first order condition only holds for the

contingent securities since Pt(Ht) in (7.12) is the price of contingent security rather

than any other security.

7.3 The Martingale Model of Consumption

Consider a bond that pays one unit of the good at date t+1 without any uncertainty,

which we call the real risk free bond. Let Rf
t+1 be the real gross asset return on the

real risk free bond. Then Rf
t+1 − 1 is the real interest rate. Assume that the real

interest rate is constant, and that βRf
t+1 = 1. Then the Euler equation (7.16) implies

E(mut+1|It) = mut.(7.17)

Therefore, under these assumptions, the marginal utility is a martingale adapted to It.

This implication is testable when the intra-period utility function is parameterized,

so that mut is related to consumption.

Hall (1978) assumes that the intra-period utility function is quadratic:

u(Ct) = −α(Ct − γ)2,(7.18)
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where α and γ are positive constants. Then mut = −2α(Ct − γ), and (7.17) implies

E(Ct+1|It) = Ct.(7.19)

Thus Euler equation implies that consumption is a martingale adapted to It. There-

fore, this model is called the martingale model of consumption. With an additional

assumption that consumption is conditionally homoskedastic, (7.19) implies that con-

sumption is a random walk. For this reason, some authors prefer to call this model

the random walk model of consumption.

This martingale (or random walk) hypothesis can be tested by applying OLS to

Ct+1 − Ct = a+X′
tb+ et(7.20)

where Xt is a stationary random vector which is in It. Then (7.19) implies that a = 0,

b = 0, and E(et|It) = 0.

7.4 The Linearized Euler Equation

It should be noted that the random walk model of consumption is derived under the

assumptions of a quadratic utility function and a constant real interest rate. These

assumptions are not attractive. There exists some evidence that real interest rates

are not even stationary (see, Rose, 1988). The quadratic utility function has an

implication that both absolute and relative risk aversion coefficients increase with

consumption. The intertemporal elasticity of substitution is the reciprocal of the

relative risk aversion coefficient for the time-separable expected utility function, and

the quadratic utility function implies that the elasticity decreases as consumption

increases. These implications are counterintuitive to most people upon introspection,

and there is empirical evidence against them (see Chapter 17????????).
Masao

needs to
check this!



7.4. THE LINEARIZED EULER EQUATION 143

Most researchers agree that the isoelastic utility function,

u(C) =
1

1− α
[C1−α − 1]

is more reasonable than the quadratic utility function. For this utility function, the

relative risk aversion coefficient is α (a constant), and the absolute risk aversion

coefficient decreases with consumption. The intertemporal elasticity of substitution

is 1
α
. With this utility function, mut = C−α

t , and (7.16) implies

E(βRt+1C
−α
t+1|It) = C−α

t .(7.21)

With an assumption that Rt and Ct are jointly log normally distributed conditional

on It, we obtain

E(ln(Rt+1)− α ln(Ct+1)|It) = − ln(β)− 1

2
V ar(ln(Rt+1C

−α
t+1)|It)− α ln(Ct).(7.22)

Further assuming that ln(Rt+1C
−α
t+1) is conditionally homoskedastic with respect to

It, we obtain the linearized version of the Euler equation (7.21):

E(ln(Rt+1)− α ln(Ct+1)|It) = b− α ln(Ct),(7.23)

where b = − ln(β) − 1
2
V ar(ln(Rt+1C

−α
t+1)|It) is a constant. Note that the linearized

Euler equation (7.23) holds for any asset return under the stated assumptions.

With an additional assumption that the real interest rate is constant as in

Section 7.3, we can obtain a result similar to the random walk hypothesis. In this

case, (7.23) implies

E(ln(Ct+1)|It) = c+ ln(Ct),(7.24)

where c = − b
α
+ 1

α
ln(Rt+1). As in the previous section, we can test this model by

applying OLS to

ln(Ct+1)− ln(Ct) = c+X′
tb+ et(7.25)
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where Xt is a stationary random vector which is in It. Equation (7.24) implies that

b = 0, and E(et|It) = 0.

The linearized Euler equation (7.23) has been used by many researchers without

the additional assumption of the constant real interest rate. Hansen and Singleton

(1983) apply the maximum likelihood estimation method to (7.23). Hall (1988) esti-

mates the intertemporal elasticity of substitution from

ln(Ct+1)− ln(Ct) = d+
1

α
ln(Rt+1) + et.(7.26)

Equation (7.23) implies that d = − b
α
and E(et|It) = 0. Since ln(Rt+1) is not in It,

OLS cannot be applied to (7.26). Any stationary variable in It, however, can be used

as an instrumental variable for (7.26). Hansen and Singleton (1996) also apply an IV

method to (7.23).

7.5 Optimal Taxation

The method to derive the martingale property of consumption can be applied to

other optimization problems. A good example is the optimal taxation model tested

by Barro (1981), Sahasakul (1986), Kingston (1984), Mankiw (1987), and Bizer and

Durlauf (1990) among others.

Assume that the government minimizes the following quadratic cost function at

date t:

Et

∞∑
j=0

βj(c0τt+j +
c1
2
τ 2t+j),(7.27)

subject to the budget constraint

Bt+1 = R[Bt + gt − τt], Bt bounded for all t(7.28)
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by choosing {τt+j, Bt+j}∞j=0. Here {gt}∞t=j is a stochastic process describing the ratio

of government spending to GDP, τt is the tax collected as a percentage of GDP, Bt is

the real value of a one-period risk free bond to be repaid at date t+1 as a percentage

of GDP, and R is the gross real interest rate, which is assumed to be constant. We

assume that βR = 1.

The Euler equation for the maximization problem is

E(τt+1|It) = τt.(7.29)

As in the consumption case, this martingale hypothesis can be tested by applying

OLS to

τt+1 − τt = a+X′
tb+ et,(7.30)

where Xt is a stationary random vector which is in It. Then (7.29) implies that

a = 0, b = 0, and E(et|It) = 0. Barro (1981), Kingston (1984), and Mankiw (1987)

have found that movements of U.S. tax rates over time are roughly consistent with

the martingale hypothesis. On the other hand, Sahasakul (1986) reports that U.S.

tax rates are predictably related to wars and recessions, which is evidence against

the martingale hypothesis. Bizer and Durlauf (1990) report evidence against the

hypothesis based on a frequency- domain based test (see Section 16.3??????? below).
Masao
needs to
check this!

7.6 Tests of Forecast Accuracy

Tests of forecast accuracy can be used to test economic models. A prominent example

is tests for exchange rate models in the literature that started by Meese and Rogoff

(1983) who compared predictions of exchange rate models with predictions of the

random walk model.
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7.6.1 The Monetary Model of Exchange Rates

A multi-period forecasting formulation in Mark (1995) is motivated by the the mone-

tary model of the monetary model of Frenkel (1976), Mussa (1976), and Bilson (1978).

The monetary model implies the present value relationship

st = (1− β)E(
∞∑
i=1

βift+i|It).(7.31)

where st is the log exchange rate, ft = mt − m∗
t − γ(yt − y∗t ) where mt is the log

domestic money supply, yt is the log domestic income. We call ft fundamentals.

Here, γ is the income elasticity of money demand, β = α/(1 + α) where α is the

interest semi-elasticity of money demand. If ft is a driftless random walk, then the

present value relationship implies st = ft, and the log exchange rate is a random walk.

However, deviations from the log exchange rate from the fundamentals are known to

be persistent. These considerations motivated Mark to investigate the projection of

the k-period-ahead change in the log exchange rate on its current deviation from the

fundamental value

st+k − st = a+ bXt + e1t,(7.32)

where Xt = ft − st and e1t is a forecast error. On the other hand, if the log exchange

rate is a driftless random walk, a = b = 0, then

st+k − st = e2t,(7.33)

where e2t be the forecast error of the random walk model. Tests described in this

section compare forecast accuracy based on the differences in mean squared prediction
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errors (MSPEs) from these two models. Unlike the previous works that had found that

the economic model does not improve forecast accuracy over the random walk model,

Mark (1995) found evidence in favor of the economic model for long-horizon changes

(large values of k). However, Kilian (1999) pointed out problems with Mark’s (1995)

bootstrap procedure. With a corrected bootstrap procedure, Kilian found no evidence

of increased long-horizon predictability. In panel data that combine time series of 19

industrialized countries, Mark and Sul (2001) found evidence of increased long-horizon

predictability. Thus the evidence is mixed for the monetary model compared with

the random walk model.

Engel and West (2005) showed analytically that in present value models such

as Equation (7.31), the log exchange rate manifests near-random walk behavior if the

first difference of fundamentals is stationary and β is near one. Their result helps

explain that fundamentals provide little help in predicting changes in the log exchange

rates.

7.7 The Taylor Rule Model of Exchange Rates

Many recent papers have explored various aspects of exchange rate models with the

Taylor Rule (see, e.g., Mark, 2005; Engel and West, 2005, 2006; Clarida and Waldman,

2008; Kim and Ogaki, 2009). Molodtsova, Nikolsko-Rzhevskyy, and Papell (2008) and

Molodtsova and Papell (2009) find strong evidence of exchange rate predictability

using the Taylor rule model. In this model, under the assumption that uncovered

interest parity holds, exchange rate movements are related to the differential of short-

term nominal interest rates between two countries. In each country, the nominal

interest rate is in turn set by the central bank that follows a policy rule proposed
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by Taylor (1993). According to Taylor’s original specification, the home central bank

adjusts the nominal interest rate in response to changes in the domestic inflation and

output gap:

ĩt = πt + ϕ(πt − π̃) + γyt + r̃,

where ĩt is the target rate of the short-term nominal interest rate, πt is inflation, π̃

is the inflation target, yt is the output gap, and r̃ is the equilibrium level of the real

interest rate. The Taylor rule for small open economies may include the real exchange

rate st (Clarida, Gaĺı, and Gertler, 1998):

(7.34) ĩt = πt + ϕ(πt − π̃) + γyt + δst + r̃.

Empirical studies (e.g., Clarida, Gaĺı, and Gertler, 1998, 2000) find that central banks

engage in interest rate smoothing so that the observed nominal rate it is a partial

adjustment of its lagged value and the target rate:

(7.35) it = (1− ρ)̃it + ρit−1 + vt.

Suppose the foreign central bank follows an analogous policy rule:

(7.36) i∗t = (1− ρ∗)̃i∗t + ρ∗i∗t−1 + v∗t .

Taking the difference between the policy reaction function of home country (7.35)

and that of foreign country (7.36) yields the interest rate differential:

(7.37) it − i∗t = β + βππt − β∗
ππ

∗
t + βyyt − β∗

yy
∗
t + βsst + β∗

sst + ρit−1 − ρ∗i∗t−1 + ηt,

where ηt = vt − v∗t , β = (r̃ − ϕπ̃)(1 − ρ), βπ = (1 + ϕ)(1 − ρ), βy = γ(1 − ρ), and

βs = δ(1− ρ). Analogous definitions apply for foreign coefficients denoted by a star.

Note that since st = −s∗t , we have βsst + β∗
sst.
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Assume that uncovered interest rate parity holds: ∆et+1 = it − i∗t where et is

the log of the nominal exchange rate defined as the domestic currency price of foreign

currency. Equating the UIP condition with the interest rate differential (7.37) yields

the Taylor rule model of exchange rates:

(7.38) ∆et+1 = β + βππt − β∗
ππ

∗
t + βyyt − β∗

yy
∗
t + βsst + β∗

sst + ρit−1 − ρ∗i∗t−1 + ηt.

Molodtsova and Papell (2009) evaluate out-of-sample forecasts of one-month-

ahead exchange rate movements using the Taylor-rule model for the monthly U.S.

exchange rates against 12 OECD countries. The data spans from March 1973 to

June 2006 (December 1998 for the European Monetary Union countries). The pre-

dictive performance of the model is evaluated using the CW test statistics for the

null hypothesis that the exchange rate follows a random walk against the alternative

hypothesis that it is predictable by the model (7.38).

They find that the Taylor rule model exhibits strong evidence of short-term

exchange rate predictability, especially when the real exchange rates are excluded

from equation (7.38). For that specification, the model outperforms the random walk

for 10 out of 12 currencies at the 10% significance level - four of them at the 1% level

and additional six at the 5% level - using one of the three output gap specifications

they consider (the linear trend, the quadratic trend, and the HP-filter). By contrast,

using the same dataset and the inference method, they find much less evidence of

exchange rate predictability with conventional models of exchange rates (the UIP

model of Clark and West, 2006; the monetary model of Mark, 1995; and the PPP

model of Mark and Sul, 2001). Even after combining the results from these three

models, they find statistically significant evidence of exchange rate predictability at

the 5% level for only 3 of the 12 currencies and for an additional currency at the 10%
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level.

7.7.1 Diebold and Mariano (1995)

One of the commonly used methods for testing forecast accuracy is the test of equal

accuracy proposed by Diebold and Mariano (1995, the DM test).

Consider two competing forecast series y1t and y2t of the time series yt, with

associated forecast errors e1t and e2t, t = 1, · · · , T , respectively. The DM test is

applicable to a wide variety of accuracy measures. Here, as in many applications, we

compare forecast accuracy based on the differences in mean squared prediction errors

(MSPEs) from the two series. In this case, the DM test evaluates the null hypothesis

that the population mean of the MSPE differences is 0, E(e21t − e22t) = 0, against the

alternative hypothesis E(e21t − e22t) ̸= 0.

Let d̄ denote the sample mean of the MSPE differential:

d̄ =
1

T

T∑
t=1

(e21t − e22t).

If the MSPE differential is covariance stationary and short memory, then
√
T d̄ is

asymptotically normally distributed with mean zero and variance 2πfd(0) where

fd(0) =
1
2π

∑∞
τ=−∞ γd(τ) is the spectral density of the MSPE differential at frequency

0, and γd(τ) = E[(e21t − e22t)(e
2
1t−τ − e22t−τ )] is the autocovariance of the MSPE differ-

ential. The DM statistic is given by

DM =
d̄√

2πf̂d(0)
T

,

where 2πf̂d(0) is a consistent estimator of 2πfd(0). It is obtained by a weighted sum

of the sample autocovariances,

2πf̂d(0) =

(T−1)∑
τ=−(T−1)

1

(
τ

S(T )

)
γ̂d(τ),
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where 1(τ/S(T )) is the lag window, S(T ) is the truncation lag, and γ̂d(τ) =
1
T

∑T
t=|τ |+1(dt−

d̄)(dt−|τ | − d̄) with dt ≡ e21t − e22t. Diebold and Mariano (1995) suggest the use of the

uniform lag window,

1

(
τ

S(T )

)
=

{
1 for

∣∣∣ τ
S(T )

∣∣∣ ≤ 1,

0 otherwise

and the truncating lag S(T ) = (k − 1) since optimal k-step-ahead forecast errors are

at most (k − 1)-dependent.

7.7.2 Clark and West (2006) and Clark and West (2007)

Now suppose we wish to compare out-of-sample forecast accuracy of two nested mod-

els. One example as in the exchange rate forecasting literature above is the case where

a linear econometric model (model 2) is compared to a random walk model (model

1):

Model 1: yt = et

Model 2: yt = X
′

tβ + et,

where et in both models is a zero mean martingale difference which may be condi-

tionally heteroskedastic.

Let T +1 be the sample size of yt and Xt which is divided into two subsamples

T+1 = R+P . For illustration, suppose we are comparing one-period-ahead forecasts,

yt+1.
4 Model 2 is estimated using data prior to t to generate P predictions for yt+1,

t = R,R + 1, · · ·T . The out-of-sample MSPEs of the two models are,

Model 1: σ̂2
1 ≡ P−1

T∑
t=T−P+1

y2t+1,

Model 2: σ̂2
2 ≡ P−1

T∑
t=T−P+1

(yt+1 −X
′

t+1β̂t)
2.

4For multi-horizon predictions, see Clark and West (2006).
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Recall that the DM test is based on the assumption that the difference in sample

MSPEs from two models is asymptotically zero. However, Clark and West (2006)

and Clark and West (2007) show that this is not the case when the two models are

nested. To see this, write:

(7.39) σ̂2
1 − σ̂2

2 = 2

(
P−1

T∑
t=T−P+1

yt+1X
′

t+1β̂t

)
−

[
P−1

T∑
t=T−P+1

(X
′

t+1β̂t)
2

]
.

Under the null hypothesis of equal predictive accuracy, yt follows a martingale differ-

ence (β = 0) as in model 1. Therefore, yt+1 = et+1 and Eet+1X
′
t+1β̂t = 0, and thus

the first term in equation (16.11) is expected to be approximately zero. However, the

second term is −P−1
∑T

t=T−P+1(X
′
t+1β̂t)

2 < 0, and thus the MSPE from model 2 is

expected to be greater than that of model 1:

σ̂2
1 − σ̂2

2

p→ −E(X′

t+1β̂t)
2 < 0.

The DM statistics, while appropriate for non-nested models, do not adjust for this

shift, and result in non-normal test statistics when the models are nested. Therefore,

hypothesis tests based on standard normal critical values are usually poorly sized,

failing to reject the null hypothesis when it should (McCracken, 2004; Clark and

McCracken, 2001, 2005). This is particularly problematic for tests of our-of-sample

predictability of financial data for which the null hypothesis is a random walk.

Clark and West (2006) and Clark and West (2007) propose an asymptotically

normal test for two nested models that properly adjusts the difference in MSPEs by a

consistent estimate of E(X
′
t+1β̂t)

2. This test is applicable when βt is estimated from

rolling regressions using data from t−R + 1 to t.5

5Clark and West (2007) consider a general parametric specification of the null model (model 1)
that is smaller than the alternative model (model 2). Thus, model 2 reduces to model 1 if some of
the parameters in model 2 are zero.
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The bias-adjusted difference of the sample mean MSPEs is given by,

f̄ ≡ σ̂2
1 −

[
σ̂2
2 − P−1

T∑
t=T−P+1

(X
′

t+1β̂t)
2

]
.

= P−1

T∑
t=T−P+1

f̂t+1.

where f̂t+1 ≡ y2t+1− [(yt+1−X
′
t+1β̂t)

2−(X
′
t+1β̂t)

2]. Under some mild conditions,
√
P f̄

is asymptotically normally distributed with mean zero and variance V ≡ 4E(yt+1X
′
t+1β̂t)

2.

The adjusted test statistic is

CW =
f̄√
V̂
P

,

where V̂ ≡ 4P−1
∑T

t=T−P+1(yt+1X
′
t+1β̂t)

2 = P−1
∑T

t=T−P+1(f̂t+1 − f̄)2 is a consistent

estimator of V . Clark and West (2006) present simulation results showing that in-

ferences of the CW statistics using normal critical values are properly sized. Note

that the alternative hypothesis of this test is that yt is linearly predictable (β ̸= 0)

as in model 2, implying that the population MSPE of model 2 is smaller than that of

model 1. Therefore, this test is one-sided, and the null hypothesis is rejected when

the CW test statistic is significantly positive.

References

Barro, R. J. (1981): “On the Predictability of Tax-Rate Changes,” NBER Working Paper No.
636.

Bilson, J. F. O. (1978): “Rational Expectations and the Exchange Rate,” in The Economics of
Exchange Rates: Selected Studies, ed. by J. A. Frenkel, and H. G. Johnson, pp. 75–96. Addison-
Wesley, Reading, MA.

Bizer, D. S., and S. N. Durlauf (1990): “Testing the Positive Theory of Government Finance,”
Journal of Monetary Economics, 26, 123–141.
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Chapter 8

VECTOR AUTOREGRESSION
TECHNIQUES

This chapter discusses econometric techniques for vector autoregressions (VAR). In

most cases, the variables in VAR are assumed to be stationary.1

Let yt be an n-dimensional vector stochastic process that is covariance station-

ary. Because yt is covariance stationary, it has a Wold representation:

yt = µ+ ϵt +Ψ1ϵt−1 +Ψ2ϵt−2 + · · · = µ+Ψ(L)ϵt,(8.1)

where Ψ(L) = In +
∑∞

s=1ΨsL
s and L is the lag operator. Assuming that Ψ(L) is

invertible, yt has a VAR representation. Assuming that the VAR representation is of

order p:

A(L)yt = δϵ + ϵt,(8.2)

1A VAR model may include nonstationary variables. Chapter 16 treats the case where some of
the variables in VAR are difference stationary and cointegrated, terms that will be introduced later.
When the difference stationary variables are not cointegrated, we can take the first difference to
make them stationary for VAR.

156
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where

δϵ = Ψ(1)−1µ = A(1)µ,(8.3)

A(L) = Ψ(L)−1 = In −
p∑

i=1

AiL
i,

ϵt = yt − Ê(yt|yt−1,yt−2,yt−3, · · · )

and

E(ϵtϵ
′
t) = Σϵ.(8.4)

Here Ê(·|yt−1,yt−2,yt−3, · · · ) is defined to be the linear projection operator onto the

linear space spanned by a constant (say, 1) and yt−1,yt−2,yt−3, · · · . In virtually

all applications, Σϵ is not diagonal. However, the Seemingly Unrelated Regression

Estimator (SUR) coincides with the OLS estimator for (8.2) because the regressors

are identical for all regressions when OLS is applied to each row of (8.2).

8.1 OLS Estimation

The VAR (8.2) gives a system of regression equations. It may appear that the SUR

estimator should be used to estimate these equations because the error terms are con-

temporaneously correlated. However, the OLS and SUR estimators coincide because

the regressors are the same for all equations. Hence, we can estimate each equation

by OLS.

It is often convenient to use a matrix expression to write the OLS estimators

for the VAR system. For this purpose, rewrite (8.2) by staking it from t = 1, · · · , T

after transpose:

Y = XB+U(8.5)
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where

Y =


y′
1
...
y′
t
...
y′
T

 ,X =


1 y′

1−1 · · ·y′
1−p

...
1 y′

t−1 · · ·y′
t−p

...
1 y′

T−p · · ·y′
T−p

 ,B =


δ′
ϵ

A′
1
...
A′

p

 , and U =


ϵ′1
...
ϵ′t
...
ϵ′T

 .

In order to apply OLS techniques, express (8.5) in its vector form:

y = (In ⊗X)b+ u,(8.6)

where y = vec(Y),b = vec(B), u = vec(U), and E(uu′) = Σϵ ⊗ IT . Applying OLS

techniques, we get

b̂ = (In ⊗ (X′X)−1X′)y(8.7)

and

var(b̂) = Σϵ ⊗ (X′X)−1.(8.8)

In many applications, we express the asymptotic variance in (8.8) using the notation

a = vec(δϵ A1 · · ·Ap). Let Krc be the rc× rc dimensional commutation matrix that

has the property of vec(M′) = Krcvec(M) for any r × c matrix M. Then, we can

show that

â = K(np+1)nb̂(8.9)

and

var(â) = (X′X)−1 ⊗Σϵ.(8.10)
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8.2 Granger Causality

Let yt = (xt, yt)
′ be a two dimensional covariance stationary process. We say that y

fails to Granger-cause x if for all s > 0,

Ê(xt+s|xt, xt−1, · · · , yt, yt−1, · · · ) = Ê(xt+s|xt, xt−1, · · · ).(8.11)

We also say that y is not linearly informative about future x, or x is exogenous in the

time series sense with respect to y.

One can test the null hypothesis that y fails to Granger-cause x by applying

the OLS to

xt = δϵ1 + a1,11xt−1 + · · ·+ ap,11xt−p + a1,12yt−1 + · · ·+ ap,12yt−p + ϵ1t.(8.12)

If y fails to Granger-cause x, then ai,12 = 0 for i = 1, · · · , p in (8.12). Conversely, if

ai,12 = 0 for i = 1, · · · , p in (8.12), then

Ê(xt+1|xt, xt−1, · · · , yt, yt−1, · · · ) = δϵ1 + a1,11xt + · · ·+ ap,11xt−p+1(8.13)

and

Ê(xt+2|xt, xt−1, · · · , yt, yt−1, · · · )(8.14)

= δϵ1 + a1,11Ê(xt+1|xt, xt−1, · · · , yt, yt−1, · · · ) + a2,11xt + · · ·+ ap,11xt−p+2.

Repeating this argument, we see that y fails to Granger-cause x. Hence we test the

null hypothesis

H0 : ai,12 = 0 for i = 1, · · · , p(8.15)

in (8.12) in order to test for Granger causality.
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The result that y fails to Granger-cause x if and only if (8.15) holds in (8.12)

can be used to find restrictions on the VAR representation for y = (x, y)′. Suppose

that y fails to Granger-cause x, and x Granger-causes y.2 Let the VAR representation

of y be given by (8.2). Then the restrictions (8.15) hold if and only if Ai is lower

triangular for each i:

Ai =

[
ai,11 0
ai,21 ai,22

]
.(8.16)

Hence y fails to Granger-cause x, and x Granger-causes y if and only if the VAR

representation for y = (x, y)′ given by (8.2) satisfies the restrictions that Ai is lower

triangular for each i as in (8.16).

Suppose that an econometrician finds evidence for the hypothesis that y fails

to Granger-cause x, but x Granger-causes y (i.e., the null hypothesis that y fails to

Granger-cause x cannot be rejected, but the null hypothesis that x fails to Granger-

cause y can be rejected). For example, researchers have found some evidence that real

GDP fails to Granger-cause the money supply, and the money supply Granger-causes

real GDP. This type of finding is consistent with some economic models which predict

that a decrease in the money supply causes real GDP to fall.

It should be noted, however, that Granger-causality relationships can be very

different from causal relationships when economic variables respond to future ex-

pected values of other variables as in the rational expectations models. Hence Granger-

causality test results must be interpreted with caution.

For example, consider the present value model of a stock price:

pt = E(
∞∑
i=1

bidt+i|It).(8.17)

2Having defined the meaning of “x fails to Ganger-cause y,” we define “x Granger-causes y,” to
mean “x does not fail to Granger-cause y.”
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where pt is the stock price and dt is the dividend. In order to illustrate the point in

a simple example, assume that

dt = ut + δut−1 + vt,(8.18)

where ut and vt are normal i.i.d. and are independent of each other. Here, the mean

of the log of the dividend is normalized to be zero. Then

Et(dt+i) =

{
δut for i = 1
0 for i > 1

,(8.19)

which implies pt = bδut. Therefore, δut−1 = b−1pt−1. Hence, the VAR representation

for yt = (pt, dt)
′ is[

pt
dt

]
=

[
0 0
b−1 0

] [
pt−1

dt−1

]
+

[
bδut
ut + vt

]
.(8.20)

Since the VAR coefficient matrix is lower triangular, the dividend fails to Granger-

cause the stock price, and the stock price Granger-causes the dividend in this example.

Since the changes in the future expected dividends cause the stock price to

change in the present value model, the causal relationship is the opposite of the

Granger-causality relationship. This result occurs because the stock price responds

to the future expected values of the dividends in the present value model. When future

dividends are expected to rise, the current stock price rises. Hence, the stock price

tends to move before the dividend moves. This result does not mean that the stock

price causes the dividend to move, but can mean that the stock price Granger-causes

the dividend as in the example. In this sense, Granger “causality” is a misnomer.3 It

is safer to interpret Granger causality test results in terms of linear informativeness.

3Leamer (1985) suggests to use the word “precedence” instead of “causality”. He argues that
what is tested in “Granger Causality” is whether one variable regularly precedes another and that
“precedence” is not sufficient for causality.
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An example with this interpretation is Stock and Watson’s (1989) application to

search for economic variables that forecast business cycle movements.

8.3 The Impulse Response Function

Consider a moving average representation

yt = µ+Ψ∗
0ϵ

∗
t +Ψ∗

1ϵ
∗
t−1 +Ψ∗

2ϵ
∗
t−2 + · · · = µ+Ψ∗(L)ϵ∗t .

Let yit be the i-th element of yt, ϵ
∗
jt be the j-th element of ϵ∗t , and ψ

∗
s,ij be the (i, j)-th

element of Ψ∗
s. If ϵ∗jt is increased by one unit while holding all the other elements

of ϵ∗t+τ constant for all positive and negative τ , then yi,t+s will increase by ψ∗
s,ij for

s > 0. In this sense,

∂yi,t+s

∂ϵ∗jt
= ψ∗

s,ij,(8.21)

or, using matrix notation,

∂yt+s

∂ϵ∗
′

t

= Ψ∗
s,(8.22)

A plot of ψ∗
s,ij for s = 1, 2, · · · is the impulse response function of yi with respect to

ϵ∗jt.

One convenient way to estimate the impulse response function is to choose the

Wold representation (8.1):

yt = µ+ ϵt +Ψ1ϵt−1 +Ψ2ϵt−2 + · · · = µ+Ψ(L)ϵt,

estimate the VAR representation by applying OLS to each row of yt, and simulate

the estimated VAR representation to obtain an estimate of Ψs.

There exist two difficulties in interpreting the impulse response function. The

first difficulty is that Σϵ = E(ϵtϵ
′
t) is not diagonal. This property means that the
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other elements of ϵt tend to move with ϵjt when ϵjt changes. Hence, it is not very

meaningful to consider the effect of changes in ϵjt on yi,t+s while holding the other

elements of ϵt constant. Computing an orthogonalized impulse response function is

one method to avoid this difficulty. We assume that Σϵ is positive definite. Then,

given the ordering of variables in yt, there exists a unique lower triangular matrix Φ0

with 1’s along the principal diagonal and a unique diagonal matrix Λ with positive

entries along the principal diagonal such that

Σϵ = Φ0ΛΦ′
0.(8.23)

Let

et = Φ−1
0 ϵt.(8.24)

Then E(ete
′
t) = Φ−1

0 Σϵ(Φ
−1
0 )′ = Λ which is diagonal. Since

ϵt = Φ0et,(8.25)

yt has an MA representation in terms of et:

yt = µ+Φ0et +Ψ1Φ0et−1 +Ψ2Φ0et−2 + · · · = µ+Φ(L)et,(8.26)

where Φ(L) =
∑∞

s=0ΦsL
s and Φs = ΨsΦ0. Let ejt be the j-th element of et and ϕs,ij

be the (i, j)-th element of Φs. Then (8.26) implies that

∂yi,t+s

∂ejt
= ϕs,ij.(8.27)

A plot of (8.27) as a function of s ≥ 0 is an orthogonalized impulse response function.

The sample counterparts of Ψs and Φ0 can be used to estimate the orthogo-

nalized impulse response function. For example, the Cholesky factorization, which
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GAUSS can be used to compute, of the estimate of Σϵ can be used to estimate Φ0.

If P is the Cholesky factorization of Σϵ, then P = Φ0Λ
1
2 , and the principal diagonal

of P is the principal diagonal of Λ
1
2 . Hence, Φ0 = PΛ− 1

2 . This formula can be used

to construct a sample counterpart of Φ0.

The second difficulty in interpreting the impulse response function is that it

is not possible to interpret ϵt or et as shocks to the economy without imposing any

economic structure to the VAR representation. For example, if the first element in

yt is the money supply, it is tempting to interpret the first element of ϵt as the

money supply shock which represents random changes in the money supply. With

this interpretation, one can learn about how endogenous variables respond to the

money supply shock by examining the impulse response functions. However, without

any economic model, ϵt is simply the forecast error when the linear forecasting rule

is used with the past values of yt as the information set. In some linear rational

expectations models, ϵt is simply the difference between the economic agents’ forecast

and the linear forecast based on the past values of yt. When the economic agents use

a nonlinear forecasting rule with a larger information set, their forecast can be very

different from Ê(yt|yt−1,yt−2, · · · ). In these models, it is not clear what we learn

from the impulse response functions. Section 8.5 will discuss structural models that

provide economically meaningful shocks with various restrictions. Under the recursive

assumptions introduced in Section 8.5, the orthogonalized impulse response function

discussed above can be used to compute impulse response functions of the structural

shocks. In the majority of the VAR applications, the recursive assumptions are used.

Under other assumptions, alternative methods are used to compute impulse response

functions for the structural shocks as explained below.
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We provide three traditional methods of computing confidence intervals of im-

pulse responses: asymptotic normal approximation (see, e.g., Lütkepohl, 1990), boot-

strap (see, e.g., Runkle, 1987; Kilian, 1998), and Monte Carlo integration (see, e.g.,

Doan, 1992; Sims and Zha, 1999). All three methods are asymptotically valid in

stationary models but not the same in small samples. Kilian (1998) shows from his

Monte Carlo simulation that bootstrap-after-bootstrap method performs better than

others in small samples, while Sims and Zha (1999) argue that the Bayesian intervals

have a firmer theoretical foundation and show how to obtain correct intervals for

over-identified models.

8.4 Forecast error decomposition

Denoting the h-step forecast error by

yt+h − Êtyt+h =
∞∑
s=0

Ψs(ϵt+h−s − Êtϵt+h−s)(8.28)

=
h−1∑
s=0

Ψsϵt+h−s,

the forecast error variance is computed from the diagonal components of

E(yt+h − Êtyt+h)
2 =

h−1∑
s=0

ΨsΣϵΨ
′
s.(8.29)

In particular, the forecast error variance of the i-th variable, yi,t+h, is defined by

h−1∑
s=0

Ψs,i·ΣϵΨ
′
s,i·(8.30)

where Ψs,i· denotes the i-th row of Ψs.

The same two difficulties concerning the interpretation of the impulse response

function exist for the forecast variance decomposition. As with the impulse response
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function, the recursive assumptions have been employed in many VAR applications

so that the orthogonalized shocks et in (8.24) are structural shocks.

The contribution of orthogonalized shocks to forecast error variance of the h-

step forecast is defined by the diagonal components of

h−1∑
s=0

ΦsΛΦ′
s.(8.31)

In particular, the contribution of the j-th orthogonalized shock, ej, to the forecast

error variance of the i-th variable, yi,t+h, is
4

h−1∑
s=0

(ϕs,ij)
2djj,(8.32)

where djj is the variance of the j-th orthogonalized shock. The sample counterparts

of Φ and djj can be used to estimate this contribution.

Finally, dividing (8.32) by (8.30) yields the fraction of the h-step forecast error

variance of the i-th variable attributed to the j-th orthogonalized shock.

8.5 Structural VAR Models

This section discusses structural economic models in which the orthogonalized impulse

response functions are meaningful. A class of structural models can be written in the

following form of a structural dynamic model:

B0yt = δ +B1yt−1 +B2yt−2 + · · ·+Bpyt−p + et(8.33)

where Bi is a n×n matrix, and δ is a n×1 vector. Here B0 is a nonsingular matrix of

real numbers with 1’s along its principal diagonal, and et is a stationary n-dimensional

4By virtue of the assumption that orthogonalized shocks are mutually uncorrelated, we can
separate the contribution of each orthogonalized shock.
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vector of random variables with E(et|yt−1,yt−2, · · · ) = 0. This structural model is

related to its reduced form with et = B0ϵt, δ = B0δϵ, Bi = B0Ai for i = 1, · · · , p. In

many applications, it is assumed that the shocks are mutually uncorrelated so that

the covariance matrix of et is diagonal.

Example 8.1 Consider a model of money demand. Let mt be the real money bal-

ance, md
t be the desired real money balance, and it be the nominal interest rate:

md
t = β0 + β1it.(8.34)

Suppose that the actual money holdings are slowly adjusted toward the desired level

so that

mt −md
t = α(mt−1 −md

t−1) + edt ,(8.35)

where 0 < α < 1, and edt is a money demand shock. Substituting (8.34) into (8.35)

yields

mt = β0(1− α) + αmt−1 + β1it − αβ1it−1 + edt .(8.36)

Imagine that the central bank determines the money supply at date t so that it is at

a desired level given by the right hand side of the following equation:

it = γ0 + γ1mt−1 + γ2it−1 + est ,(8.37)

where est is a money supply shock. Then, when we choose (it,mt)
′ as yt, this money

demand model is of the form (8.33):[
1 0

−β1 1

] [
it
mt

]
=

[
γ0

β0(1− α)

]
+

[
γ2 γ1

−αβ1 α

] [
it−1

mt−1

]
+

[
est
edt

]
.(8.38)
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In general, B0 in (8.33) is not diagonal because some variables in yt are affected by

other variables in yt as well as lagged values of the variables in yt. In Example 8.1,

mt is affected by it as well as lagged values of it−1 and mt−1.

In many structural models, it is reasonable to assume that the covariance matrix

of et is diagonal. In Example 8.1, edt is the money demand shock and est is the money

supply shock, and these shocks should be uncorrelated. In this case, the impulse

response functions with respect to the elements of et can be interpreted without any

problem and are of interest. We will assume that Λ = E(ete
′
t) is diagonal for the rest

of this chapter.

When the reduced form VAR (8.2) is estimated, various restrictions can be

imposed onB0 to compute the impulse response functions of et. For example, suppose

that B0 is known. Let Φ0 = B−1
0 ,Ψs = ∂yt+s/∂ϵ

′
t be the impulse response function

with respect to ϵt, and Φ0,·j be the j-th column of Φ0. By the same argument used

for the orthogonalized impulse response function, ΨsΦ0,·j gives the impulse response

function with respect to ejt.

In most models, B0 is unknown. A restriction on B0 often used in applications

is that it is a lower triangular matrix. Example 8.1 satisfies this restriction. In the

example, it is determined by it−1 and mt−1 and is not affected by mt. Note that B0

would not be lower triangular if yt were defined to be (mt, it)
′ rather than (it,mt)

′.

Thus the order of the variables in yt is important. In general, B0 is lower triangular

when the model has a recursive structure: y1t is determined when the past values of

yt are given, y2t is determined by y1t and the past values of yt, y3t is determined by

y1t, y2t, and the past values of yt.
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When B0 is lower triangular, B
−1
0 is a lower triangular matrix and has 1’s along

the principal diagonal. It is known that when a positive matrixΣϵ is given, there exists

a unique lower triangular matrix Φ0 which has ones along the principal diagonal such

that Σϵ = Φ0ΛΦ′
0. Hence B0 can be computed by the Cholesky factorization using

B0 = Φ−1
0 . Thus, the standard method of computing the orthogonalized impulse

response function yields the impulse response function with respect to et when B0 is

lower triangular. On the other hand, when B0 is not lower triangular the Choleski

decomposition cannot be used, and ML or GMM estimation is often used as discussed

in Section 8.6.3.

8.6 Identification

In order to identify B0, we need at least n2 restrictions. In most cases, we assume

that structural shocks are mutually uncorrelated. This orthogonality condition im-

plies the variance-covariance matrix of structural disturbances is diagonal and gives

n(n−1)
2

restrictions. Second, we impose a normalization condition that the diagonal

components of B0 are 1’s, which yields n restrictions.5 Structural VAR varies de-

pending on how the additional n(n−1)
2

conditions are imposed for identification.

8.6.1 Short-Run Restrictions for Structural VAR

The simplest model originating with Sims (1980) assumes that B0 is lower triangular.

This structure is called recursive assumptions. This gives n(n−1)
2

necessary conditions

so that the model is just identified as shown below. Letting Φ0 = B−1
0 , it follows

5Instead, we can consider an alternative normalization condition that the variance-covariance
matrix of structural disturbances is an identity matrix. This change does not affect the main results.
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from et = B0ϵt that

Φ0ΛΦ′
0 = Σϵ,(8.39)

where Φ0 is also a lower triangular matrix. Let P be a lower triangular matrix of the

Cholesky decomposition of Σϵ so that PP′ = Σϵ. From Φ0Λ
1
2 = P, it follows that

Φ0 = PΛ− 1
2 ,(8.40)

where Λ = [diag(P)]2.

Typically, researchers decide the order of variables to use from the type of restric-

tions, but do not use a tightly specified economic model to derive these restrictions

in applications. Instead, impulse responses estimated from recursive assumptions

are compared with implications of economic models. Some researchers make a more

explicit connection between estimated impulse responses and an economic model.

Rotemberg and Woodford (1999) minimize a distance measure between impulse re-

sponses estimated from recursive assumptions and impulse responses implied by a

monetary model by choosing parameters of the model. Their monetary model in-

corporates an optimum monetary policy rule that is similar to the rule proposed by

Taylor (1993).

Blanchard andWatson (1986) consider the case whereB0 is not lower triangular.

As their four-variable model includes eight unknown parameters in B0, they use a

priori theoretical and empirical information about the private sector behavior and

policy reaction functions on two of the parameters, and impose four zero restrictions

to achieve identification on the remaining six (=n(n−1)
2

) unknown parameters. Given

these restrictions, their model is just identified. From et = B0ϵt it follows that

Λ = B0ΣϵB
′
0,(8.41)
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which yields unique solutions for B0 and Λ. Gordon and Leeper (1994) use full

information maximum likelihood estimation to study liquidity effects in their over-

identified model. To identify their model, they impose conventional exclusion restric-

tions and plausible informational assumptions from a traditional view of monetary

policy and private sector behavior, such as which variables enter demand and supply

for the reserve market.

Bernanke (1986) considers a model that allows more than one structural shock

in an equation. The structural form is

B(L)yt = Fet.(8.42)

Assume that B0 is not lower triangular but that there are
n(n−1)

2
unknown parameters

in B0 and F. From Fet = B0ϵt it follows that

Λ = F−1B0ΣϵB
′
0F

−1′,(8.43)

which yields the unique solutions for B0, F and Λ.

8.6.2 Identification of block recursive systems

Christiano, Eichenbaum, and Evans (1999) provide a theoretical background and

illustrate identification of block recursive systems. Partitioning yt into three blocks

is convenient to illustrate the block recursive structure:

yt =

 y1t

st
y2t

 ,(8.44)

where yt is a vector of n(= n1 + 1 + n2) variables of interest, st is a monetary policy

variable, y1t includes n1 variables which are in the information set when the Fed

implements a monetary policy, and y2t contains n2 variables which are excluded from
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the information set. Alternatively, y1t does not respond to a monetary policy shock

contemporaneously, while y2t does. The block recursive assumption imposes zero

restrictions on the following partitioned B0:

B0 =


b11 0 0

(n1 × n1) (n1 × 1) (n1 × n2)
b21 b22 0

(1× n1) (1× 1) (1× n2)
b31 b32 b33

(n2 × n1) (n2 × 1) (n2 × n2)

(8.45)

Two zero restrictions, b12 = b13 = 0, are required for the monetary policy shock to

be orthogonal to other structural shocks, while the restriction b23 = 0 implies the

assumption that the Fed does not have information about variables in y2t when it

makes a monetary policy decision.

The following property may help explain the block recursive system:

(8.46)

[
B11 0
B21 B22

]−1

=

[
B−1

11 0
−B−1

22 B21B
−1
11 B−1

22

]
The block recursive structure gives sufficient conditions to identify a monetary policy

shock, and the ordering within y1t and y2t does not affect the results if one is interested

in the effects of a monetary policy shock. Instead, the ordering across two groups

might affect the results substantially.

8.6.3 Two-step ML estimation

When B0 is not lower triangular, maximum likelihood estimation or GMM estimation

can be used once the structural model is identified as discussed in the following section.

As VAR models involve a large number of parameters, two-step estimation is often

used. The reduced form VAR model is estimated in the first step, and ML or GMM

estimation is used in the second step focusing on the relation of B0Σ̂ϵB
′
0 = Λ to
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estimate B0 and Λ from the first step estimate of Σϵ. The two-step ML estimation

is discussed by Giannini (1992) in detail, while two-step GMM estimation is used by

Bernanke and Mihov (1998).

Suppose that the model is identified with short-run economic restrictions:

vec(B0) = Sbbs + sb,(8.47)

where bs be a ns (≤ n(n+1)
2

) dimensional vector of free parameters in B0, and the

restrictions are expressed by an n2 × ns matrix of S and n2 × 1 vector of sb.

Then the following are used in the second step for ML estimation:

(a) Likelihood function:

L(B0) = T log |B0| −
T

2
trace(B′

0B0Σ̂)(8.48)

(b) Gradient:

g(B0) = T [vec(B′−1
0 )− (Σ̂⊗ In2)vec(B0)](8.49)

(c) Information matrix:

IT (B0) = 2T (B−1
0 ⊗ In2)Nn2(B

′−1
0 ⊗ In2)(8.50)

(d) Score algorithm:

bs,i+1 = bs,i + [IT (bs,i)]
−1g(bs,i),(8.51)

where g(bs) = S′
bg(B0), IT (bs) = S′

bIT (B0)Sb, and i denotes the iteration step.

In addition, ifB0 is over-identified, the over-identifying restrictions can be tested

using

LRT = 2(L(Σ̂)− L(B̂0,ML)),(8.52)

where L(Σ̂) = −T
2
log |Σ̂| − nT

2
, and LRT is asymptotically χ2

(q)-distributed, where q

is the number of over-identification.
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Appendix

This appendix provides three traditional methods of computing confidence intervals

of impulse responses, which are widely used as standard tools for economic analysis

in the applied VAR literature (see, e.g., Baillie, 1987; Runkle, 1987).

8.A Asymptotic Interval Method

Let θ = (a′,σ′)′, where a = vec(A1,A2, · · · ,Ap) and σ = vech(Σ).6 It is well known

that θ is asymptotically normally distributed

√
T (θ̂ − θ)

d−→ N(0,Σθ),

where

Σθ =

[
Σa 0
0 Σσ

]
=

[
[E(xtx

′
t)]

−1 ⊗Σ 0
0 2D+

n (Σ⊗Σ)D+′
n

]
,

xt =
[
y′
t−1,y

′
t−2, · · · ,y′

t−p

]′
, and D+

n is the Moore-Penrose inverse of Dn. Refer to

Hamilton (1994) for its derivation and extended discussion.

In addition to impulse responses derived in the text, it is often of interest to

trace the accumulated responses

Ψci =
i∑

j=0

Ψj, Φci = ΨciΦ0

and the total accumulated responses

Ψ(1) =
∞∑
j=0

Ψj = A(1)−1, Φ(1) = Ψ(1)Φ0.

6Note that we define a slightly differently from Section 8.1 which includes the constant term δϵ.
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Let ℓp be the p-dimensional vector with ones and denote

A =


A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0
0 In · · · 0 0
...

. . .
...

...
0 0 · · · In 0

 and Jnp =

[
In

... 0n×n(p−1)

]
.

Consider a VAR model with short-run restrictions of the form vec(B0) = Sbbs + sb

and define Gϕσ = GϕbG
+
ϕϕb where Gϕb =

[
−B′−1

0 ⊗B−1
0

... In ⊗B−1
0

]
Sb and Gϕϕb =

2D+
n

[
−B−1

0 B′−1
0 ⊗B−1

0

... B−1
0 ⊗B−1

0

]
Sb. With this notation, we obtain the asymp-

totic distributions of the impulse responses in the next proposition. See Lütkepohl

(1990) for just-identified recursive VARs and Jang (2004) for more generalized VARs

including non-recursive and over-identified models.

Proposition 8.A.1 Suppose
√
T (θ̂ − θ)

d−→ N(0,Σθ) and vec(B0) = Sbbs + sb.

Then

(a)
√
Tvec(Ψ̂i −Ψi)

d−→ N(0,GΨaiΣaG
′
Ψai), i = 1, 2, · · · ,

where

GΨai =
∂vec(Ψi)

∂a′ =
i−1∑
j=0

Jnp(A
′)i−1−j ⊗Ψj;

(b)
√
Tvec(Ψ̂ci −Ψci)

d−→ N(0,GΨcaiΣaG
′
Ψcai), i = 1, 2, · · · ,

where

GΨcai =
∂vec(Ψci)

∂a′ =
i∑

j=0

GΨaj;

(c)
√
Tvec(Ψ̂(1)−Ψ(1))

d−→ N(0,GΨ1aΣaG
′
Ψ1a)

where

GΨ1a =
∂vec(Ψ(1))

∂a′ = ℓp
′ ⊗Ψ(1)′ ⊗Ψ(1);
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(d)
√
Tvec(Φ̂i −Φi)

d−→ N(0,GΦaiΣaG
′
Φai +GΦσiΣσG

′
Φσi), i = 0, 1, 2, · · · ,

where

GΦai =
∂vec(Φi)

∂a′ =

{
0, i = 0
(Φ′

0 ⊗ In)GΨai, i = 1, 2, · · · and

GΦσi =
∂vec(Φi)

∂σ′ = (In2 ⊗Ψi)Gϕσ;

(e)
√
Tvec(Φ̂ci −Φci)

d−→ N(0,GΦcaiΣaG
′
Φcai +GΦcσiΣσG

′
Φcσi), i = 0, 1, 2, · · · ,

where

GΦcai =
∂vec(Φci)

∂a′ =
i∑

j=0

GΦaj and

GΦcσi =
∂vec(Φci)

∂σ′ =
i∑

j=0

GΦσj;

(f)
√
Tvec(Φ̂(1)−Φ(1))

d−→ N(0,GΦ1aΣaG
′
Φ1a +GΦ1σΣσG

′
Φ1σ),

where

GΦ1a =
∂vec(Φi)

∂a′ = (Φ′
0 ⊗ In)GΨ1a and

GΦ1σ =
∂vec(Φi)

∂σ′ = (In2 ⊗Ψ(1))Gϕσ.

Proof (a)–(c) See Lütkepohl (1990) Proposition 1.
(d)–(f) See Jang (2004) Theorem 3.2.

8.B Bias-Corrected Bootstrap Method

Kilian (1998) suggests the following algorithm for the bias-corrected bootstrap (boot-

strap after bootstrap) method:

1. Estimate the VAR(p) in equation (8.2) and generate 1000 bootstrap replications

â∗ from

Â(L)y∗
t = δ̂ϵ + ϵ∗t ,
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using standard nonparametric bootstrap techniques.

2. Approximate the bias term λ = E(â− a) by λ∗ = E∗(â∗ − â), which suggests

λ̂ = ā∗ − â for the bias estimate where ā∗ is the mean of the bootstrap sample

of â∗.

3. Adjust â for stationarity correction to avoid pushing stationary impulse re-

sponses into the nonstationary region.

(i) Compute m(â), the modulus of the largest root of the companion matrix

associated with â.

(ii) If m(â) ≥ 1, set ã = â without any adjustments.

(iii) Otherwise, construct the bias-corrected coefficient estimate ã = â− λ̂. If

m(ã) ≥ 1, let λ̂1 = λ̂ and ν1 = 1. Define λ̂j+1 = νjλ̂j and νj+1 = νj−0.01.

Set ã = ãj after iterating on ãj = â− λ̂j for j = 1, 2, · · · until m(â) < 1.

4. Substitute ã for â and generate 2000 new bootstrap replications â∗ from

Ã(L)y∗
t = δ̃ϵ + ϵ∗t ,

using standard nonparametric bootstrap techniques.

5. Compute ã∗ from â∗ and λ̂
∗
with the adjustment of â∗ for stationarity correction

as described in Step 3.

6. Compute the α and 1 − α percentile intervals of impulse responses generated

with ã∗ and σ̂∗.
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8.C Monte Carlo Integration

Consider the VAR system in the form of (8.5). Assuming that ut is i.i.d. and normally

distributed, Zellner (1971) finds that Σϵ follows the Normal-inverse Wishart posterior

distribution, with the prior, f(b,Σϵ) ∼ |Σϵ|−
n+1
2 :

Σ−1
ϵ ∼ Wishart((T Σ̂ϵ)

−1, T ) with given Σ̂ϵ(8.C.1)

and

b ∼ N(b̂,Σϵ ⊗ (X′X)−1).(8.C.2)

Doan (1992) and Sims and Zha (1999) suggest the following parametric Monte

Carlo integration method for computing impulse responses:

1. Estimate (16.17) and let b̂ and Σ̂ be these estimates.

2. Let A be a lower triangular matrix of Choleski decomposition of (X′X)−1.

3. Let S−1 be a lower triangular matrix of Choleski decomposition of Σ̂
−1

ϵ .

4. Generate n× T random numbers, wb, from the normal distribution, N(0, 1
T
).

5. Generate (n(p− 1)+ r+1)×n random numbers, ub, from the standard normal

distribution, N(0, 1).

6. Let rb = w′
bS

−1, and get Σ−1
b = r′brb.

7. Let Sb be a lower triangular matrix of Choleski decomposition of Σb.

8. Let b = b̂+ eb, in which eb = AubS
′
b. Then, b ∼ N(b̂,Σb ⊗ (X′X)−1).

9. Draw impulse responses, irb, as described in Section 16.3.3.
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10. Repeat 4 ∼ 9, B times, and calculate 95% upper and lower bands of impulse

responses using

Upper =
1

B

B∑
b=1

irb + 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2(8.C.3)

and

Lower =
1

B

B∑
b=1

irb − 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2 .(8.C.4)

Exercises

8.1 Let yt and mt be detrended log GDP and log money supply, respectively. As-

sume that zt = (yt,mt)
′ is a covariance stationary process with a p-th order VAR

representation.

(a) Define the concept, “y fails to Granger-cause m”.

(b) How do you test the hypothesis that log GDP fails to Granger-cause log money

supply?

(c) Imagine that you find empirical evidence that y fails to Granger-cause m, and

m Granger-causes y. Discuss why this evidence can be consistent with a model

in which money is neutral in the short run (money is neutral when changes in

the level of money supply cannot affect any real economic variable such as real

GDP).

(d) Define the orthogonalized impulse response function. Let

B0zt = δ +B1zt−1 +B2zt−2 + · · ·+Bpzt−p + et(8.E.1)
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be a structural model for zt, where Bi is a n×n matrix, and δ is a n×1 vector.

Here B0 is a nonsingular matrix of real numbers with 1’s along its principal di-

agonal, and et is a stationary n-dimensional vector of normally distributed i.i.d.

random variables. Discuss conditions for B0 under which the orthogonalized

impulse response function represents the effects of each element of et on zt+s.

8.2 True or False. Briefly explain your answers.

(a) OLS estimation is equivalent to SUR estimation for a reduced-form VAR model

because the regressors are identical.

(b) OLS estimation is equivalent to SUR estimation for a structural-form VAR

model because structural disturbances are uncorrelated.

(c) In a recursive VAR model, e1 = ϵ1.

(d) In a recursive VAR model, impulse responses to e1 are the same as those of ϵ1.

(e) In a recursive VAR model, en = ϵn.

(f) In a recursive VAR model, impulse responses to en are the same as those of ϵn.
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Chapter 9

GENERALIZED METHOD OF
MOMENTS

9.1 Asymptotic Properties of GMM Estimators

9.1.1 Moment Restriction and GMM Estimators

To motivate GMM estimation, consider Hansen and Singleton’s (1982) Consumption-

Based Capital Asset Pricing Model (C-CAPM). A representative agent maximizes

∞∑
t=1

βtE(U(ct)|I0)(9.1)

subject to a budget constraint. Hansen and Singleton (1982) use an isoelastic in-

traperiod utility function

U(ct) =
1

1− α
(c1−α

t − 1),(9.2)

where ct is real consumption at date t, β is a discount factor and α > 0 is the

reciprocal of the intertemporal elasticity of substitution (α is also the relative risk

aversion coefficient for consumption in this model). The standard Euler equation for

the optimization problem is

E[βc−α
t+1Rt+1| It]
c−α
t

= 1,(9.3)

182
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where Rt+1 is the gross real return of an asset and It is an information set available

at time t. This Euler equation can be rearranged as

E[β(
ct+1

ct
)−αRt+1 − 1| It] = 0.(9.4)

Let zt be a vector of variables whose values are known at time t. Then zt ∈ It and

E[zt{β(
ct+1

ct
)−αRt+1 − 1}| It] = 0.(9.5)

By the law of iterative expectations, we obtain the orthogonality conditions to be

used in GMM estimation,

E[zt{β(
ct+1

ct
)−αRt+1 − 1}] = 0.(9.6)

Let {xt : t = 1, 2, · · · } be a stationary and ergodic vector stochastic process,

b0 be a p-dimensional vector of the parameters to be estimated, and f(xt,b) a q-

dimensional vector of functions. We refer to ut = f(xt,b0) as the disturbance of

GMM. Consider the (unconditional) moment restrictions

E(f(xt,b0)) = 0.(9.7)

For example, in the Hansen and Singleton (1982) case, xt = ( ct+1

ct
, Rt+1, z

′
t)

′, b0 =

(β, α)′, and f(xt,b0) = zt{β( ct+1

ct
)−αRt+1 − 1}.

Suppose that a law of large numbers can be applied to f(xt,b) for all admissible

b, so that the sample mean of f(xt,b) converges to its population mean:

lim
T→∞

1

T

T∑
t=1

f(xt,b) = E(f(xt,b))(9.8)

with probability one (or, in other words, almost surely). The basic idea of GMM

estimation is to mimic the moment restrictions in (9.7) by minimizing a quadratic
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form of the sample means

JT (b) = { 1
T

T∑
t=1

f(xt,b)}′WT{
1

T

T∑
t=1

f(xt,b)}(9.9)

with respect to b, where WT is a positive semidefinite matrix that satisfies

lim
T→∞

WT = W0(9.10)

with probability one for a positive definite matrix W0. The matrices WT and W0

are both referred to as the distance or weighting matrix. The GMM estimator, bT ,

is the solution of the minimization problem in (9.9). Under fairly general regularity

conditions, the GMM estimator bT is a consistent estimator for arbitrary distance

matrices.1 The selection of the distance matrix which yields an (asymptotically)

efficient GMM estimator is discussed below in Section 9.1.3.

9.1.2 Asymptotic Distributions of GMM Estimators

Suppose that a central limit theorem applies to the disturbance of GMM, ut =

f(xt,b0), so that 1√
T

∑T
t=1 ut has an (asymptotic) normal distribution with mean

zero and the covariance matrix Ω in large samples.2 If ut is serially uncorrelated,

Ω = E(utu
′
t). If ut is serially correlated,

Ω = lim
j→∞

j∑
−j

E(utu
′
t−j).(9.11)

Some authors refer to Ω as the long run covariance matrix of ut. Let Γ = E(∂f(xt,b0)
∂b′ )

be the expectation of the q × p matrix of the derivatives of f(xt,b0) with respect

to b and assume that Γ has full column rank. Under suitable regularity conditions,

1Some regularity conditions that are important for applied researchers will be discussed in Section
9.3

2An advantage of the GMM estimation is that a strong distributional assumption such that ut

is normally distributed is not necessary.



9.1. ASYMPTOTIC PROPERTIES OF GMM ESTIMATORS 185

√
T (bT − b0) converges in distribution to a normal distribution with mean zero and

the covariance matrix

Cov(W0) = (Γ′W0Γ)
−1(Γ′W0ΩW0Γ)(Γ

′W0Γ)
′−1.(9.12)

9.1.3 Optimal Choice of the Distance Matrix

When the number of moment conditions (q) is equal to the number of parameters to

be estimated (p), the system is just identified. In the case of a just identified system,

the GMM estimator does not depend on the choice of distance matrix. When q > p,

there exist overidentifying restrictions and different GMM estimators are obtained

for different distance matrices. In this case, one may choose the distance matrix that

results in an (asymptotically) efficient GMM estimator. Hansen (1982) shows that

the covariance matrix (9.12) is minimized when W0 = Ω−1.3 With this choice of the

distance matrix,
√
T (bT − b0) has an approximately normal distribution with mean

zero and the covariance matrix

Cov(Ω−1) = (Γ′Ω−1Γ)−1(9.13)

in large samples.

Let ΩT be a consistent estimator of Ω. Then WT = Ω−1
T is used to obtain bT .

The resulting estimator is called the optimal or efficient GMM estimator. It should

be noted, however, that it is optimal given f(xt,b). In the context of instrumental

variable estimation, this means that instrumental variables are given. The optimal

selection of instrumental variables is discussed below in Section 9.7. Let ΓT be a

consistent estimator of Γ. Then the standard errors of the optimal GMM estimator

3The covariance matrix is minimized in the sense that Cov(W0)−Cov(Ω−1) is a positive semidef-
inite matrix for any positive definite matrix W0.
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bT are calculated as square roots of the diagonal elements of 1
T
(Γ′

TΩ
−1
T ΓT )

−1. The

appropriate method for estimatingΩ depends on the model. This problem is discussed

in Chapter 6. It is usually easier to estimate Γ by ΓT = 1
T

∑T
t=1

∂f(xt,bT )
∂b′ than

to estimate Ω. In linear models, or in some simple nonlinear models, analytical

derivatives are readily available. In nonlinear models, numerical derivatives are often

used.

9.1.4 A Chi-Square Test for the Overidentifying Restrictions

In the case where there are overidentifying restrictions (q > p), a chi-square statistic

can be used to test the overidentifying restrictions. One application of this test is to

test the validity of the moment conditions implied by Euler equations for optimizing

problems of economic agents. This application is discussed in Section 9.5. Hansen

(1982) shows that T times the minimized value of the objective function, TJT (bT ),

has an (asymptotic) chi-square distribution with q−p degrees of freedom ifW0 = Ω−1

in large samples. This test is sometimes called Hansen’s J test.4

If we reject the overidentifying restrictions based on Hansen’s J test, it can

be interpreted in two different ways. If a model implies the moment restrictions,
Kyungho
needs to

check this!
for example, Euler equation approach, rejection of J test means that the model is

rejected. However, if instrumental variables are chosen with common sense, rejection

of J test means that instrumental variables are inappropriately chosen.

9.2 Special Cases

This section shows how linear regressions and nonlinear instrumental variable esti-

mation are embedded in the GMM framework above.

4See Newey (1985) for an analysis of the asymptotic power properties of this chi-square test.
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9.2.1 Ordinary Least Squares

Consider a linear model,

yt = x′
2tb0 + ϵt,(9.14)

where yt and ϵt are stationary and ergodic random variables, x2t is a p-dimensional

stationary and ergodic random vector. OLS estimation can be embedded in the GMM

framework by letting xt = (yt,x
′
2t)

′, f(xt,b) = x2t(yt − x′
2tb), ut = x2tϵt, and p = q.

Thus, the moment conditions (9.7) become the orthogonality conditions:

E(x2tϵt) = 0.(9.15)

Since this is the case in a just identified system, the distance matrix W0

does not matter. Note that the OLS estimator minimizes
∑T

t=1(yt − x′
2tb)

2 while

the GMM estimator minimizes (
∑T

t=1 x2t(yt − x′
2tb))

′(
∑T

t=1 x2t(yt − x′
2tb)). In this

case, the GMM estimator coincides with the OLS estimator. To see this, note

that (
∑T

t=1 x2t(yt − x′
2tb))

′(
∑T

t=1 x2t(yt − x′
2tb)) can be minimized by setting bT

so that
∑T

t=1 f(xt,b) = 0 in the case of a just identified system. This result im-

plies that
∑T

t=1 x2tyt = (
∑T

t=1 x2tx
′
2t)bT . Thus, as long as

∑T
t=1 x2tx

′
2t is invertible,

bT = (
∑T

t=1 x2tx
′
2t)

−1
∑T

t=1 x2tyt. Hence, the GMM estimator bT coincides with the

OLS estimator.

9.2.2 Linear Instrumental Variables Regressions

Consider the linear model (9.14) and let zt be a q-dimensional random vector of

instrumental variables. Then instrumental variable regressions are embedded in the

GMM framework by letting xt = (yt,x
′
2t, z

′
t)

′, f(xt,b) = zt(yt − x′
2tb), and ut = ztϵt.
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Thus, the moment conditions become the orthogonality conditions

E(ztϵt) = 0.(9.16)

In the case of a just identified system (q = p), the instrumental variable regression

estimator (
∑T

t=1 ztx
′
2t)

−1
∑T

t=1 ztyt coincides with the GMM estimator. For the case of

an overidentified system (q > p), the two-stage least-squares estimators and the three-

stage least-squares estimators (for multiple regressions) can be interpreted as optimal

GMM estimators when ϵt is serially uncorrelated and conditionally homoskedastic.5

9.2.3 Linear GMM estimator

Consider the linear regression model (9.14). Let zt be a q-dimensional random vector

of instrumental variables, xt = (yt,x
′
2t, z

′
t)

′, f(xt,b) = zt(yt − x′
2tb), and ut = ztϵt.

For the case of an overidentified system (q > p), the linear GMM estimator, bT ,

is the solution of the minimization problem (9.9), where

1

T

T∑
t=1

f(xt,b) =
1

T

T∑
t=1

zt(yt − x′
2tb)(9.17)

=
1

T

T∑
t=1

ztyt +
1

T

T∑
t=1

(−ztx
′
2t)b

≡ szy + ΓTb,

szy (q×1) is the corresponding vector of sample moments of E(ztyt) and ΓT (q×p) is

the corresponding vector of sample moments of E(∂f(xt,b0)
∂b′ ). The first order condition

for the minimization problem with respect to b is

Γ′
TWTΓTb = −Γ′

TWT szy,(9.18)

5This interpretation can be seen by examining the first order condition for the minimization
problem (9.9).
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where WT is a (q × q) positive semidefinite matrix satisfying equation (11.2). The

linear GMM estimator, bT , can be obtained by multiplying both sides by the inverse

of Γ′
TWTΓT :

bT (WT ) = −(Γ′
TWTΓT )

−1Γ′
TWT szy.(9.19)

When there is a system of multiple linear equations, the multiple-equation

GMM estimator can be obtained. Moreover, under the assumption of conditional

homoskedasticity, the three-stage least-squares estimators can be shown to be a spe-

cial case of multiple-equation GMM estimators. (For more detailed explanation, see

Hayashi, 2000).

9.2.4 Nonlinear Instrumental Variables Estimation

GMM is often used in the context of nonlinear instrumental variable (NLIV) estima-

tion. Chapter 10 presents some examples of applications based on the Euler equation

approach. Let g(x1t,b) be a k-dimensional vector of functions and ϵt = g(x1t,b0).

Suppose that there exist conditional moment restrictions, E[ϵt|It] = 0. Here it is

assumed that It ⊂ It+1 for any t. Let zt be a q × k matrix of random variables that

are in the information set It.
6 By the law of iterative expectations, we obtain the

unconditional moment restrictions:

E[ztg(x1t,b0)] = 0.(9.20)

Thus, we let xt = (x′
1t, z

′
t)

′ and f(xt,b) = ztg(x1t,b) in this case. Hansen (1982)

points out that the NLIV estimators discussed by Amemiya (1974), Jorgenson and

6In some applications, zt is a function of b. This property does not cause any problems as long
as the resulting f(xt,b) can be written as a function of b and a stationary random vector xt.
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Laffont (1974), and Gallant (1977) can be interpreted as optimal GMM estimators

when ϵt is serially uncorrelated and conditionally homoskedastic.

Hansen and Singleton (1982) Consumption-Based Capital Asset Pricing Model

(C-CAPM) can be an example of NLIV interpretation of GMM estimation. The Euler

equation is

E[βc−α
t+1Rt+1|It]
c−α
t

= 1,(9.21)

where Rt+1 is the gross real return of any asset.7 The observed ct they use is obviously

nonstationary, although the specific form of nonstationarity is not clear (difference

stationary or trend stationary, for example). Hansen and Singleton use ct+1

ct
in their

econometric formulation, which is assumed to be stationary.8 Then we let b0 =

(β, α)′, x1t = ( ct+1

ct
, Rt+1)

′, and g(x1t,b0) = β( ct+1

ct
)−αRt+1 − 1.9 Stationary variables

in It, such as the lagged values of xt, are used for instrumental variables zt. In this

case, ut is in It+1, and hence ut is serially uncorrelated.

9.3 Important Assumptions

This section discusses two assumptions under which large sample properties of GMM

estimators are derived. These two assumptions are important in the sense that ap-

plied researchers have encountered cases where, unless special care is taken, these

assumptions are obviously violated.

7This asset pricing equation can be applied to any asset returns. For example, Mark (1985)
applies the Hansen-Singleton model in asset returns in foreign exchange markets.

8In the following, assumptions about trend properties of equilibrium consumption are made. The
simplest model in which these assumptions are satisfied is a pure exchange economy, with the trend
assumptions imposed on endowments.

9When multiple asset returns are used, g(xt,b) becomes a vector of functions.
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9.3.1 Stationarity

In Hansen (1982), xt is assumed to be (strictly) stationary. Among other things,

this assumption implies that when they exist, the unconditional moments E(xt) and

E(xtx
′
t+τ ) cannot depend on t for any τ . Thus, this assumption rules out deterministic

trends, autoregressive unit roots, and unconditional heteroskedasticity. On the other

hand, conditional moments E(xt+τ |It) and E(xt+τx
′
t+τ+s|It) can depend on It. Thus,

the stationarity assumption does not rule out the possibility that xt has conditional

heteroskedasticity. It should be noted that it is not enough for ut = f(xt,b0) to be

stationary. It is required that xt is stationary, so that f(xt,b) is stationary for all

admissible b, not just for b = b0 (see Section ??????????? for an example in which
Masao
needs to
check this!

f(xt,b0) is stationary but f(xt,b) is not for other values of b).

Gallant (1987) and Gallant and White (1988) show that the GMM strict station-

arity assumption can be relaxed to allow for unconditional heteroskedasticity. This

property does not mean that xt can exhibit nonstationarity by having deterministic

trends or autoregressive unit roots. Some of their regularity conditions are violated

by these popular forms of nonstationarity. Recent papers by Andrews and McDer-

mott (1995) and Dwyer (1995) show that the stationarity assumption can be further

relaxed for some forms of nonstationarity. However, the long-run covariance matrix

estimation procedure often needs to be modified to apply their asymptotic theory.

For this reason, the strict stationarity assumption is emphasized in the context of

time series applications rather than the fact that this assumption can be relaxed.

Since many macroeconomic variables exhibit nonstationarity, unless a researcher

is careful this assumption can be easily violated in applications. As will be explained

in Subsection 9.4.2, nonstationarity in the form of trend stationarity can be treated



192 CHAPTER 9. GENERALIZED METHOD OF MOMENTS

with ease. In order to treat another popular form of nonstationarity, unit-root non-

stationarity, researchers have used transformations such as first differences or growth

rates of variables (see Chapter 10 for examples).

9.3.2 Identification

Another important assumption of Hansen (1982) is related to identification. Let

J0(b) = {E[f(xt,b)]}′W0{E[f(xt,b)]}.(9.22)

The identification assumption is that b0 is the unique minimizer of J0(b). Since

J0(b) ≥ 0 and J0(b0) = 0, b0 is a minimizer. Hence, this assumption requires

J0(b) to be strictly positive for any other b. This assumption is obviously violated if

f(xt,b) ≡ 0 for some b that does not have any economic meaning (see Chapter 10

for examples). Even when this assumption is not violated, if values of J0(b) are close

to zero for parameter values around the unique minimizer and for other parameter

values, then we have weak identification problem. This problem will be discussed

later in this chapter.

9.4 Extensions

This section explains econometric methods that are closely related to the basic GMM

framework.

9.4.1 Sequential Estimation

This subsection discusses sequential estimation (or two step estimation). Consider a

system

f(xt,b) =

[
f1(xt,b1)

f2(xt,b1,b2)

]
,(9.23)
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where b = (b′
1,b

′
2)

′, bi is a pi-dimensional vector of parameters, and fi is a qi-

dimensional vector of functions. Although it is possible to estimate b1 and b2 si-

multaneously, it may be computationally convenient to estimate b1 from f1(xt,b1)

first, and then estimate b2 from f2(xt,b1,b2) in a second step (see, e.g., Barro, 1976;

Atkeson and Ogaki, 1996, for examples of empirical applications). In general, the

asymptotic distribution of the estimator of b2 is affected by the estimation of b1 (see,

e.g., Newey, 1984; Pagan, 1984, 1986). A GMM computer program for sequential

estimation can be used to calculate the correct standard errors that take into account

these effects from estimating b1. If there are overidentifying restrictions in the sys-

tem, an econometrician may wish to choose the second step distance matrix in an

efficient way. The choice of the second step distance matrix is analyzed by Hansen,

Heaton, and Ogaki (1992).

Suppose that the first step estimator b1
T minimizes

J1T (b1) = { 1
T

T∑
t=1

f1(xt,b1)}′W1T{
1

T

T∑
t=1

f1(xt,b1)}(9.24)

and that the second step estimator minimizes

J2T (b2) = { 1
T

T∑
t=1

f2(xt,b1T ,b2)}′W2T{
1

T

T∑
t=1

f2(xt,b1T ,b2)},(9.25)

where WiT is a positive definite matrix that converges to Wi0 with probability one.

Let Γij be the qi × pj matrix E( ∂fi
∂b′

j
) for i = 1, 2 and j = 1, 2.

Given an arbitrary W10, the optimal choice of the second step distance matrix

is W20 = Ω∗−1, where

Ω∗ = [−Γ21(Γ11W10Γ11)
−1Γ11W10, I] Ω

[
−Γ21(Γ11W10Γ11)

−1Γ11W10

I

]
.(9.26)

With this choice of W20,
1√
T

∑T
t=1(b2T −b20) has an (asymptotic) normal distribution
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with mean zero and the covariance matrix

(Γ′
22Ω

∗−1Γ22)
−1(9.27)

and TJ2T (b2T ) has an (asymptotic) chi-square distribution with q2 − p2 degrees of

freedom. It should be noted that if Γ21 = 0, then the effect of the first step estimation

can be ignored because Ω∗ = Ω22 = E(f2(xt,b0)f2(xt,b0)
′).

9.4.2 GMM with Deterministic Trends

This subsection discusses how GMM can be applied to time series with deterministic

trends (see Eichenbaum and Hansen, 1990; Ogaki, 1988, 1989, for empirical examples).

Suppose that xt is trend stationary rather than stationary. In particular, let

xt = d(t,b10) + x∗
t ,(9.28)

where d(t,b10) is a function of deterministic trends such as time polynomials and x∗
t

is detrended xt. Assume that x∗
t is stationary with E(x∗

t ) = 0 and that there are q2

moment conditions

E(f2(x
∗
t ,b10,b20)) = 0.(9.29)

Let b = (b′
1,b

′
2)

′, f1(xt,b1) = xt−d(t,b1) and f(xt,b) = [f1(xt,b1)
′, f2(x

∗
t ,b1,b2)

′]′.

Then GMM can be applied to f(xt,b) to estimate b1 and b2 simultaneously.

9.4.3 Other GMM Estimators

Several alternative estimators have been developed to deal with the poor small sample

performance and weak identification problem of GMM.

One of them is the continuous-updating estimator provided by Hansen, Heaton,

and Yaron (1996). It is obtained from changing the weighting matrix with each choice
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of the parameter instead of taking it as given in each step of GMM estimation. An

advantage of this estimator is that it is invariant to how the moment conditions are

scaled.

Others use the information theoretic approach to circumvent the need for es-

timating a weighting matrix in a two step GMM. They include the empirical likeli-

hood estimator (see, e.g., Kitamura and Stutzer, 1997; Imbens, 1997, 2002; Imbens

and Spady, 2002) and exponential tilting estimator (see, e.g., Imbens, Spady, and

Johnson, 1998). These estimators are based on minimization of the Kullback-Leibler

Information Criterion distance to estimate parameters and to test the over-identifying

restrictions (see, e.g., Golan, 2002 for a recent explanation of information economet-

rics).

9.5 Hypothesis Testing and Specification Tests

This section discusses specification tests and Wald, Lagrange Multiplier (LM), and

likelihood ratio type statistics for hypothesis testing. Gallant (1987), Newey and West

(1987), and Gallant and White (1988) have considered these three test statistics, and

Eichenbaum, Hansen, and Singleton (1988) considered the likelihood ratio type test

for GMM (or a more general estimation method that includes GMM as a special

case).

Consider s nonlinear restrictions

H0 : R(b0) = r,(9.30)

where R is a s × 1 vector of functions. The null hypothesis H0 is tested against the

alternative of R(b0) ̸= r. Let Λ = ∂R
∂b′ |b0 and ΛT be a consistent estimator for Λ. It

is assumed that Λ is of rank s. If the restrictions are linear, then R(b0) = Λb0 and
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Λ is known. Let bu
T be an unrestricted GMM estimator and br

T be a GMM estimator

that is restricted by (9.30). It is assumed that W0 = Ω−1 is used for both estimators.

The Wald test statistic is

T (R(bu
T )− r)′[ΛT (Γ

′
TΩ

−1
T ΓT )

−1Λ′
T ]

−1(R(bu
T )− r),(9.31)

where ΩT ,ΓT , and ΛT are estimated from bu
T . The Lagrange multiplier test statistic

is

LMT =
1

T

T∑
t=1

f(xt,b
r
T )

′Ω−1
T ΓTΛ

′
T (ΛTΛ

′
T )

−1[ΛT (Γ
′
TΩ

−1
T ΓT )

−1Λ′
T ]

−1(9.32)

(ΛTΛ
′
T )

−1ΛTΓ
′
TΩ

−1
T

T∑
t=1

f(xt,b
r
T ),

where ΩT ,ΓT , and ΛT are estimated from br
T . Note that in linear models LMT is

equal to (9.31), where ΩT ,ΓT , and ΛT are estimated from br
T rather than bu

T . (?????

Need to reword) The likelihood ratio type test statistic is
Masao

needs to
check this!

T (JT (b
r
T )− JT (b

u
T )),(9.33)

which is T times the difference between the minimized value of the objective function

when the parameters are restricted and the minimized value of the objective function

when the parameters are unrestricted. It is important that the same estimator for

Ω is used for both unrestricted and restricted estimation for the likelihood ratio

type test statistic. Under a set of regularity conditions, all three test statistics have

asymptotic chi-square distributions with s degrees of freedom. The null hypothesis

is rejected when these statistics are larger than the critical values obtained from

chi-square distributions.

Existing Monte Carlo evidence suggests that the small sample distributions of

the Lagrange multiplier test and the likelihood ratio type test are better approxi-
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mated by their asymptotic distributions than those of the Wald test (see Gallant,

1987). Another disadvantage of the Wald test is that in general, the test result for

nonlinear restrictions depends on the parameterization (see, e.g., Gregory and Veall,

1985; Phillips and Park, 1988).

Though the chi-square test for the overidentifying restrictions discussed in Sec-

tion 9.1 has been frequently used as a specification test in applications of GMM, other

specification tests applicable to GMM are available. These include tests developed

by Singleton (1985), Andrews and Fair (1988), Hoffman and Pagan (1989), Andrews

(1991), Ghysels and Hall (1990a,b,c), Hansen (1990), and Dufour, Ghysels, and Hall

(1994). Some of these tests are discussed by Hall (1993).

9.6 Numerical Optimization

For nonlinear models, it is usually necessary to apply a numerical optimization method

to compute a GMM estimator by numerically minimizing the criterion function,

JT (b). The Newton-Raphson method (see, e.g., Hamilton, 1994, Chapter 5) is often

used with an approximation method to calculate the Hessian matrix. A problem with

the Newton-Raphson method and other practical numerical optimization methods is

that global optimization is not guaranteed. The GMM estimator is defined as a global

minimizer of a GMM criterion function, and the proof of its asymptotic properties

depends on this assumption. Therefore, the use of a local optimization method can

result in an estimator that is not necessarily consistent and asymptotically normal.

If the criterion function and parameter space are convex, then the criterion

function has a unique local minimum, which is also the global minimum. In this

case, a local optimization algorithm started at any parameter values should be able
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to reach an approximate global minimum.

For nonconvex problems, however, there can be many local minima. For such

problems, an algorithm called multi-start is often used for GMM applications. In this

algorithm, one starts a local optimization algorithm from initial values of the param-

eters to converge to a local minimum, and then one repeats the process a number of

times with different initial values. The estimator is taken to be the parameter values

that correspond to the smallest value of the criterion function obtained during the

multi-start process.

It should be noted that this multi-start algorithm is used for a given distance ma-

trix. When the two stage or iterative GMM estimators are used, a different distance

matrix is used in each stage, and hence a different criterion function is minimized.

In most GMM programs, one needs to save the distance matrix in a file in order to

apply the multi-start algorithm in each stage.

A problem with the multi-start algorithm, however, is that it does not neces-

sarily find the global optimum. Therefore, the estimator it delivers is not necessarily

consistent and asymptotically normal. Andrews (1997) proposes a simple stopping-

rule procedure that overcomes this difficulty.

9.7 The Optimal Choice of Instrumental Variables

In the NLIV model discussed in Section 9.2, there are infinitely many possible instru-

mental variables because any variable in It can be used as an instrument. Hansen

(1985) characterizes an efficiency bound (that is, a greatest lower bound) for the

asymptotic covariance matrices of the alternative GMM estimators and optimal in-

struments that attain the bound. Since it can be time consuming to obtain op-
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timal instruments, an econometrician may wish to compute an estimate of the ef-

ficiency bound to assess efficiency losses from using ad hoc instruments. Hansen

(1985) also provides a method for calculating this bound for models with condi-

tionally homoskedastic disturbance terms with an invertible MA representation.10

Hansen, Heaton, and Ogaki (1988) extend this method to models with condition-

ally heteroskedastic disturbances and models with an MA representation that is not

invertible.11 Hansen and Singleton (1996) calculate these bounds and optimal instru-

ments for a continuous time financial economic model.

9.8 Small Sample Properties

In most cases, the exact small sample properties cannot be derived for GMM esti-

mators. Monte Carlo simulations have been conducted to study them for various

nonlinear and linear models. Tauchen (1986) shows that GMM estimators and test

statistics have reasonable small sample properties for data produced by simulations

for a C-CAPM. Ferson and Foerster (1994) find similar results for a model of expected

returns of assets as long as GMM is iterated for estimation of Ω. Kocherlakota (1990)

uses preference parameter values of β = 1.139 and α = 13.7 (in Section 9.1) in his

simulations for a C- CAPM that is similar to the Tauchen’s (1986) model. While

these parameter values do not violate any theoretical restrictions for existence of an

equilibrium, they are much larger than the estimates of these preference parameters

by Hansen and Singleton (1982) and others. Kocherlakota (1990) shows that GMM

estimators for these parameters are biased downward and the chi-square test for the

10Hayashi and Sims’ (1983) estimator is applicable to this example.
11Heaton and Ogaki (1991) provide an algorithm to calculate efficiency bounds for a continuous

time financial economic model based on the Hansen, Heaton, and Ogaki’s (1988) method.
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overidentifying restrictions tends to reject the null too frequently compared with its

asymptotic size. Mao (1990) reports that the chi-square test overrejects for more

conventional values of these preference parameters in his Monte Carlo simulations.

Tauchen (1986) investigates small sample properties of Hansen’s (1985) optimal

instrumental variable GMM estimators. He finds that the optimal estimators do

not perform well in small samples as compared to GMM estimators with ad hoc

instruments. Tauchen (1986) and Kocherlakota (1990) recommend a small number

of instruments rather than a large number of instruments when ad hoc instruments

are used.

In some applications, scaling factors are another factor to affect finite sample

GMM estimates. For example, Ni (1997) demonstrates that finite sample estimates

are sensitive to scaling factors, and some seemingly reasonable scaling factors system-

atically lead to spurious estimates. However, Hansen, Heaton, and Yaron’s (1996)

continuous updating estimator is not affected by scaling factors.

Arellano and Bond (1991) report Monte Carlo results on GMM estimators for

dynamic panel data models. They report that the GMM estimators have substantially

smaller variances than commonly used Anderson and Hsiao’s (1981) estimators in

their Monte Carlo experiments. They also report that the small sample distributions

of the serial-correlation tests they study are well approximated by their asymptotic

distributions.

A very important small sample problem is weak identification, which we will

discuss in the next section.
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9.9 Weak Identification

In many applications, the identification condition holds but is almost violated in the

sense that the values of the objective function evaluated at certain parameter values

other than the true values are very close to the minimized value. In such applications,

we have a weak problem. In the context of linear IV or NLIV estimation, this is called

the weak instrument variables problem.

Nelson and Startz (1990) perform Monte Carlo simulations to investigate small

sample properties of linear instrumental variables regressions. They show that in-

strumental variables estimators have poor sample properties when the instruments

are weakly correlated with explanatory variables. In particular, they find that the

chi-square test tends to reject the null too frequently compared with its asymptotic

distribution, and that t-ratios tend to be too large when the instrument is poor.

Their results for t-ratios may seem counterintuitive because one might expect that

the consequence of having a poor instrument would be a large standard error and a

low t-ratio. Staiger and Stock (1997) show that when the instruments are weakly cor-

related with the endogenous regressors, conventional asymptotic distribution theory

fails even if the sample size is large. These results may be expected to carry over to

NLIV estimation.

In the context of two stage least squares, Staiger and Stock (1997) suggest that

first stage F-statistics, which tests the hypothesis that the instruments do not enter

the first stage regression, should be reported at a minimum. Stock and Yogo (2005)

advocates a pre-test rule to only use two stage least squares t statistics when the first

stage F statistic exceeds ten. One strategy which continually changes the instruments

until the F-statistics is significant is criticized by Hall, Rudebusch, and Wilcox (1996)
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as it tends to make matters worse in the Monte Carlo simulations.

9.10 Identification Robust Methods

When GMM has a weak identification problem, the conventional GMM asymptotics

fails to provide reliable inferences. One solution is to use identification robust meth-

ods, which does not rely on the identification assumption. These methods can be

applied without using a pre-test rule such as Stock and Yogo’s (2005). If confidence

intervals or regions of parameters generated by identification robust methods are

large, that indicates the presence of the weak identification problem.

Let θ denote a p-dimensional vector of parameters to be estimated. Consider

the k dimensional vector of moment restrictions

(9.34) E(ft(θ)) = 0

for t = 1, · · · , T which is assumed to be uniquely satisfied at θ0. The objective

function for the CUE is:

(9.35) Q(θ) =

(
1√
T

T∑
t=1

ft(θ)

)′

V̂ff (θ)
−1

(
1√
T

T∑
t=1

ft(θ)

)
where V̂ff (θ) is a consistent estimator of the k × k covariance matrix Vff (θ) of the

moment vector.

In addition to the moment vector ft(θ), consider also its derivative with respect

to θ:

qt(θ) = vec

(
∂ft(θ)

∂θ′

)
and qT = 1

T

∑T
t=1 qt(θ).

We assume that in the large sample, ft(θ) and qt(θ) satisfy

1√
T

T∑
t=1

(
ft(θ)− E(ft(θ))
qt(θ)− E(qt(θ))

)
d→
(
ϕf (θ)
ϕθ(θ)

)
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where ( ϕf (θ)
′ ϕθ(θ)

′ )′ is a k(p+ 1) dimensional normally distributed random pro-

cess with mean zero and positive semi-definite k(p+1)×k(p+1) dimensional covari-

ance matrix

V (θ) = lim
T→∞

var

(
1√
T

∑T
t=1 ft(θ)

1√
T

∑T
t=1 qt(θ)

)
=

(
Vff (θ) Vfθ(θ)
Vθf (θ) Vθθ(θ)

)
,

with Vθf (θ) = Vfθ(θ)
′ = (Vθf,1(θ)

′ · · ·Vθf,p(θ)′)′, Vθθ(θ) = Vθθ,ij(θ), i, j = 1, · · · , p and

Vff (θ), Vθf,i(θ), Vθθ,ij(θ) are k × k dimensional matrices for i, j = 1, · · · , p.

The derivative estimator qT (θ) is correlated with the average moment vector

fT (θ) since Vθf (θ) ̸= 0. The weak instrument robust statistics therefore use an alter-

native estimator of the derivative of the unconditional expectation of the Jacobian

that is asymptotically uncorrelated with fT (θ):

D̂T (θ0) = [q1,T (θ0)− V̂θf,1(θ0)V̂ff (θ0)
−1fT (θ0) · · ·

qp,T (θ0)− V̂θf,p(θ0)V̂ff (θ0)
−1fT (θ0)],

where V̂θf,i(θ) are kf × kf estimators of the covariance matrices Vθf,i(θ), i = 1, · · · , p,

V̂θf (θ) = (V̂θf,1(θ)
′ · · · V̂θf,p(θ)′)′ and qT (θ0) = (1′1,T (θ0) · · · q

′
p,T (θ0))

′.

The weak instrument robust statistics can be used for hypothesis testing on

both subsets and the entire vector of the parameters. Let θ = (α′ : β′)′, with α and

β being pα and pβ dimensional vectors, respectively, such that pα + pβ = p. For tests

on the entire set of parameters, consider β = θ. Below, we introduce four statistics

that test the hypothesis H0 : β = β0.

• The S-statistic of Stock and Wright (2000):

S(β0) = Q(α̃(β0), β0),
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where α̃(β0) is the CUE of α given that β = β0. This is the CUE objective

function (16.64).

• The score or Lagrange Multiplier statistic:

LM(β0) = fT (α̃(β0), β0)
′V̂ff (α̃(β0), β0)

− 1
2P

V̂ff (α̃(β0).β0)
− 1

2 D̂T (α̃(β0),β0)
V̂ff (α̃(β0), β0)

− 1
2fT (α̃(β0), β0)

where PA ≡ A(A′A)−1A′ for a full rank matrix A. This can be considered as

the inverse of the conditional information matrix (Kleibergen, 2007).

• The over-identification statistic:

SL(β0) = S(β0)− LM(β0)

• The conditional likelihood ratio statistic:

CLR(β0) =
1

2

[
S(β0)− rk(β0) +

√
{S(β0) + rk(β0)}2 − 4SL(β0)rk(β0)

]
where rk(β0) is a statistic that tests for a lower rank value of J(α̃(β0), β0) and is a

function of D̂T (α̃(β0), β0) and V̂θθ.f (α̃(β0), β0) = V̂θθ(α̃(β0), β0)−V̂θf (α̃(β0), β0)V̂ff (α̃(β0), β0)−1V̂fθ(α̃(β0), β0):

rk(β0) = min
ϕ∈Rp−1

T ( 1 ϕ )D̂T (α̃(β0), β0)
′
[
W ′V̂θθ.f (α̃(β0), β0)W

]−1

D̂T (α̃(β0), β0)( 1 ϕ )′

where W = ( Ipα ϕ′ )′ ⊗ Ik. The CLR statistic is a GMM extension of the

conditional likelihood ratio statistic of Moreira (2003) for the linear instrumental

variables regression model with one included endogenous variable.

Confidence sets for the parameter(s) β are obtained by inverting each of the

identification-robust statistics (Zivot, Startz, and Nelson, 1998). The (1 − α)100%

confidence bounds coincide with the intersection of the 1-α value of the test statistic

with the (1 − α) line. A (1 − α)100% level confidence set thus constructed contains
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all the values of β0 for which the corresponding test of the hypothesis H0 : β = β0

does not reject H0 at the α% level of significance. When testing for more than one

parameter jointly, these are the 1− α contours of the graph of the function 1− p(θ)

where p(θ) is the p-value of a test of a joint null hypothesis on a vector of parameters θ.

Projection based confidence sets for an element of θ can be obtained from these joint

confidence sets by projecting the widest range of the contours to the corresponding

axis.

Kleibergen and Mavroeidis (2009) use the four test statistics to conduct infer-

ence on the parameters of the New Keynesian Phillips Curve (NKPC). They find evi-

dence that forward-looking dynamics in inflation are statistically significant and domi-

nate backward-looking dynamics. However, the confidence intervals for the backward-

looking dynamics are too wide to draw any conclusion on its significance. Moreover,

even though the slope of the NKPC is estimated to be positive, it is not significantly

different from zero in any of the tests. These results confirm those of several authors

who have reported empirical evidence that the NKPC is relatively flat and that its

GMM estimation suffers from the weak identification problem (Mavroeidis, 2005; Na-

son and Smith, 2008). Kleibergen and Mavroeidis (2009) also find that, overall, the

LR statistic is at least as powerful as other tests in the Monte Carlo simulations, and

that it also yields the smallest confidence sets in their empirical applications.

Appendix

9.A Asymptotic Theory for GMM

This Appendix reviews proofs for the asymptotic properties of GMM.
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9.A.1 Asymptotic Properties of Extremum Estimators

Many estimators are formed by minimizing or maximizing objective functions. These

estimators are called extremum estimators, or optimization estimators. A GMM

estimator is a special case of an extremum estimator. In this section, we prove

the consistency of extremum estimators. The next section applies the results to

GMM. Given (S,F, P r), let x be a m-vector of random variables, b be a p-vector of

parameters, and JT (x,b) be a sequence of real valued functions. We will often denote

JT (x,b) by JT (b). For GMM, x will be taken as x = (x′
1,x

′
2, · · ·x′

T )
′, so that m is T

times the dimension of xt. Thus, we allow m to be a function of T . The parameter

b is a member of a set B ⊂ Rp, and B is called the parameter space.

An important condition for the consistency of extremum estimators relies on

the concept of almost sure uniform convergence. Consider a sequence of functions

gT : Rr × B 7−→ Rq, such that gT : (·,b) is measurable for each b in B and f(z,b)

is continuous on B for each z in Rr. Then gT converges to a nonstochastic function

g0(b) almost surely uniformly in b ∈ B if there exists F ∈ F with Pr(F ) = 1, such

that given any ϵ > 0, for each s in F there exists an integer T (s, ϵ) such that for all

T > T (s, ϵ), supB|gT (x(s),b) − g0(b)| < ϵ. Here | · | denotes the Euclidean norm.

In this section, we will require that the sequence of real-valued functions JT (x,b)

converges to a nonstochastic function J0(b) almost surely uniformly in b ∈ B. In the

next section, we will require a sequence of vector-valued functions converges almost

surely uniformly.

Consider the following set of assumptions:

Assumption 9.A.1 The parameter space B is a compact set in Rp.
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Assumption 9.A.2 JT (x,b) is continuous in b ∈ B for all x and is a measurable

function of x for all b ∈ B.

Assumption 9.A.3 JT (x,b) converges to a nonstochastic function J0(b) almost

surely uniformly in b ∈ B.

Assumption 9.A.4 J0(b) attains a unique global minimum at b0.

Since B is a subset in Rk, Assumption 9.A.1 is equivalent to assuming that B

is closed and bounded. Define an extreme estimator, bT , as a value that satisfies

JT (bT ) = min
b∈B

JT (b).

A complication is that the minimizer may not be unique, and it is not easy to prove

that bT can be chosen in such a way that bT (x) is measurable. Different solutions

to this problem are possible. Here, we have adopted a set of assumptions that are

stronger than the assumptions in Theorem 4.1.1 of Amemiya (1985) for the weak

consistency of extremum estimators. Amemiya (1985) states that if bT is not unique,

it is possible to choose a value in such a way that bT (x) is a measurable function of

x. Assuming that bT (x) is chosen this way, we can prove the strong consistency of

extremum estimators.

Theorem 9.A.1 (Strong consistency of extremum estimators) If Assumptions 9.A.1

- 9.A.4 are satisfied, then bT converges almost surely to b0.

Proof Given any ϵ > 0, let η(ϵ) an open ball with the center b0 and the radius ϵ. If η(ϵ)c ∩ B is
empty for all ϵ, the result is trivial. Suppose that η(ϵ)c ∩B is nonempty. Since η(ϵ)c ∩B is compact
and J0(b) is continuous under our assumptions, minb∈η(ϵ)c∩B J0(b) exits. Denote

δ(ϵ) = min
b∈η(ϵ)c∩B

J0(b)− J0(b0).

Since JT (x,b) converges almost surely uniformly to J0(b), there exists F ∈ F, P r(F ) = 1

such that for each s in F and all T > T (s, δ(ϵ)), |JT (b) − J0(b)| < δ(ϵ)
2 . For b = bT , we have
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|JT (bT )−J0(bT )| < δ(ϵ)
2 , and hence J0(bT ) < JT (bT )+

δ(ϵ)
2 . For b = b0, we have |JT (b0)−J0(b0)| <

δ(ϵ)
2 or JT (b0) < J0(b0)+

δ(ϵ)
2 . Since bT minimizes JT (b) on B, JT (bT ) < J0(b0)+

δ(ϵ)
2 . Therefore,

J0(bT ) < J0(b0) + δ(ϵ) for each s in F and all T > T (s, δ(ϵ)). It follows that bT ∈ η(ϵ) for each s
in F and all T > T (s, δ(ϵ)). Since ϵ is arbitrary and Pr(F ) = 1, it follows that bT converges to b0

almost surely.

9.A.2 Consistency of GMM Estimators

In this section, we apply Theorem 9.A.1 to GMM estimators. We construct the

objective function JT (x,b) from a stationary ergodic stochastic process xt and a

function f : Rr×B 7−→ Rq where q is greater than or equal to p. We will often denote

f(xt,b) by ft(b) or f(b). We retain Assumption 9.A.1, and impose conditions on xt

and f to ensure Assumptions 9.A.2 - 9.A.4 are satisfied.

Assumption 9.A.5 {xt : t ≥ 1} is an r-vector stationary and ergodic process.

Assumption 9.A.6 f(·,b) is measurable for each b in B and f(z,b) is continuous

on B for each z in Rr.

Assumption 9.A.7 E(|f(x1,b)|) exists and is finite for all b ∈ B and E(f(x1,b0)) =

0.

Since xt is stationary and ergodic, f(xt,b) is also stationary and ergodic for each b.

Therefore, Assumption 9.A.7 can be stated with any xt instead of x1.

Consider the following set of assumptions:

Assumption 9.A.8 1
T

∑T
t=1 f(xt,b) converges almost surely uniformly to E(f(b))

in B.

Since f(xt,b) is stationary and ergodic with finite first moments for each b, 1
T

∑T
t=1 f(xt,b)

converges almost surely to E(f(b)) for each b in B. Assumption 9.A.8 assumes that
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this convergence is uniform. A sufficient condition for this assumption will be given

in the next section.

Assumption 9.A.9 E(f(b)) has a unique zero value at b0.

Assumption 9.A.10 The sequence of random positive semidefinite matrices {WT :

T ≥ 1} converges almost surely to a nonstochastic positive definite matrix W0.

Let x = (x′
1,x

′
2, · · · ,x′

T )
′, JT (x,b) = { 1

T

∑T
t=1 f(xt,b)}′WT{ 1

T

∑T
t=1 f(xt,b)}, and

J0(b) = E(f(x1))
′W0E(f(x1)). Define a GMM, bT , as a value that satisfies

JT (bT ) = min
b∈B

JT (b).

As in Section 9.A.1, it is understood that if bT is not unique, we appropriately choose

a value in such a way that bT (x) is a measurable function of x.

Theorem 9.A.2 (Strong consistency of GMM estimators) If Assumption 9.A.1, 9.A.5

- 9.A.10 are satisfied, bT converges almost surely to b0.

It is easy to verify that Assumptions 9.A.5 - 9.A.10 imply Assumptions 9.A.2 - 9.A.4.

Therefore, Theorem 9.A.1 implies Theorem 9.A.2.

9.A.3 A Sufficient Condition for the Almost Sure Uniform
Convergence

We directly assumed the uniform convergence in Assumption 9.A.8. It is very difficult

to confirm that this assumption is satisfied in most econometric models. Hence, it

is important to investigate sufficient conditions for Assumption 9.A.8 Hansen (1982)

provides an important sufficient condition based on a concept called the first mo-

ment continuity of f . This section proves that the first moment continuity implies

Assumption 9.A.8.
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The following notation is used for our continuity restriction:

Modf (δ,b) = sup{|f(b)− f(b∗)| : b∗ ∈ B and |b− b∗| < δ}.(9.A.1)

where | · | denotes the Euclidean norm. Since B is separable, a dense sequence {bj :

j ≥ 1} can be used in place of B in evaluating the supremum. In this case,Modf (δ,b)

is a random variable for each positive value of δ and each b in B. Also, Modf (δ,b) ≥

Modf (δ
∗,b) if δ is greater than δ∗. Since f(·,b) is continuous,

lim
δ→0

Modf (δ,b) = 0 for all s ∈ S and all b ∈ B.(9.A.2)

A function f is first-moment continuous if for each b ∈ B,

lim
δ→0

E[Modf (δ,b)] = 0.(9.A.3)

A necessary and sufficient condition for f to be first-moment continuous is that for

each b ∈ B, there exists δ > 0 such that

E[Modf (δ,b)] <∞.

It is trivial to see that this condition is necessary. This condition is sufficient because

Modf (δ, p) is decreasing in δ: the Dominated Convergence Theorem and (9.A.2) imply

the first-moment continuity of f .

Assumption 9.A.8′ f is first-moment continuous.

Proposition 9.A.1 Under Assumptions 9.A.1, 9.A.5 - 9.A.7, Assumption 9.A.8′ im-

plies that Assumption 9.A.8 is satisfied. Therefore, Assumption 9.A.8 for Theorem

9.A.2 can be replaced by Assumption 9.A.8′.
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The proof of this proposition given here is a modified version of the proof of

a closely related theorem in Hansen, Heaton, and Ogaki (1992). The proof is long

and technical but is presented here for the econometric theory-oriented readers. We

prepare for the proof by proving three lemmas. To prove this proposition, we use (i)

pointwise continuity of E(f), (ii) a pointwise Law of Large Numbers for 1
T

∑
ft(b)

for each b in B, and (iii) a pointwise Law of Large Numbers for 1
T

∑
tModf (δ,b)

for each b in B and positive δ. As will be established in Lemma 9.A.1, (i) yields an

approximation of the form:

Approximation 9.A.1 There is positive-valued function δ∗(b, j) satisfying

|E[f(b∗)]− E[f(b)]| < 1

j
(9.A.4)

for all b∗ ∈ B such that |b− b∗| < δ∗(b, j).

As will be demonstrated in Lemma 9.A.2, (ii) provides an approximation of the form:

Approximation 9.A.2 There is an integer-valued function T ∗(s,b, j) and an in-

dexed set Λ∗(b) ∈ F such that Pr{Λ∗(b)} = 1 and

| 1
T

T∑
t=1

[ft(s,b)]− E[f(b)]| < 1

j
(9.A.5)

for all T ≥ T ∗(s,b, j), and s ∈ Λ∗(b).

As will be shown in Lemma 9.A.3, (iii) yields an approximation of the form:

Approximation 9.A.3 There exists an integer-valued function T+(s,b, j), a pos-

itive function δ+(b, j), and an indexed set Λ+(b) ∈ F such that Pr{Λ+(b)} = 1

and

| 1
T
[f(b)− f(b∗)]| < 1

j
(9.A.6)

for all b∗ ∈ B such that |b− b∗| < δ+(b, j), T ≥ T+(s,b, j), and s ∈ Λ+(b).
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Although the statements of these approximations require some cumbersome notation,

we use this notation to monitor when sets and numbers depend on the underlying

parameter values and approximation criteria (b and j). We will prove this theorem

by showing that the assumption of a compact parameter space can be used to obtain

an approximation that is uniform over the parameter space.

We now consider formally these inequalities. Lemma 9.A.1 establishes the con-

tinuity of E(f).

Lemma 9.A.1 If Assumptions 9.A.1, 9.A.6, 9.A.7, 9.A.8′ are satisfied, then so is

inequality (9.A.4).

Proof Since f is first-moment continuous, there is a function δ∗(b, j) such that

E[Modf [δ
∗(b, j),b]] <

1

j
.(9.A.7)

Note, however, that

|Ef(b∗)− Ef(b)| ≤ E|f(b∗)− f(b)|(9.A.8)

≤ E{Modf [δ
∗(b, j),b]}

<
1

j

for all b∗ ∈ B such that |b− b∗| < δ∗(b, j).

For each element b in B, f(b) is a random variable with a finite absolute first

moment. Thus the Law of Large Numbers applies pointwise as stated in the following

lemma.

Lemma 9.A.2 If Assumptions 9.A.1, 9.A.6, and 9.A.7 are satisfied, then so is in-

equality (9.A.5).

Proof Since xt is stationary and ergodic, { 1
T

∑T
t=1[f(b)] : T ≥ 1} converges to E[f(b)] on a set

Λ∗(b) ∈ F satisfying Pr{Λ∗(b)} = 1.
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The Law of Large Numbers also applies to time series averages of Modf (δ,b).

Since the mean ofModf (δ,b) can be made arbitrarily small by choosing δ to be small,

we can control the local variation of time series averages of the random function f .

Lemma 9.A.3 If Assumptions 9.A.1, 9.A.5, 9.A.6, and 9.A.8′ are satisfied, then so

is inequality (9.A.5).

Proof Since f is first-moment continuous, Modf (
1
n ,b) has a finite first moment for some posi-

tive integer n. Since xt is stationary and ergodic, { 1
T

∑T
t=1[Modf (

1
j ,b)] : T ≥ 1} converges to

E[Modf (
1
j ,b)] on a set Λ+(b, j) satisfying Pr{Λ+(b, j)} = 1 for j ≥ n. Let

Λ+(b) =
∩
j≥n

Λ+(b, j).

Then Λ+(b) is measurable and Pr{Λ+(b)} = 1.
For each j, choose 1

δ+(b,j) to equal some integer greater than or equal to n such that

E{Modf [δ
+(b, j),b]} <

1

2j
.(9.A.9)

Since { 1
T

∑T
t=1{Modf [δ

+(b, j),b]} : T ≥ 1} converges almost surely to E{Modf [δ
+(b, j),b]} on

Λ+(b), there exists an integer-valued function T+(s,b, j) such that

| 1
T

T∑
t=1

{Modf [δ
+(b, j),b]} − E{Modf [δ

+(b, j),b]}| < 1

2j
(9.A.10)

for T ≥ T+(s,b, j). Therefore, 1
T

∑T
t=1{Modf [δ

+(b, j),b]} < 1
j . Since 1

T |
∑T

t=1[ft(b) − ft(b
∗)]| ≤

1
T

∑T
t=1{Modf [δ

+(b, j),b]},

1

T
|

T∑
t=1

[ft(b)− ft(b
∗)]| < 1

j
(9.A.11)

for all b∗ ∈ B such that |b− b∗| < δ+(b, j), T ≥ T+(s,b, j), s ∈ Λ+(b), and j ≥ 1.

We now combine the conclusions from Lemmas 9.A.1 - 9.A.3 to prove Proposi-

tion 9.A.1. The idea is to exploit that fact that B is compact to move from pointwise

to uniform convergence. Notice that in inequalities (9.A.4) - (9.A.6), Λ+,Λ∗, T+ and

T ∗ all depend on b. In the following proof, we will use compactness to show how the

dependence on the parameter value can be eliminated.
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Proof of Proposition 9.A.1 In the proof of this proposition, we use notation given in (9.A.4) -
(9.A.6). Let

O(b, n) = {b∗ ∈ B : |b− b∗| < min{δ∗(b, n), δ+(b, n)}}.(9.A.12)

Then for each n ≥ 1,

B =
∪
b∈B

O(b, n).(9.A.13)

Since B is compact

B =

N(n)∪
J≥1

O(bj , n),(9.A.14)

where N(n) is integer-valued and {bj : j ≥ 1} is a sequence in B. Let

Λ ≡
∩
j≥1

[Λ∗(bj) ∩Λ+(bj)].(9.A.15)

Then Λ ∈ B and Pr(Λ) = 1. Let

T (s, n) ≡ max{T ∗(s,b1, n), T
∗(s,b2, n), · · · , T ∗[s,bN(n), n],(9.A.16)

T+(s,b1, n), T
+(s,b2, n), · · · , T+[s,bN(n), n]}.

For T ≥ T (s, n), inequalities (9.A.4)-(9.A.6) imply that

| 1
T

T∑
t=1

[ft(b)]− E[f(b)]|(9.A.17)

≤ 1

T
|

T∑
t=1

[ft(bj)]−
T∑

t=1

[f(bj)]|+ | 1
T

T∑
t=1

[ft(bj)]− E[f(bj)]|+ |E[f(bj)]− E[f(b)]|

<
3

n
,

where bj is chosen so that b ∈ O(bj , n) for some 1 ≤ j ≤ N(n). Therefore, 1
T

∑T
t=1 ft converges

almost surely uniformly to E(f).

9.A.4 Asymptotic Distributions of GMM Estimators

This section proves the asymptotic normality of GMM estimators and then discusses

the optimal GMM estimators. It is possible to utilize the asymptotic normality

results for general extremum estimators such as Amemiya’s (1985) Theorem 4.1.3

here. However, unlike with the consistency results, it is more convenient to exploit

the particular structure of the GMM objective function for this proof.

Consider the following set of assumptions:
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Assumption 9.A.11 {bT : T ≥ 1} converges almost surely to b0.

Assumption 9.A.12 b0 ∈ Bo ⊂ B ⊂ Rp.

Assumption 9.A.13 f(·,b) is continuously differentiable with respect to b on Bo

and the derivative Df(·,b) has finite first moments and is first moment continuous

on Bo.

Assumption 9.A.14 {WT : T ≥ 1} converges almost surely to a nonsingular matrix

W0 of real numbers.

Assumption 9.A.15 {xt : t ≥ 1} is stationary and ergodic.

Assumption 9.A.16 1√
T

∑T
t=1 ft(b0)

D→ N(0,Ω), whereΩ =
∑∞

j=−∞E(ft(xt,b0)ft−j(xt,b0)
′).

Assumption 9.A.17 E(Df(xt,b0)) has rank p.

We denote E(Df(x1,b0)) by Γ and 1
T

∑T
t=1Df(xt,bT ) by ΓT .

Theorem 9.A.3 (Asymptotic normality of GMM estimators) If Assumptions 9.A.11

- 9.A.17 are satisfied, then

√
T (bT − b0)

D→ N(0, (Γ′W0Γ)
−1Γ′W0ΩW0Γ(Γ

′W0Γ)
−1).

Proof Assumptions 9.A.11 and 9.A.12 imply there exists F ∈ F, Pr(F ) = 1 such that for any s in
F there exists an integer T (s) such that bT ∈ Bo for all T ≥ T (s). Going forward, we assume that
bT ∈ Bo. The first order condition for the minimization of the objective function is

Γ′
TWT {

1

T

T∑
t=1

f(xt,bT )} = 0.(9.A.18)

Given xt, applying the Mean Value Theorem to each row of 1
T

∑T
t=1 f(xt,bT ), we obtain

1

T

T∑
t=1

f(xt,bT ) =
1

T

T∑
t=1

f(xt,b0) + Γ∗
T (bT − b0),(9.A.19)
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where Γ∗
T is formed by evaluating each row of 1

T

∑T
t=1 Df(xt,b) at an intermediate vector between

bT and b0. Assumptions 9.A.11 - 9.A.13, and 9.A.15 imply that Γ∗
T converges almost surely to Γ.

Combining (9.A.18) and (9.A.19), we obtain

Γ′
TWTΓ

∗
T (bT − b0) = −Γ′

TWT {
1

T

T∑
t=1

f(xt,b0)}.(9.A.20)

Γ′
TWTΓ

∗
T converges almost surely to Γ′W0Γ, which is nonsingular. Hence, for sufficiently large T ,

Γ′
TWTΓ

∗
T is nonsingular with probability one. When Γ′

TWTΓ
∗
T is nonsingular

√
T (bT − b0) = −(Γ′

TWTΓ
∗
T )

−1Γ′
TWT {

1√
T

T∑
t=1

f(xt,b0)}.(9.A.21)

Since (Γ′
TWTΓ

∗
T )

−1Γ′
TWT converges almost surely to (Γ′W0Γ)

−1Γ′W0, Assumption 9.A.16 im-
plies the conclusion.

We use the following two propositions to prove that the GMM estimator with

W0 = Ω−1 is the optimal GMM estimator when Ω is nonsingular.

Proposition 9.A.2 Let A be a q× p matrix of rank p, then M = Iq −A(A′A)−1A′

is idempotent with rank q − p.

Proposition 9.A.3 Let A and C be symmetric nonsingular matrices of the same

size. Then A ≥ C ≥ 0 implies A−1 ≤ C−1.

Note that Proposition 9.A.2 implies that M is positive semidefinite.

Assumption 9.A.18 Ω is nonsingular.

Let Cov(W0) = (Γ′W0Γ)
−1Γ′W0ΩW0Γ(Γ

′W0Γ)
−1. Cov(W0) is the covariance

matrix of the GMM estimator associated with W0. In particular, Cov(Ω−1) =

(Γ′Ω−1Γ)−1.

Theorem 9.A.4 (Optimal GMM Estimators) Suppose that Assumptions 9.A.11 -

9.A.18 are satisfied. Then Cov(Ω−1) ≤ Cov(W0) for any p × p positive definite

matrix W0.
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Proof SinceΩ−1 is positive definite, there exists a nonsingular p×pmatrixΛ such thatΩ−1 = Λ′Λ.
Then Ω = Λ−1(Λ′)−1. Let A1 = ΛΓ and A2 = Λ′−1W0Γ. Since I −A2(A

′
2A2)

−1A′
2 is positive

semidefinite by Proposition 9.A.2, we have

A′
1A1 ≥ A′

1A2(A
′
2A2)

−1A′
2A1.(9.A.22)

From Proposition 9.A.3, we obtain

(A′
1A1)

−1 ≤ (A′
1A2)

−1A′
2A2(A

′
2A1)

−1.(9.A.23)

Since Cov(Ω−1) = (Γ′Ω−1Γ)−1 = (A′
1A1)

−1 and Cov(W0) = (A′
1A2)

−1A′
2A2(A

′
2A1)

−1, the
conclusion follows from this inequality.

The next theorem gives the asymptotic distribution of Hansen’s J test statistic

for the overidentifying restrictions.

Theorem 9.A.5 (Hansen’s J test) Suppose that Assumptions 9.A.11 - 9.A.18 are

satisfied and that W0 = Ω−1. Then TJT converges in distribution to a chi-square

random variable with q − p degrees of freedom.

Proof From (9.A.19), and Theorem 9.A.2,

1√
T

T∑
t=1

f(xt,bT )
D→ N(0,V)(9.A.24)

where V = [Iq −Γ(Γ′Ω−1Γ)−1Γ′]Ω[I− (Γ′Ω−1Γ)−1Γ′]. As in the proof of Theorem 9.A.4, let Λ be
a nonsingular p× p matrix such that Ω−1 = Λ′Λ. Then Ω = Λ−1(Λ′)−1, and

1√
T
Λ

T∑
t=1

f(xt,bT )
D→ N(0,M)(9.A.25)

where M = Λ[Ω − Γ(Γ′Ω−1Γ)−1Γ′]Λ′ = I − ΛΓ(Γ′Ω−1Γ)−1Γ′Λ′] is a symmetric, idempotent
matrix. The trace of M is q − p because tr(M) = tr(Iq) − tr{ΛΓ(Γ′Ω−1Γ)−1 Γ′Λ′} = tr(Iq) −
tr{Γ′Λ′ΛΓ(Γ′Ω−1Γ)−1} = tr(Iq) − tr(Ip) = q − p. Therefore, there exists a matrix F such that
F′F = FF′ = I, and

M = F

[
Iq−p 0
0 0

]
F′.(9.A.26)

Hence, if y ∼ N(0,M), then y′y = y′FF′y ∼ χ2(q−p). Since y′y is a continuous function mapping
Rq into R,

{ 1√
T

T∑
t=1

f(xt,bT )
′}Ω−1

T { 1√
T

T∑
t=1

f(xt,bT )}
D→ χ2(q − p)(9.A.27)

where ΩT is a weakly consistent estimator for Ω.
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9.B The Conditional Likelihood Ratio Statistic

The conditional likelihood ratio (CLR) statistic can be used for an identification

robust method to solve weak identification problems as explained in the text. The

CLR statistic was proposed by Moreira (2003) for the linear IV regression models and

later extended to GMM by Kleibergen (2005).

Kleibergen (2005) proposes a GMM Lagrange multiplier statistic (the K statis-

tic) whose asymptotic χ2 distribution holds in a wider set of circumstances such as the

presence of weak identification problem. The K statistic replaces the sample average

of the derivatives of the moments in the Newey and West’s (1987) GMM LM statis-

tic with a Jacobian estimator based on the continuous updating estimator (CUE) of

Hansen, Heaton, and Yaron (1996). The CUE, θ̂, is obtained by minimizing the objec-

tive function, Q(θ), and continuously altering the covariance matrix as θ̂ is changed in

the minimization. Because of the correlation between the Jacobian estimator and the

average moment vector, the limiting behavior of the Newey-West GMM LM statistic

depends on nuisance parameters when, for example, the expected Jacobian is zero.

The Jacobian estimator based on the CUE in the K statistic avoids this problem for

it is asymptotically uncorrelated with the average moment vector (Brown and Newey,

1998; Donald and Newey, 2000). Give the dataset Y = [Y1 . . . YT ]
′, the K statistic for

testing H0 : θ = θ0 is

K(θ0) =
1

4T

(
∂Q(θ)

∂θ′

∣∣∣∣θ0)[D̂T (θ0, Y )′V̂ff (θ0)
−1D̂T (θ0, Y )

]−1
(
∂Q(θ)

∂θ′

∣∣∣∣θ0)′

where D̂T (θ0, Y ) is the CUE Jacobian estimator, and V̂ff the positive definite covari-

ance matrix of the vector function fT (θ, Y ), and has a χ2(m) limiting distribution
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under H0 and necessary assumptions.

By construction, the K statistic is equal to zero around the values of θ for which

the objective function attains its minimum, maximum, or is at an inflection point.

While the moment conditions are satisfied for the values of θ where the objective

function is minimal and the CUE is obtained, they are not satisfied at the maximal

value and inflection points, and thus the K statistic suffers from a spurious decline

in power for such values of θ. In order to appropriately account for this spurious

behavior of the K statistic, Kleibergen suggests applying a GMM extension of Mor-

eira’s (2003) conditional likelihood ratio statistic for linear instrumental variables

regressions (Kleibergen, 2004). The K statistic is combined with a J statistic,

J(θ0) =
1

T
fT (θ0, Y )′V̂ff (θ0)

−1/2MV̂ff (θ0)−1/2D̂T (θ0,Y )V̂ff (θ0)
−1/2fT (θ0, Y )

which tests the validity of the moment equations and is asymptotically independent of

the K statistic.12 For these values of θ where the objective function is at its maxima

or a reflection point, the J statistic has discriminatory power because it tests the

validity of the moment equations, Hm : E(ft(θ0)) = 0, while the K statistic tests

H0 : θ = θ0 given that the moment equations hold (Kleibergen, 2004).

The resulting test statistic (the GMM-M statistic) which accounts for the spu-

rious power decline is

GMM-M(θ0) =
1

2

{
K(θ0) + J(θ0)− rk(θ0) +

√
[K(θ0) + J(θ0) + rk(θ0)]2 − 4J(θ0)rk(θ0)

}
where rk(θ0) is a statistic for testing the hypothesis of a lower rank value of Jθ(θ0),

Hr : rank(Jθ(θ0)) = m− 1 as in Cragg and Donald (1996), Cragg and Donald (1997),

Kleibergen and Paap (2006), and Robin and Smith (2000). The GMM-M(θ0) leads

12MA = IT − PA where PA = A(A′A)−1A′ for a full rank matrix A.
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to inference that is centered around θ̂ when GMM-M(θ̂) = 0. This occurs when rk(θ̂)

exceeds J(θ̂) which puts a condition on the rank statistic rk(θ0) to be used in the

GMM-M statistic.

A confidence set for θ can be obtained by specifying sequences of n increasing

values for every element of θ and creating an m-dimensional grid that contains nm

different values of θ0. The statistic of interest (i.e., the J, K, or GMM-M statistic)

can then be computed for each of these nm different values of θ0. All elements in the

specified grid for which the asymptotic p-value of the statistic of interest exceeds α

are in the (1− α)100% asymptotic confidence set.

9.C A Procedure for Hansen’s J Test (GMM.EXP)

Hansen’s J test proceeds as follows:

(i) Check whether the number of moment restrictions is greater than that of the es-

timated parameters (the corresponding condition in the program is NMR > KGM).

(ii) Choose an appropriate method to estimate the long-run covariance matrix, ΩT .

See chapter 6 for details (the corresponding variable to specify the method is

CALWFLAG).

(iii) Set the maximum number of iterations to estimate the optimal weighting matrix,

WT = Ω−1
T (the default is MAXITEGM =5).

(iv) Define the objective function (the corresponding part in the program to define

the GMM disturbance is the HU procedure.)

(v) If the test statistic value (CHI in the output) is greater than the critical value for
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the significance level you have in mind, say 5%, then reject the null hypothesis

that the over-identification restrictions are satisfied.

Exercises

The following problems are on econometric theory and require materials in Appendix

9.A.

9.1 (The Minimum Distance Estimation) Assume that the following set of assump-

tions is satisfied.

(A1) pT converges almost surely to a k-dimensional vector p0 of real numbers.

(A2)
√
T (pT −p0) converges in distribution to a normally distributed random vector

with mean zero and a nonsingular covariance matrix Σ.

(A3) ΣT converges almost surely to Σ.

(A4) p0 = ϕ(q0) where ϕ is a continuously differentiable function that maps Q ⊂ Rh

into Rk. The parameter space Q is assumed to be compact. Let Dϕ(q) be the

k×h matrix of the derivative of ϕ, then D0 = Dϕ(q0) is assumed to be of rank

h.

(A5) p0 ̸= ϕ(q) for all q in Q except for q = q0.

Consider estimating q0 by minimizing

JT (q) = {[ϕ(q)− pT ]}′WT{[ϕ(q)− pT ]}(9.E.1)

over Q, whereWT is a positive semidefinite k×k random matrix that converges almost

surely to a positive definite matrix of real numbers W. Let qT be the minimizer. The
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estimator qT is called the minimum distance estimator. Suppose that the sequence

of minimizers converges almost surely to q0.

(a) Prove that qT is strongly consistent for q0 by applying Theorem 9.A.1 attached

at the end. Hint: (i) You do not need the first moment continuity to prove

the almost sure uniform convergence. (ii) Define a norm for a matrix w by

|w| = |vec(w)|. Then |wz| ≤ |w||z| for two conformable matrices w and z.

(b) Derive the asymptotic distribution of the estimators as a function of W.

(c) Derive the greatest lower bound for the asymptotic covariance matrices of mem-

bers of this family of estimators, using Propositions 9.A.2 and 9.A.3 attached

at the end. What is the optimal W?

(d) Let qT be the minimum distance estimator associated with the optimum dis-

tance matrix W in B. Show that the minimized value of TJT (qT ) converges in

distribution to a χ2 random variable. What is the degree of freedom of this χ2

test statistic?

(e) Consider the model

yt = x′
tp0 + ϵt,(9.E.2)

where yt, xt are a stationary and ergodic random variable and a 2-dimensional

random vector with finite second moments, respectively. Suppose that E(xtϵt) =

0, and 1√
T

∑T
t=1 xtϵt converges in distribution to N(0,Ω). Suppose that eco-

nomic theory imposes the restriction p02 = (p01)
3, where p0i is the i-th element

of p0. Discuss how you estimate this model, imposing the restriction using the

minimum distance procedure you studied in the earlier parts of this problem,
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assuming that you get the initial estimator, pT , by unconstrained OLS. In par-

ticular, discuss how do you obtain an estimator for Σ, ΣT , and how you attain

the bound you derived.

(f) Derive the asymptotic variance of your efficient minimum distance estimator

you studied in (e) in terms of Ω and p01.

9.2 In the case of a just identified system (q = p), show that the instrumental

variable regression estimator (
∑T

t=1 ztx
′
2t)

−1
∑T

t=1 ztyt coincides with the GMM esti-

mator.

9.3 All files needed for this problem are in the GMM-CCR package. You need to

use GMM and KPRGMM. Modify INDIVIS.G program (you will need to make minor

modifications to the bgm, nw, the nf, fc, fx, fe in PROC INDIVIS, mm in PROC

MOMETNTS, dm in PROC DATAMOM, and PROC HU procedures) as follows:

Use ft = it only.

Estimate only 9 parameters (θ, Aa, ρa, σa, Ay, log γ, δ, α, and σi).

(a) Compute GMM estimates and standard errors of the above nine parameters.

(b) Compute the model moment of investment (σi) with its standard errors, and

the data moment of investment (σi) with its standard errors

(c) Report the Wald test statistics and p-value to compare these two numbers.
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Chapter 10

EMPIRICAL APPLICATIONS
OF GMM

GMM estimation has been frequently applied to rational expectations models. This

chapter discusses examples of these applications. The main purpose is not to provide

a survey of the literature but to illustrate applications. Problems that researchers

have encountered in applying GMM are discussed as well as procedures they have

used to address these problems. In this chapter, the notation for the NLIV model of

Section 9.2 will be used.

10.1 Euler Equation Approach

Hansen and Richard (1987) show that virtually all asset pricing models can be written

as

vt = E[mt+1dt+1|It](10.1)

where vt is the asset price at date t, mt+1 is the intertemporal marginal rate of

substitution (IMRS) between date t and date t+1, and dt+1 is the payoff of an asset

at date t+1. Each asset pricing model specifies a different IMRS.

229
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Hansen and Singleton (1982) specify the IMRS by

mt+1 = β(
ct+1

ct
)−α(10.2)

and measure ct by real nondurable consumption expenditures or real nondurable and

service consumption expenditures. Hansen and Singleton (1984) find that the chi-

square test for the overidentifying restrictions rejects their model especially when

nominal risk free bond returns and stock returns are used simultaneously.1 Their

finding is consistent with the Mehra and Prescott’s (1985) equity premium puzzle.

When the model is rejected, the chi-square test statistic does not provide much guid-

ance as to what causes the rejection. Hansen and Jagannathan (1991) develop a

diagnostic that could provide such guidance.

Brown and Gibbons (1985) use the same specification of the IMRS but propose

to measure it from asset returns data rather than consumption data. An advantage

of this measurement is that asset returns data are measured without measurement

errors and are free from the time aggregation problem in contrast to consumption

data.

They assume that E( ct+1

ct
|It) is a constant that does not depend on It. For

example, this assumption is satisfied if consumption is a martingale, in which case

E( ct+1

ct
|It) = 1. Then E( ct+τ

ct
|It) = E[( ct+τ

ct+τ−1
)( ct+τ−1

ct+τ−2
) · · · ( ct+1

ct
)|It) is a constant that

does not depend on It. Therefore, E[β
τ ( ct+τ

ct
)−α( ct+τ

ct
)|It] = kτ is a constant that does

not depend on It.

Now consider a security that pays off ct+τ as its payoff for τ = 1, 2, 3, · · · . Then

1Cochrane (1989) points out that the utility that the representative consumer loses by deviating
from the optimal consumption path is very small in the Hansen-Singleton model and in the Hall’s
(1978) model. In this sense, the Hansen-Singleton test and Hall’s test may be too sensitive to
economically small deviations caused by small costs of information and transactions.
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the price of the security at date t will be

vt = E[
∞∑
τ=1

βτ (
ct+τ

ct
)−αct+τ |It] = (

∞∑
τ=1

kτ )ct.(10.3)

Hence, the gross rate of return from holding this security from date t to date t+1,

Rm
t+1, is

Rm
t+1 =

vt+1 + ct+1

vt
= k

ct+1

ct
(10.4)

where k = (1 +
∑∞

τ=1 kτ )/
∑∞

τ=1 kτ . Hence the IMRS can be measured by Rm
t+1:

mt+1 = β(
ct+1

ct
)−α = β∗(Rm

t+1)
−α.(10.5)

where β∗ = βkα. The Euler equation is

E(β∗(Rm
t+1)

−αRt+1|It) = 1(10.6)

for any asset return Rt+1. To apply GMM, let b = (β∗, α)′, xt = (Rm
t+1, Rt+1)

′, and

g(xt,b) = β∗(Rm
t+1)

−αRt+1 − 1 in the notation for the NLIV model.

Brown and Gibbons (1985) measure Rm
t+1 by the New York Stock Exchange

value weighted return. Even though the value weighted return is precisely measured,

it is not exactly equal to Rm
t+1 in the model because the value weighted average of the

New York Stock Exchange stocks does not pay aggregate consumption as its payoff.

This problem is closely related to the Roll’s (1977) critique for tests of Capital Asset

Pricing Models which use the value weighted returns as the market return.

Even though the Euler equation holds for any asset return, the identification

assumption for GMM fails to hold when we choose Rt+1 in (10.6) to be Rm
t+1. With

this choice, g(xt,b) = 0 when β∗ = 1 and α = 1.
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10.2 Habit Formation and Durability

Many researchers have considered the effects of time-nonseparability in preferences

on asset pricing. Let us replace (9.2) by

U(ct, ct−1, ct−2, · · · ) =
1

1− α
(s1−α

t − 1),(10.7)

where st is the service flow from consumption purchases. Purchases of consumption

and service flows are related by

st = a0ct + a1ct−1 + a2ct−2 + · · · .(10.8)

Depending on the values of the aτ ’s, the model (10.7) leads to a model with habit for-

mation and/or durability. For example, this type of specification for time-nonseparability

has been used to model durability by Mankiw (1985), Hayashi (1982), Dunn and Sin-

gleton (1986), Eichenbaum, Hansen, and Singleton (1988), Eichenbaum and Hansen

(1990), and Ogaki and Reinhart (1998a,b), and used to model habit formation by Fer-

son and Constantinides (1991), Ferson and Harvey (1992), Cooley and Ogaki (1996),

and Ogaki and Park (1997).2 Heaton (1993, 1995) used it to model a combination of

durability and habit formation. Constantinides (1990) argues that habit formation

could help solve the equity premium puzzle. He shows how the intertemporal elastic-

ity of substitution and the relative risk aversion coefficient depend on the parameters

aτ and α in a habit formation model.

In this section, we discuss applications by Ferson and Constantinides (1991),

Cooley and Ogaki (1996), and Ogaki and Park (1997) to illustrate econometric for-

mulations for habit formation models. We will discuss more about applications for

2These papers found evidence in favor of habit formation with aggregate consumption data, but
Dynan (2000) finds no evidence for habit formation in household level panel data for food.
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durable goods in later sections. In their models, it is assumed that aτ = 0 for τ ≥ 2.

Let us normalize a0 to be one, so that b = (β, α, a1)
′. The asset pricing equation

takes the form

E[β(s−α
t+1 + βa1s

−α
t+2)Rt+1|It]

E[s−α
t + βa1s

−α
t+1|It]

= 1.(10.9)

Then let ϵ0t = β(s−α
t+1+βa1s

−α
t+2)Rt+1− (s−α

t +βa1s
−α
t+1). Though Euler equation (10.9)

implies that E(ϵ0t |It) = 0, this property cannot be used as the disturbance for GMM

because both of the two regularity assumptions discussed in Section 9.3 are violated.

These violations are caused by the nonstationarity of ct and by the three sets of trivial

solutions, α = 0 and 1 + βa1 = 0; β = 0 and α = ∞; and β = 0 and a1 = ∞ with

α > 0. Ferson and Constantinides (1991) solve both of these problems by defining

ϵt =
ϵ0t
s−α
t

. Since s−α
t is in It, E(ϵt|It) = 0. The disturbance is a function of st+τ

st

(τ = 1, 2) and Rt+1. When ct+1

ct
and Rt are assumed to be stationary, st+τ

st
and the

disturbance can be written as a function of stationary variables.

One problem that researchers have encountered in these applications is that

ct+1 + a1ct may be negative when a1 is close to minus one. In a nonlinear search for

bT or in calculating numerical derivatives, a GMM computer program will stall if it

tries a value of a1 that makes ct+1+a1ct negative for any t. Atkeson and Ogaki (1996)

have encountered similar problems in estimating fixed subsistence levels from panel

data. One way to avoid this problem is to program the function f(xt,b), so that the

program returns very large numbers as the values of f(xt,b) when non-admissible

parameter values are used. However, it is necessary to ignore these large values of

f(xt,b) when calculating numerical derivatives. This process can be done by suitably

modifying programs that calculate numerical derivatives.3

3A GMM User Guide (see Ogaki, 1993b) explains these modifications for Hansen/Heaton/Ogaki
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The model presented in this section is the linear specification of habit formation.

More recent theoretical work often adopts the nonlinear specification of habit forma-

tion as in Campbell and Cochrane (1999, 2000) and Menzly, Santos, and Veronesi

(2004), among others. The model presented in this section is also a model of inter-

nal habit formation. In models of external habit formation, the habit depends on the

consumption of some exterior reference group. In the Abel’s (1990) model of catching

up with Jones, the habit depends on per capita aggregate consumption. Campbell

and Cochrane (1999, 2000), Li (2001), and Menzly, Santos, and Veronesi (2004) study

models of external habit formation. Chen and Ludvigson (2004) use the sieve min-

imum distance estimator developed by Newey and Powell (2003) and Ai and Chen

(2003) for approximating an unknown function to empirically evaluate various specifi-

cations of habit including linear/nonlinear and internal/external habit formation.The

sieve minimum distance estimator is implemented in the GMM framework.

10.3 State-Nonseparable Preferences

Epstein and Zin (1991) estimate a model with state-nonseparable preference specifi-

cation in which the life-time utility level vt at period t is defined recursively by

Vt = {c1−α
t + βE[V 1−α

t+1 |It]}
1−ρ
1−α ,(10.10)

where α > 0 and ρ > 0. The asset pricing equation for this model is

E[β∗(Rm
t+1)

η(
ct+1

ct
)θRt+1] = 1,(10.11)

for any asset return Rt+1, where β
∗ = β

1−α
1−ρ , η = ρ−α

1−ρ
, θ = −ρ1−α

1−ρ
, and Rm

t+1 is the

(gross) return of the optimal portfolio (Rm
t+1 is the return from period t to t+1 of

GMM package.
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a security that pays ct every period forever). They use the value-weighted return

of shares traded on the New York Stock Exchange as Rm
t+1. Thus, the Roll’s (1977)

critique of CAPM is relevant here as discussed.

Even though (10.11) holds for Rt+1 = Rm
t+1, the identification assumption dis-

cussed in Section 9.3 is violated for this choice of Rt+1 because there exists a trivial

solution,(β∗, η, θ) = (1,−1, 0), for g(xt,b) = 0. When multiple returns that include

Rm
t+1 are used simultaneously, then the whole system can satisfy the identification

assumption, but the GMM estimators for this partially unidentified system are likely

to have bad small sample properties. A similar problem arises when Rt+1 does not

include Rm
t+1 but includes multiple equity returns whose linear combination is close

to Rm
t+1. It should be noted that Epstein and Zin avoid these problems by carefully

choosing returns to be included as Rt+1 in their system.

10.4 Time Aggregation

The use of consumption data for C-CAPM is subject to a time aggregation problem

(see, e.g., Hansen and Sargent, 1983a,b) because consumers can make decisions at

intervals much finer than the observed frequency of the data and because the observed

data consist of average consumption over a period of time.

In linear models for which the disturbance before time aggregation is a martin-

gale difference, time aggregation means that the disturbance has an MA(1) structure

and the instrumental variables need to be lagged an additional period. See, e.g,

Grossman, Melino, and Shiller (1987), Hall (1988), and Hansen and Singleton (1996)

for applications to C-CAPM and Heaton (1993) and Christiano, Eichenbaum, and

Marshall (1991) for applications to Hall (1978) type permanent income models.
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In nonlinear models for which the disturbance before time aggregation is a

martingale difference, time aggregation has more complicated effects. Allowing the

disturbance to have an MA(1) structure and letting instrumental variables lagged an

additional period do not completely eliminate the effects caused by time aggregation.

Nevertheless, these methods are often used to mitigate time aggregation problems in

applications (see, e.g., Epstein and Zin, 1991; Ogaki and Reinhart, 1998b).

For nonlinear models, one way to use GMM to take into account the full effects

of time aggregation is to combine GMM with simulations. For example, Heaton

(1995) uses the method of simulated moments (MSM) for his nonlinear asset pricing

model with time-nonseparable preferences in taking time aggregation into account.

Bossaerts (1988), Duffie and Singleton (1993), McFadden (1989), Pakes and Pollard

(1989), Lee and Ingram (1991), and Pearson (1991), among others, have studied

asymptotic properties of MSM.

10.5 Multiple-Goods Models

Mankiw, Rotemberg, and Summers (1985), Dunn and Singleton (1986), Eichenbaum,

Hansen, and Singleton (1988), Eichenbaum and Hansen (1990), and Osano and Inoue

(1991), among others, have estimated versions of multiple-good C-CAPM. Basic eco-

nomic formulations of these multiple-good models will be illustrated in the context

of a simple model with one durable good and one nondurable good.

Let us replace (9.2) by Houthakker’s (1960) addilog utility function that Miron

(1986), Ogaki (1988, 1989), and Osano and Inoue (1991) among others have estimated:

U(ct, dt) =
1

1− α
(c1−α

t − 1) +
θ

1− η
(k1−η

t − 1),(10.12)

where ct is nondurable consumption and kt is household capital stock from purchases
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of durable consumption good dt.
4 The stock of durables is assumed to depreciate at

a constant rate 1− a, where 0 ≤ a < 1:

kt = akt−1 + dt.(10.13)

Alternatively, kt can be considered as a service flow in (10.8) with aτ = aτ . When

α ̸= η, preferences are not quasi homothetic. In practice, the data for kt is con-

structed from data for an initial stock k0, and for dt for t = 1, · · · , T . Let pt be

the intratemporal relative price of durable and nondurable consumption. Then the

intraperiod first order condition that equates the relative price with the marginal rate

of substitution is

pt =
θE(

∑∞
τ=1 β

τaτk−η
t+τ |It)

c−α
t

.(10.14)

Assume that dt+1

dt
is stationary. Then kt+τ

dt
is stationary for any τ because kt+τ

dt
=∑∞

i=0 a
i dt+τ−i

dt
. From (10.14),

ptc
−α
t

d−η
t

= θE[
∞∑
τ=1

βτaτ (
kt+τ

dt
)−η|It].(10.15)

Assume that the variables in It are stationary.5 Then (10.15) implies that the pt
c−α
t

d−η
t

is stationary because the right hand side of (10.15) is stationary. Taking natural logs,

we conclude that ln(pt)−α ln(ct)+η ln(dt) is stationary. This restriction is called the

stationarity restriction.

From (10.14), define

ϵ0t = ptc
−α
t − (1− βaF )−1θk−η

t ,(10.16)

4Since the addilog utility function is not quasi-homothetic in general, the distribution of initial
wealth affects the utility function of the representative consumer. The existence of a representative
consumer under complete markets is discussed by Ogaki (1990) for general concave utility functions
and by Atkeson and Ogaki (1996) for extended addilog utility functions.

5If It includes nonstationary variables, assume that the right hand side of (10.14) is the same as
the expectation conditioned on the stationary variables in It.
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where F is the forward operator. The first order condition (10.14) implies that

E(ϵ0t |It) = 0. One problem is that ϵ0t involves kt+τ for τ from 0 to infinity, so

that ϵ0t cannot be used as the disturbance for GMM. To solve this problem, de-

fine ϵt = (1 − βaF )ϵ0t . Note that ϵt involves only ct, ct+1, pt, pt+1, and kt and that

E[ϵt|It] = 0. Hence ϵt forms the basis of GMM. The only remaining problem is at-

taining stationarity. One might think it is enough to divide ϵt by k
−η
t , so that the

resulting ϵt is stationary as implied by the stationarity restriction. It should be noted

that it is not enough for ϵt = g(xt,b0) to be stationary, rather it is also necessary for

g(xt,b) to be stationary for b ̸= b0. Hence if α and η are unknown and ct or dt is

difference stationary, GMM cannot be applied to the first order condition (10.14).6

Ogaki (1988, 1989) assumes that ct and dt are trend stationary and applies the method

of Section 10.2 above to utilize the detrended version of ϵt. In these applications, the

restrictions on the trend coefficients and the curvature parameters α and η implied

by the stationarity restriction are imposed on the GMM estimators. Imposing the

stationarity restrictions also lead to more reasonable point estimates for α and η.

Eichenbaum, Hansen, and Singleton (1988) and Eichenbaum and Hansen (1990)

use the Cobb-Douglas utility function, so that α and η are known to be one.7 They

allow preferences to be nonseparable across goods and time-nonseparable, but the

stationarity restriction is shown to hold. In this case, the stationarity restriction

implies that pt
c−1
t

k−1
t

is stationary. This transformation does not involve any unknown

parameters. Hence, this transformation is used to apply GMM to their intraperiod

first order conditions.

6Cointegrating regressions can be used for this case as explained below.
7Also see Ogaki (1988) for a discussion of the stationarity restriction implied by the Cobb-Douglas

utility function.
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10.6 Seasonality

Miron (1986) augments the Hansen and Singleton’s (1982) model by including deter-

ministic seasonal taste shifters and argues that the empirical rejection of C-CAPM by

Hansen and Singleton (1982) and others might be attributable to the use of seasonally

adjusted data.8 Although this is theoretically possible, English, Miron, and Wilcox

(1989) find that seasonally unadjusted quarterly data reject asset pricing equations

at least as strongly as seasonally adjusted data.9 Ogaki (1988) also finds similar em-

pirical results for seasonally unadjusted and adjusted data in the system that involves

both asset pricing equations and intraperiod first order conditions.

Singleton (1988) argues that the inclusion of taste shifters in C-CAPM is essen-

tially equivalent to directly studying consumption data with deterministic seasonality

removed. This finding results because we do not obtain much identifying information

from seasonal fluctuations about preferences if most of the seasonal fluctuations come

from seasonal taste shifts.10 On the other hand, seasonal fluctuations may contain
Masao
needs to
check this!

useful identifying information about the production functions if production functions

are relatively stable over the seasonal cycle. Braun and Evans (1998) utilize such

identifying information.

Ferson and Harvey (1992) construct seasonally unadjusted monthly data and

estimate a C-CAPM with time nonseparable preferences. They find that seasonal

habit persistence is empirically significant. Heaton (1993) also finds evidence for

8It should be noted that a deterministic seasonal dummy can be viewed as an artificial stationary
and ergodic stochastic process (see, e.g., Ogaki, 1988, pp. 26–27). Hence, GMM can be applied to
models with deterministic seasonal taste shifts.

9Hoffman and Pagan (1989) also obtain similar results.
10Beaulieu and Miron (1991) cast doubt on the view that negative output growth in the first

quarter (see, e.g., Barsky and Miron, 1989) is caused by negative technology seasonal by observing
negative output growth in the Southern Hemisphere.
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seasonal habit formation in Hall (1978) type permanent income models.11

10.7 Monetary Models

In some applications, monetary models are estimated by applying GMM to Euler

equations and/or intratemporal first order conditions. Singleton (1985), Ogaki (1988),

Finn, Hoffman, and Schlagenhauf (1990), Bohn (1991), and Sil (1992) estimate cash-

in-advance models, Poterba and Rotemberg (1987), Eckstein and Leiderman (1989),

and Finn, Hoffman, and Schlagenhauf (1990), Imrohoroglu (1991) estimate money-

in-the-utility-function (MIUF) models, and Marshall (1992) estimates a transactions-

cost monetary model.

Cash-in-advance models involve only minor variations on the asset pricing equa-

tion (10.1) as long as the cash-in-advance constraints are binding and ct is a cash

good (in the terminology of Lucas and Stokey, 1987). However, nominal prices of

consumption, nominal consumption, and nominal asset returns are aligned over time

in a different way in monetary models than they are in the Hansen and Singleton’s

(1982) model. Information available to agents at time t is also considered in a dif-

ferent way. As a result, instrumental variables are lagged one period more than in

the Hansen-Singleton model, and ut has an MA(1) structure (time aggregation has

the same effects in linear models as discussed above). There is some tendency for

the chi-square test statistics for the overidentifying restrictions to be more favorable

for the timing conventions suggested by cash-in-advance models (see Finn, Hoffman,

and Schlagenhauf, 1990; Ogaki, 1988). Ogaki (1988) focuses on monetary distortions

in relative prices for a cash good and a credit good and does not find monetary

11See Ghysels (1990, especially Section I.3) for a survey of the economic and econometric issues
of seasonality.
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distortions in the U.S. data he examines.

10.8 Calculating Standard Errors for Estimates of

Standard Deviation, Correlation, and Auto-

correlation

In many macroeconomic applications, researchers report estimates of standard devi-

ations, correlations, and autocorrelations of economic variables. It is possible to use

a GMM program to calculate standard errors for these estimates, in which the serial

correlation of the economic variables is taken into account (see, e.g., Backus, Gregory,

and Zin, 1989; Backus and Kehoe, 1992).

For example, let xt and yt be economic variables of interest that are assumed

to be stationary. Let xt = (xt, yt) and f(xt,b) = (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ − b,

where f(xt,b) is a disturbance defined at time t and a quadratic form of its sam-

ple average is the objective function to be minimized in GMM estimation. Then

the parameters to be estimated are the population moments; b0 = (E(xt), E(x2t ),

E(yt), E(y
2
t ), E(xtyt), E(xtxt−1)). Applying GMM to f(xt,b), one can obtain an es-

timate of b0, bT , and an estimate of covariance matrix of T
1
2 (bT − b0).

12 In most

applications, the order of serial correlation of (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ is unknown,

and its long-run covariance matrix, Ω, can be estimated by any method in Chapter

6 (such as Andrews and Monahan’s prewhitened QS kernel estimation method).

Standard deviations, correlations, and autocorrelations are nonlinear functions

of b0. Hence, one can use the delta method to calculate the standard errors of the

12The covariance matrix Cov(Ω−1) is defined in (9.13). In this particular example, Cov(Ω−1) co-
incides with the long-run variance of f(xt,b0) because the derivative of f(xt,b0) is an identity. More
generally, if more moment conditions are added to make the system overidentified, then Cov(Ω−1)
will be different from the long-run covariance matrix.
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estimates of these statistics. Let a(b0) be the statistic of interest. Continuing the

example above, imagine that a researcher is estimating the standard deviation of xt.

Then a(b0) =
√
var(xt) = (E(x2t ) − E(xt)

2)
1
2 = (b02 − b201)

1
2 , where b01 = E(xt),

b02 = E(x2t ) and a(bT ) is a consistent estimator of a(b0). If we apply the delta

method explained in Proposition 5.8,
√
T (a(bT )− a(b0)) has an approximate normal

distribution with the variance d(b0)Cov(Ω
−1)d(b0)

′ in large samples, where d(b0) is

the derivative of a(·) evaluated at b0.

There is a pitfall that should be avoided in setting the GMM momment condi-

tions in these applications. The parameters can enter the GMM moment conditions

in nonlinear ways, but the sample moments should not. For example, it may be

tempting to estiamte the variance of xt in the above example by setting the moment

condition to be b − (xt − x̄)2 where b is the variance to be estiamted and overvarx

is the sample mean. However, because the sample mean enters the GMM moment

condition in a nonlinear way, E(b − (xt − x̄)2) is not equal to zero. This pitfall can

be easily avoided by estimating E(x) and E(x2) as in the example above.

An example of a problematic application with this type of the pitfall can be

found in Section 5 of Ambler, Cardia, and Zimmermann (2004). In estimating a pair

of correlations, their estimate is a solution to the problem of minimizing

{ 1
T

T∑
t=1

(ρ− ρ̄t)}′WT{
1

T

T∑
t=1

(ρ− ρ̄t)}(10.17)

where the parameter ρ is a 2x1 vector of the population correlations of four

varaibles (say xit for i = 1, 2, 3, 4), and ρ̄t is a 2x1 vector whose first element is given

by
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ρ̄1t =
(x1 − x̄1)(x2 − x̄2)

σ̄1σ̄2
(10.18)

and whose second element is given by

ρ̄2t =
(x3 − x̄3)(x4 − x̄4)

σ̄3σ̄4
.(10.19)

Here x̄i is the sammple mean and σ̄i is the sample variance of xi. This set-up

resembles that of GMM, but cannot be embedded in the standard GMM framework.

This is because the sample mean dna the sample variance enter the moment conditions

in nonlinear ways.

10.9 Dynamic Stochastic General EquilibriumMod-

els and GMM Estimation

Real Business Cycle Models and other Dynamic Stochastic General Equilibrium

(DSGE) models can be estimated and tested by GMM. These models are often simu-

lated and the results are evaluated without considering sampling errors. GMM gives

a simple method to take into account sampling errors. Such a method was originally

developed by Christiano and Eichenbaum (1992). A survey by Burnside (1999) de-

scribes how GMM estimation is used for real business cycle models and explains how

to use the programs written by the author. Recent applications of GMM to DSGE

models include Alexopoulos (2004) and Aguiar and Gopinath (2007). In this section,

we explain a method used by Burnside, Eichenbaum, and Rebelo (1993) using a sim-

pler model than these authors used. This method uses results in King, Plosser, and
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Rebelo (1988a,b) that show how the model parameters are related to the moments of

economic variables.

Consider a social planner’s problem:

max
Ct,Kt

E0

∞∑
t=0

βtU(Ct)(10.20)

s.t Yt = AtK
α
t−1 = Ct + It

It = Kt − (1− δ)Kt−1

lnAt = ρ lnAt−1 + ϵt,

where Ct is consumption, Kt is a capital stock, Yt is output, It is investment, 1 − δ

is a depreciation rate, and At represents the level of technology. We do not include

labor to simplify the model for the pedagogical purpose. Using the budget constraint

given by

Ct = AtK
α
t−1 −Kt + (1− δ)Kt−1(10.21)

the first order condition becomes

−U ′(Ct) + βEtU
′(Ct+1)(αAt+1K

α−1
t + 1− δ) = 0.(10.22)

In a steady state, we have ϵt = 0 so that At = 1. We can also take out the expectation

as Ct, Kt, and Yt are constants. Thus, (10.22) implies

β(αKα−1 + 1− δ) = 1.(10.23)

From (10.23) we can calculate the steady state solutions

K∗ = (
1

α
(
1

β
− (1− δ)))

1
α−1(10.24)

C∗ = K∗α − δK∗

Y ∗ = K∗α .
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For solutions in other states, we need to take a log linearization using y = ln x and

f(x) = f(ey)(10.25)

= f(ey0) +
∂f(ey0)

∂y
(y − y0)

= f(x0) +
∂f(x0)

∂x

1

∂ lnx0/∂x
(lnx− lnx0)

= f(x0) + f ′(x0)x0(lnx− lnx0)

Plug (10.25) into (10.22), then

U ′(C0) + U ′′(C0)C0Ĉt = βU ′(C0)(αA0K
α−1
0 + 1− δ)(10.26)

+ βEtU
′′(C0)C0(αA0K

α−1
0 + 1− δ)Ĉt+1

+ βEtU
′(C0)αA0K

α−1
0 Ât+1

+ βEtU
′′(C0)α(α− 1)A0K

α−1
0 K̂t

where Ĉt = lnCt− lnC0, Ât = lnAt− lnA0, and K̂t = lnKt− lnK0. By the property

of the steady state, constant terms are cancelled out so that

U ′′(C0)C0Ĉt = βEtU
′′(C0)C0(αA0K

α−1
0 + 1− δ)Ĉt+1(10.27)

+ βEtU
′(C0)αA0K

α−1
0 Ât+1 + βEtU

′′(C0)α(α− 1)A0K
α−1
0 K̂t,

where EtÂt+1 = ρÂt. Thus, this equation can be simplified by

Ĉt = ÃcEtĈt+1 + ÃkK̂t + ÃaÂt.(10.28)

Since this equation contains two control variables, we further simplify it by replacing

Ĉt with the following log linearization of (10.21):

Ĉt = A0K
α
0 Ât + αA0K

α
0 K̂t−1 −K0K̂t + (1− δ)K0K̂t−1.(10.29)
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and finally we get

EtK̂t+1 + A1K̂t + A2K̂t−1 = A3Ât.(10.30)

Let L−1xt denote Etxt+1, then (10.30) can be expressed by

(1−B1L
−1)(1−B2L)K̂t = B3Ât(10.31)

or

(1−B2L)K̂t = (1−B1L
−1)B3Ât(10.32)

= B3

∞∑
i=0

EtB
i
1Ât+i

= B3

∞∑
i=0

Bi
1ρ

iÂt

= B3

∞∑
i=0

Bi
1ρ

iÂt.

Thus, the solution of the model is given by

K̂t = C11K̂t−1 + C12Ât.(10.33)

We can also get the solution for Ct by plugging (10.33) into (10.29):

Ĉt = C21K̂t−1 + C22Ât.(10.34)

In general, we can always express the solutions of the model by

xt+1 = γxxxt + γxzzt(10.35)

λt = γλxxt + γλzzt

ut = γuxxt + γuzzt,

where xt is a vector of state variables (Kt−1), λt is a costate variable, ut is a vector

of control variables (Ct), and zt is a vector of exogenous variables (At). Let the law
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of motion for the exogenous variables be

zt = πzt−1 + ϵt,(10.36)

then we get [
xt+1

zt+1

]
=

[
γxx γxz
0 π

] [
xt
zt

]
+

[
0
ϵt+1

]
(10.37)

= Mst + ϵ̂t+1

or

st+1 =Mst + ϵ̂t+1,(10.38)

where st = (xt, zt)
′. Let ft be other variables of interest characterized by ft =

Fcut + Fxxt + Fzzt, then λt
ut
ft

 =

 γλx γλz
γux γuz

Fcγux + Fx Fcγuz + Fz

 st(10.39)

= Hst.

Therefore, provided with the parameters in the first order conditions and those in the

law of motion for the exogenous variables, we can compute M and H. GMM is used

to estimate the parameters. OnceM and H are derived, we can compute the impulse

response function and the autocovariance implied by the model. By taking an MA

representation of (10.38), the h-step impulse response function of the i− th variable

of (λt, ut, ft)
′ on the j − th shock of ϵ̂t is given by

(HMh)(i,j).(10.40)

The autocovariance is computed by

Γi = E(sts
′
t−i)(10.41)

= M iΓ0,
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where Γ0 = E(sts
′
t) that is computed as follows. Let M = V DV −1 where D is a

diagonal matrix that consists of eigen-values ofM , and V is a matrix of corresponding

eigen-vectors. By pre-multiplying V −1 on the both sides of (10.38), we get

V −1st+1 = DV −1st + V −1ϵ̂t+1(10.42)

or

s̃t+1 = Ds̃t + ϵ̃t+1.(10.43)

Thus, we can compute the transformed autocovariance by

Γ̃0,ij = E(sits
′
jt)(10.44)

=
1

1− didj
Σ̃i,j

and

Γ0 = V Γ̃0V
′.(10.45)

We can also compute the autocovariance of other variables using

E(stw
′
t−i) = E(st(Hst−i)

′) =M iΓ0H
′(10.46)

E(wtw
′
t−i) = E(Hst(Hst−i)

′) = HM iΓ0H
′.

10.10 GMM and an ARCH Process

As explained in Chapter 2, an autoregressive conditional heteroskedastic (ARCH)

process is frequently employed to model conditional heteroskedasticity. A typical

estimation method for an ARCH model is the Maximum Likelihood (ML) estimator

with the assumption that the conditional distribution of the error term follows normal
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or t-distribution (see Bollerslev, Chou, and Kroner, 1992, for survey). However,

ARCH models can also be estimated by GMM, which produces consistent estimates

of the parameters without a specific distributional assumption (see, e.g., Mark, 1988;

Simon, 1989). Further, as Rich, Raymond, and Butler (1991) point out, the GMM

estimation directly allows for the specification test introduced by Hansen (1982).

An ARCH process is modeled as an innovation in the mean for some other

stochastic process in most applications. Consider a regression model with ARCH(q)

disturbances.

yt = x′
2,tβ + ϵt(10.47)

E(ϵt | It−1) = 0(10.48)

E(ϵ2t | It−1) = ht(10.49)

ht = α +

q∑
i=1

γiϵ
2
t−i; α > 0,

q∑
i=1

γi < 1, γi ≥ 0(10.50)

where yt is the dependent variable, x2,t is a vector of explanatory variables in the

information set It−1 which is assumed to be It−1 ⊂ It for any t and β, α and γ are

fixed parameters.

To apply GMM, Rich, Raymond, and Butler (1991) rewrite equations (10.47)

and (10.49) as:

yt = x′
2,tβ + ϵt(10.51)

ϵ2t = α +

q∑
i=1

γiϵ
2
t−i + ηt(10.52)
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where

ηt = ϵ2t − ht, E(ηt | It−1) = 0(10.53)

From these, we can obtain a system of two equations describing the innovations to

the mean and variance of the ARCH(q) process, respectively,

ϵt = yt − x′
2,tβ(10.54)

ηt = (yt − x′
2,tβ)

2 − α−
q∑

i=1

γi(yt−i − x′
2,t−iβ)

2(10.55)

Let b̃ be the n-dimensional vector of parameters (β̃
′
, α̃, γ̃ ′)′ of the ARCH model and

xt = (yt,x
′
2,t)

′. Let g(xt, b̃) be a 2-dimensional vector of functions, then

g(xt,b0) =

[
ϵt(β)

ηt(β, α,γ)

]
(10.56)

E(g(xt,b0) | It−1) = 0(10.57)

where b0 = (β′, α,γ ′)′ is the true parameter.

Suppose z1t−1 and z2t−1 are an (m1 x 1) and an (m2 x 1) vector of random

variables in the information set It−1, uncorrelated with ϵt and ηt, respectively, to

serve as instrumental variables. Let zt−1 be (m x 2) block diagonal matrix where

m = m1 +m2,

zt−1 =

[
z1t−1 0
0 z2t−1

]
(10.58)

By the law of iterative expectations, we obtain unconditional moment restrictions:

E(zt−1 g(xt,b0)) = 0(10.59)
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Equation (10.59) represents a set of m orthogonality conditions which are used to

estimate b0 with zt−1 serving instruments in the ARCH model. Based on this pro-

cedure, Rich, Raymond, and Butler (1991) obtain results similar to ML estimates of

Engle and Kraft’s (1983) ARCH model of U.S. inflation.

This GMM framework can be extended to the generalized ARCHmodel, GARCH(p,q),

where equation (10.50) allows for autoregressive components in the heteroskedastic

variance:

ht = α +

q∑
i=1

γiϵ
2
t−i +

p∑
j=1

δjht−j(10.60)

where α > 0,
∑q

i=1 γi < 1, γi ≥ 0,
∑p

j=1 δj < 1, δj ≥ 0. In this case, we can still

get the same moment conditions, equation (10.59), where b0 = (β′, α,γ ′, δ′)′ is the

true parameter.

10.11 Estimation and Testing of Linear Rational

Expectations Models

In this section, econometric methods that impose and test the restrictions implied by

linear rational expectations models are described. Many linear rational expectations

models imply that an economic variable depends on a geometrically declining weighted

sum of expected future values of another variable

yt = aE(
∞∑
i=1

βixt+i|It) + c′zt,(10.61)

where a and β are constants, c is a vector of constants, yt and xt are random variables,

and zt is a random vector. This implication imposes nonlinear restrictions on the

VAR representation of yt, xt, and zt as shown by Hansen and Sargent (1980). In
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Section 10.11.1, these nonlinear restrictions are discussed. Section 10.11.2 describes

econometric methods to utilize these restrictions.

10.11.1 The Nonlinear Restrictions

Consider West’s (1987) model as an example of linear rational expectations model.

Let pt be the real stock price (after the dividend is paid) in period t and dt be the

real dividend paid to the owner of the stock at the beginning of period t. Then the

arbitrage condition is

pt = E[β(pt+1 + dt+1)|It],(10.62)

where β is the constant real discount rate, It is the information set available to

economic agents in period t. Solving (10.62) forward and imposing the no bubble

condition, we obtain the present value formula:

pt = E(
∞∑
i=1

βidt+i|It).(10.63)

We now derive restrictions for pt and dt implied by (10.63). Many linear rational

expectations models imply that a variable is the expectation of a discounted infinite

sum conditional on an information set. Hence similar restrictions can be derived for

these rational expectations models. We consider two cases, depending on whether dt

is assumed to be covariance stationary or is unit root nonstationary.

Assume that dt is covariance stationary with mean zero (imagine that data are

demeaned), so that it has a Wold moving average representation

dt = α(L)νt,(10.64)

where α(L) = 1 + α1L+ α2L
2 + · · · and where

νt = dt − Ê(dt|Ht−1).(10.65)



10.11. ESTIMATION AND TESTINGOF LINEAR RATIONAL EXPECTATIONSMODELS253

Here, Ê(·|Ht) is the linear projection operator onto the information set Ht = {dt, dt−1, dt−2, · · · }.

We assume that the econometrician uses the information set Ht, which may be much

smaller than the economic agents’ information set, It. Assuming that α(L) is invert-

ible,

ϕ(L)dt = νt,(10.66)

where ϕ(L) = 1− ϕ1L− ϕ2L
2 − · · · .

Using (10.63) and the law of iterated projections, we obtain

pt = Ê(
∞∑
i=1

βidt+i|Ht) + wt,(10.67)

where

wt = E(
∞∑
i=1

βidt+i|It)− Ê(
∞∑
i=1

βidt+i|Ht),(10.68)

and Ê(wt|Ht) = 0. Since Ê(·|Ht) is the linear projection operator onto Ht,

Ê(
∞∑
i=1

βidt+i|Ht) = δ(L)dt,(10.69)

where δ(L) = δ1 + δ2L+ · · · . Following Hansen and Sargent (1980, Appendix A), we

obtain the restrictions imposed by (10.69) on δ(L) and ϕ(L). The left-hand side of

(10.69) can be written

Ê(
∞∑
i=1

βidt+i|Ht) = Ê

(
βL−1

1− βL−1
dt|Ht

)
(10.70)

=

[
βL−1α(L)

1− βL−1

]
+

νt

where [B(L)]+ is an annihilator that removes negative power of the lag polynomial

B(L). The second equality holds because νt is fundamental. Then by replacing L

with z in (10.70), we have

βz−1α(z)

1− βz−1
=
βz−1(α(z)− α(β))

1− βz−1
+
βz−1α(β)

1− βz−1
.(10.71)
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Note that the first term in the right-hand side is removable singularity and the sec-

ond term has only negative power of lag polynomial that is to be removed by the

annihilator. Therefore we can write (10.70) as[
βL−1α(L)

1− βL−1

]
+

νt =

[
βz−1(α(z)− α(β))

1− βL−1
+
βL−1α(β)

1− βL−1

]
+

νt(10.72)

=
βL−1(α(L)− α(β))

1− βL−1
νt.

Since νt = ϕ(L)dt as in (10.64), we have the following restriction

δ(L) =
βL−1(α(L)− α(β))

1− βL−1
ϕ(L)(10.73)

=
βL−1(1− ϕ−1(β)ϕ(L))

1− βL−1
.(10.74)

We now parameterize ϕ(L) as a q-th order polynomial:

dt = ϕ1dt−1 + · · ·+ ϕqdt−q + νt.(10.75)

Then, by using state space representation, (10.75) can be written as

Dt = ADt−1 + Vt(10.76)

where Dt = (dt, dt−1, . . . , dt−q+1)
′ and

A =


ϕ1 . . . . . . ϕq

1 0
. . .

...
1 0

(10.77)

Then (10.67) can be written as

pt = Ê(
∞∑
i=1

βidt+i|Ht) + wt(10.78)

= e1βA(I − βA)−1Dt + wt

where e1 = (1, 0, . . . , 0)′.
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Also (10.73) is used to show that δ(L) is a finite order polynomial and to give

a explicit formula for the coefficients for δ(L).13 Thus

pt = δ1dt + · · ·+ δqdt−q+1 + wt,(10.79)

where δi’s are functions of β and ϕi’s. Comparing (10.78) and (10.79) yields the

following nonlinear restriction

δ1 = {1− ϕ(β)}−1(10.80)

δj = δγ(β){1− δϕ(β)}−1(ϕj+1 + βϕj+2 + · · ·+ βpϕj+p+1) for j = 2, · · · , p.

(?????γ(β)?) These are the nonlinear restrictions which (10.63) implies.
Masao
needs to
check this!

Example 10.1 Consider the case where dt is an AR(1) process, so that dt = ϕ1dt−1+

νt where |ϕ1| < 1. Then Ê(dt+i|Ht) = ϕi
1dt, and hence Ê(

∑∞
i=1 β

idt+i|Ht) =
∑∞

i=1 β
iϕi

1dt =

βϕ1

1−βϕ1
dt. Hence pt = δ1dt + wt where δ1 =

βϕ1

1−βϕ1
.

10.11.2 Econometric Methods

We focus on Hansen and Sargent’s (1982) method which applies Hansen’s (1982)

Generalized Method of Moments (GMM) to linear rational expectations models.

Let z1t be a vector of random variables in Ht. For example, z1t = (dt, · · · , dt−q+1)
′.

The unknown parameters β and ϕi’s can be estimated by applying the GMM to or-

thogonality conditions E(z1tνt+1) = 0 and E(z1twt) = 0 in the econometric system

consisting of (10.75) and (10.79).

Let z2t be a random variable in It, say dt, and

pt = β(pt+1 + dt+1) + ut+1.(10.14)

13See West (1987), for the formula, which is based on Hansen and Sargent (1980), and on West
(1988), for deterministic terms when dt has a nonzero mean.
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Then (10.62) implies another orthogonality condition E(z2tut+1) = 0. This orthogo-

nality condition can be used to estimate β. West (1987) forms a specification test a

la Hausman (1978) by comparing the estimate of β from (10.14) with the estimate of

β from (10.75) and (10.79). For this purpose, West forms a Wald test in the system

consisting of (10.75), (10.79), and (10.14) without the restrictions (10.80) imposed.

Another method to form West’s specification test is to form a Lagrange Multiplier

test or a likelihood ratio type test, which will require estimation constrained by the

restrictions (10.80). This method may be preferable because of small sample prob-

lems with the Wald test for nonlinear restrictions (see Chapter 9 for discussions about

these tests).

Some remarks are in order.

(A) Hansen and Sargent’s method described above does not require an assumption

that dt is exogenous. Relation (10.75) or (??) is obtained from the assumption

that dt is covariance stationary and that its Wold representation is invertible.

(B) For the econometric system consisting of (10.75) and (10.79) (or (??) and (??)),

random variables in Ht can be used as instruments, but the variables in It that

are not in Ht are not valid instruments by construction.

(C) Since ut+1 in (10.14) is in It+1 and νt+1 in (10.75) is in Ht+1, ut+1 and νt+1 are

serially uncorrelated (see, e.g., Ogaki, 1993a, Section 6, for related discussions).

However, wt in (10.79) is not necessarily in Ht+1. Hence wt has unknown order

of serial correlation.
Masao

needs to
check this!
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10.12 GMM for Consumption Euler Equations with

Measurement Error

When data are contaminated by measurement error, the standard non-linear GMM

yields inconsistent estimates (Garber and King, 1983; Amemiya, 1985). Such problem

arises, for instance, in estimation of structural parameters in a non-linear consumption

Euler equation when the consumption data contain measurement error.

To remedy this problem, Alan, Attanasio, and Browning (2005) propose two

GMM estimators for consumption Euler equations in the presence of measurement

error in data. Consider a simple life-cycle model with intertemporally additive and

instantaneously iso-elastic utility. Under the assumption of rational expectations, a

consumer’s utility maximization yields the Euler equation,

(10.15) Et

[
β

(
C∗

t+1

C∗
t

)−α

Rt+1

]
= 1,

where C∗
t is true consumption, Rt+1 the gross real interest rate, α the coefficient of

relative risk aversion, and β < 1 the discount factor. Call β
(
C∗

t+1/C
∗
t

)−α
Rt+1 an

expectational error uncorrelated with the time t information. We wish to estimate

the preference parameters α and β. Suppose consumption data are observed with

multiplicative error ϵt:

Ct = C∗
t ϵt,

where Ct is the observed consumption. Assume that the measurement error is sta-

tionary, serially uncorrelated, and uncorrelated with C∗
t , Rt, and the expectational

error for all t. Then, taking the expectations conditional on the time t information,
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we can write

(10.16)

Et

[
β

(
Ct+1

Ct

)−α

Rt+1|It

]
= Et

[
β

(
C∗

t+1

C∗
t

)−α

Rt+1|It

]
Et

[(
ϵt+1

ϵt

)−α

|It

]
= κ,

where κ is a constant. The first equality follows from the assumption that the mea-

surement error is independent of the expectational error, and the second equality

follows from the Euler equation (16.11) and the stationarity assumption of the mea-

surement error. For κ ̸= 1, equation (16.57) implies that the standard GMM without

consideration for the measurement error would result in inconsistent estimates of α

and β. Similarly, consider the Euler equation representing the change in marginal

utility between time t and t+ 2:

Et

[
β2

(
Ct+2

Ct

)−α

Rt+1Rt+2|It

]
= κ.

Now define

(10.17)

u1t+1 ≡
[
β
(

Ct+1

Ct

)−α

Rt+1 − κ

]
,

u2t+2 ≡
[
β2
(

Ct+2

Ct

)−α

Rt+1Rt+2 − κ

]
,

where, by definition, u1t+1 and u2t+2 are uncorrelated with the time t information and

Et(u
1
t+1) = Et(u

2
t+2) = 0.

The first estimator, the GMM-LN estimator, additionally assumes that the

measurement error is log-normally distributed with mean µ and variance σ2. Let

ut+2 = [ u1t+1 u2t+2 ]′ and zt = [ c z1t ]′ where c is a constant and z1t is an instru-

ment such as the lagged interest rate. Estimates of the parameters, α, β, and κ are

obtained from four orthogonality conditions:

(10.18) E{ut+2 ⊗ zt} = 0.
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Under the assumption of log-normality, κ can be written as

(10.19) κ = exp(α2σ2).

Once α and κ are estimated using the orthogonality conditions (16.61), the estimate

of the variance of measurement error σ2 can be obtained from equation (16.58).

The second estimator, the GMM-D estimator, simply assumes stationarity and

does not require any distributional assumption. Subtracting u2t+2 from u1t+1 in equa-

tions (16.60) yields

(10.20) vt+2 =

[
β

(
Ct+1

Ct

)−α

Rt+1

]
−

[
β2

(
Ct+2

Ct

)−α

Rt+1Rt+2

]
,

where vt+2 has zero mean and is independent of the time t − 1 information. The

orthogonality conditions for the GMM-D estimator are derived using equation (16.62)

and a vector of instruments zt. Note that because equation (16.62) takes the difference

of the consumption growth (double-differencing), the GMM-D estimator is expected

to be less precise than the GMM-LN estimator.14

Results from the Monte Carlo simulation in Alan, Attanasio, and Browning

(2005) suggest that both proposed methods perform significantly better than conven-

tional GMM estimators based on the log-linearized Euler equation or the exact Euler

equation that ignores measurement error, especially when the panel length is short.

In particular, both capture the true value of β remarkably well. They also report

that when the measurement error is lognormally distributed, the distribution of α is

more dispersed under the GMM-D estimator than under the GMM-LN estimator.

14In the presence of measurement error, the lagged consumption growth rate - a common choice for
an instrument in estimation of consumption Euler equations - would be invalid since it is correlated
with ut+2. Instead, one should use the consumption growth rate with two-period lags. On the other
hand, a one-period lag is sufficient for the interest rates since they are unlikely to be correlated with
the measurement error (Alan, Attanasio, and Browning, 2005).
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Exercises

10.1 (Computer Exercise) In the text we considered four alternative measures of

the intertemporal marginal rate of substitution, mt:

(i) mt = β( ct+1

ct
)−γ (Hansen and Singleton)

(ii) mt = β∗(Rm
t+1)

−γ (Brown and Gibbons)

(iii) mt = β+(Rm
t+1)

η( ct+1

ct
)θ (Epstein and Zin)

(iv) mt =
β{S−γ

t+1+βa1s
−γ
t+2}

E(S−γ
t +βa1s

−γ
t+1|It)

where st = ct + a1ct−1 (Ferson and Constantinides).

(a) For each of the four alternative measures, estimate the unknown parameters

and test the overidentifying restrictions implied by the asset pricing relation

E(mtRt+1) = 1. Use quarterly data on nondurables and services for consump-

tion ct, real value-weighted returns from the New York Stock exchange for Rm
t ,

and ex post real returns on Treasury Bill returns for Rt. Use a constant, one-

period and two-period lagged values of ct+1

ct
, and one-period and two-period

lagged values of Rt+1 for instrumental variables. You can modify the GMM.EXP

file for models (i), (ii), and (iii), and GMMHF.EXP for model (iv). Note that

GMM.EXP uses monthly data and GMMHF.EXP uses quarterly data. You will need

to modify GMM.EXP to use the quarterly data used by GMMHF.EXP. For Ferson

and Constantinides’s, report results for both the truncated kernel and the non-

prewhitened QS kernel.

For each measure, state what value “mas” should take in the GMM program

and explain why. Comment on the relative strengths and weaknesses of the four

measures of mt from both a theoretical and an empirical perspective.
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Print out the “hu” procedure part of your program and the final GMM iteration

output for each model and submit them.

(b) Repeat the analysis in question (a) for the model (iii) using simultaneously

the additional moment restrictions obtained by letting Rt = Rm
t . There is a

difficulty in interpreting the empirical result for this case of multiple returns.

What is the difficulty?

10.2 Let pt be the real stock price, dt be the real dividend, and β be the constant ex

ante discount rate. Assume that pt and dt are stationary with zero mean and finite

second moments. The stock price satisfies

pt = βE(pt+1 + dt+1|It),(10.E.1)

where It is the information set available at period t. We assume that It is generated

from xt,xt−1, . . ., where xt is a random vector that includes pt and dt as its compo-

nents. Solving (10.E.1) forward with the no bubble condition imposed, we obtain the

present value formula:

pt =
∞∑
τ=1

βτE(dt+τ |It)(10.E.2)

Suppose that dt is stationary with zero mean and finite second moments and

let Ht be the information set generated by the linear functions of {dt, dt−1, dt−2, · · · }.

Assume

Ê(dt|Ht−1) = ϕdt−1,(10.E.3)

where |ϕ| < 1, and Ê(·|Ht−1) is the linear projection operator on Ht. Answer the

following questions.
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(a) Suppose that you run a regression

pt = δdt + wt.(10.E.4)

Your estimator for δ will converge to a number that can be expressed in terms

of ϕ, and β. Derive this expression for δ. Show that Ê(wt|Ht) = 0. Is it possible

to prove that E(wt|It) = 0? Explain.

(b) Discuss whether or not wt is serially correlated in general. If we make an

additional assumption that pt is in Ht+1, can you show that wt is serially un-

correlated? Is this additional assumption realistic? Why?

(c) Explain how to use (10.E.4),

dt+1 = ϕdt + vt+1,(10.E.5)

and

pt = β(pt+1 + dt+1) + ut(10.E.6)

to estimate β and ϕ in the framework of the Generalized Method of Moments,

imposing the restriction on δ you derived. In particular, discuss the parame-

terized disturbances, valid instrumental variables, and appropriate methods to

estimate the weighting matrix.

(d) List three tests that can be used to test the restriction on δ you derived. Discuss

which tests may be better.

10.3 Let pt be the log price level and mt be the log money supply. A version of the

Cagan’s hyperinflation model assume that the demand for real money balance is

mt − pt = α(E(pt+1|It)− pt),(10.E.7)
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where It is the information set of the consumer, α is a negative number, and −α is

the interest semi-elasticity of money demand when the real interest rate is assumed

to be zero. Solving (10.E.7) as a difference equation for E(pt+i) for a fixed t, and

imposing the stability condition that the solution for pt is bounded for all bounded

sequences of mt, we obtain

pt =
1

1− α
E(

∞∑
i=0

(
α

α− 1
)imt+i|It).(10.E.8)

Suppose that mt is stationary with zero mean and finite second moments (imag-

ine that the data are already demeaned and detrended) and let Ht be the information

set generated by the linear functions of {mt,mt−1,mt−2, · · · }. Assume

Ê(mt+1|Ht) = ϕmt,(10.E.9)

where |ϕ| < 1, and Ê(·|Ht) is the linear projection operator on Ht. Answer the

following questions.

(a) Suppose that you run a regression

pt = δmt + wt(10.E.10)

Your estimator for δ will converge to a number that can be expressed in terms

of ϕ, and α. Derive this expression for δ (note that the summation in (10.E.8)

starts from i = 0 unlike West’s present value model of the stock price in which

the summation starts from i = 1).

(b) Discuss whether or not wt is serially correlated in general. If we make an

additional assumption that pt is in Ht+1, can you show that wt is serially un-

correlated? Is this additional assumption realistic? Why?
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(c) Explain how to estimate α from the equation (10.E.7) with a time series data

set on mt and pt.

(d) Explain how to use (10.E.9), (10.E.10), and

mt+1 = ϕmt + vt+1(10.E.11)

to estimate α and ϕ in the framework of the Generalized Method of Moments,

imposing the restriction on δ you derived in (i). In particular, discuss the param-

eterized disturbances, valid instrumental variables, and appropriate methods to

estimate the weighting matrix.

(e) List three tests that can be used to test the restrictions on δ you derived in (i).

Discuss which tests may be better.
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Chapter 11

EXTREMUM ESTIMATORS

One of the common features across many estimators that are widely used in appli-

cation such as ordinary least squares, instrumental variables, GMM, and maximum

likelihood estimators, is that they are obtained by minimizing or maximizing an ob-

jective function. These estimators are called extremum estimators, or optimization

estimators. This chapter explains a unified framework for this class of estimators.

11.1 Asymptotic Properties of Extremum Estima-

tors

Let {xt : t = 1, 2, · · ·T} be a vector stochastic process, b0 be a p-dimensional vector

of parameters to be estimated, and J(b) be a real-valued objective function. For

notational simplicity, the dependency of J(b) on {xt : t = 1, 2, · · · , T} is suppressed.

An extremum estimator is a vector of parameters, bT, which minimizes the objective

function, JT (b), with respect to b. Under general regularity conditions, an extremum

estimator is consistent and asymptotically normally distributed.1

There are two important assumptions that ensure the consistency and asymp-

totic normality of extremum estimators: convergence and identification.

1See the Appendix of Chapter 9 for a proof of consistency.
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11.1.1 Convergence

The convergence assumption is that JT (b) converges with probability one to some

deterministic function J0(b) as T → ∞ for all admissible values of b. Convergence

may take different forms such as uniform convergence and convergence in probability.

11.1.2 Identification

The identification assumption is that b0 is the unique minimizer of J0(b).

11.2 Two Classes of Extremum Estimators

There are two classes of extremum estimators, classical minimum distance estimators

and M-estimators.

11.2.1 Minimum Distance Estimators

An extremum estimator is a minimum distance estimator if the objective function is

a quadratic function:

JT (b) = fT (b)
′WTfT (b),(11.1)

where f(·) is a q-dimensional vector of functions and WT is a sequence of matrix that

satisfies

lim
T→∞

WT = W0(11.2)

with probability one for a positive definite matrix W0. The matrices WT and W0

are called the distance, or weighting, matrix.

A prominent example of the minimum distance estimator is the GMM estimator.

In the GMM, the sample mean is used for fT (b), and the law of large number for the

sample mean ensures convergence.
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11.2.2 M-Estimators

An extremum estimator is an M-estimator if the objective function is a sample aver-

age:

QT (b) =
1

T

T∑
t=1

m(xt),(11.3)

where m(·) is a real-valued function. The maximum likelihood (ML) estimator is a

leading example of the M-estimator. Suppose {xt} is an i.i.d. process with a known

density function f(xt;b0) where b0 is an unknown true parameter vector. The joint

density of {xt} is given by

f(x1,x2, ...,xT ;b0) =
T∏
t=1

f(xt;b0).(11.4)

If we replace b0 with some arbitrary (random?) value b, and interpret the density

as a function of b, it is called the likelihood function. The ML estimator for b0 is a

parameter vector b that maximizes the likelihood function. Since the log transforma-

tion is a monotone transformation, maximizing the likelihood function is equivalent

to minimizing the following:

− log f(x1,x2, ...,xT ;b0) = −
T∑
t=1

f(xt;b0).(11.5)

11.3 Examples of Minimum Distance Estimators

11.3.1 Two-Step Minimum Distance Estimators

Another example of the minimum distance estimator is a two-step minimum distance

estimator. Suppose c0 is the true values of some parameters of interest. In the first

step, a consistent estimator for c0, cT , is obtained. In the second step, the minimum
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distance method is used to estimate another set of parameters based on cT from the

first step.

One application of the two-step minimum distance estimation has an unre-

stricted estimator as cT and uses the minimum distance estimation to impose restric-

tions on c0. Suppose cT is an unrestricted estimator for a (p+s)-dimensional vector

of parameters c0. Consider nonlinear restrictions

ϕ(b0) = c0,(11.6)

where b0 is a p-dimensional vector of parameters. The minimum distance estimator,

bT , minimizes

JT (b) = {ϕ(b)− cT}′WT{ϕ(b)− cT},(11.7)

whereWT is a positive definite distance matrix and converges to some positive definite

matrix W0 with probability one. As in the GMM, the optimal distance matrix is

W = Ω−1 and TJT (bT ) has an (asymptotic) chi-square distribution with s degrees of

freedom. The null hypothesis (11.6) is rejected when this statistic exceeds the critical

value from a chi-square distribution. See Altug and Miller (1990) and Atkeson and

Ogaki (1996) for empirical applications.

11.3.2 Two-Step MinimumDistance Estimation with Impulse
Responses

Another application of the two-step minimum distance estimator is the estimation

of parameters in a theoretical model by matching the model’s theoretical impulse

response functions with empirical impulse response functions estimated by vector

autoregressions (VAR). Denoting a vector of model parameters by β, the optimal
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estimators are chosen so as to minimize the quadratic distance between empirical

impulse responses, denoted by Ψ̂, and the model-implied impulse responses:

(11.8) min
β

[
Ψ̂−Ψ(β)

]′
Σ−1

[
Ψ̂−Ψ(β)

]
,

where Ψ(β) denotes the mapping from β to the model impulse response functions,

and Σ is a diagonal matrix whose diagonal elements are sample variances of the Ψ̂’s.

Sbordone (2002) and Sbordone (2005) apply this method to estimate the degree

of price stickiness from the NKPC. The so-called Calvo (1983) parameter measures

the probability that a firm does not change its price in a given period. Letting θ

denote this probability, the average number of periods for which a price remains

unchanged is (1 − θ)
∑∞

k=0 kθ
k−1 = 1/(1 − θ). Magnusson and Mavroeidis (2009)

develop the identification robust minimum distance estimator with similar ideas as

the identification robust GMM estimator. However, their confidence sets indicate

that the minimum distance estimation applied to the NKPC is subject to the weak

identification problem. For example, their 95% confidence interval for the average

price duration has a lower bound of around 3.3 quarters and an upper bound of

infinity.

A classic method to estimate θ is the single-equation GMM using the NKPC

(see, for example, Gaĺı and Gertler (1999) and Eichenbaum and Fisher (2007)). In

Gaĺı and Gertler (1999), θ is estimated to be around 0.8, implying the average price

duration of 5 quarters. However, as surveyed by Kleibergen and Mavroeidis (2009),

this estimation method is also subject to the weak identification problem. The 95%

confidence interval for the average price duration using their recommended method

has a lower bound of two quarters and an upper bound of infinity. Since the lower

bound obtained from the minimum distance method is sharper than that from the
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GMM, the minimum distance method outperforms the GMM when applied to a single

equation using the NKPC.

Christiano, Eichenbaum, and Evans (2005) apply the two-step minimum dis-

tance method to a system of equations from their DSGE model to investigate the role

of nominal rigidities in generating the observed persistent responses of inflation and

output to a monetary policy shock. They first estimate the VAR impulse responses

of 8 key macroeconomic variables using the post-war U.S. data. Let Y1t be a vector

of observations on real GDP, real consumption, GDP deflator, real investment, and

real wage, Rt denote the federal funds rate, and Y2t be a vector of real profits and

the growth rate of M2. These variables are stacked as Yt = [ Y
′
1t Rt Y

′
2t ]′. This

ordering ensures that the monetary policy shock is identified by two identifying as-

sumptions. First, the variables in Y1t are assumed not to respond contemporaneously

to the monetary policy shock, and second, the federal funds rate does not depend on

the current values of the variables in Y2t. Using the first 25 estimated coefficients of

each impulse response as elements of Ψ̂ in (16.11), model parameters are estimated as

a solution to (16.11). Their estimate of θ is 0.6 in the benchmark model, implying the

average price duration of 2.5 quarters. Because they apply the method to a system

of equations rather than a single equation, their system may be well identified. This

is an important topic for further research.2

2Kim and Ogaki (2009) estimate the Calvo parameter in an exchange rate model with the Taylor
rule without the NKPC. In their estimation for θ, there is a substantial efficiency gain by applying
the GMM to a system of equations rather than to a single equation. We expect an analogous
substantial efficiency gain for the minimum distance estimation.
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11.3.3 Minimum Distance to Estimate Data Statistics

Another application of the minimum distance method in the DSGE literature is to

estimate various statistics of model variables such as mean, standard deviation, cor-

relation, and autocorrelation. Although the GMM may be used, minimum distance

may be more convenient.

Consider two stationary variables, xt and yt. Suppose we want to their estimate

population moments, b0 = (E(xt), E(x
2
t ), E(yt), E(y2t ), E(xtyt), E(xtxt−1)). Let xt =

(xt, yt) and f(xt,b) = (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ − b, where f(xt,b) is a disturbance

defined at time t. The GMM minimizes a quadratic form of the sample average of

f(xt,b), to obtain an estimate of b0, bT , and an estimate of covariance matrix of

T
1
2 (bT − b0).

To obtain the standard errors of estimated statistics that are nonlinear func-

tions of b0 such as standard deviations, correlations, and autocorrelations, one can

use the delta method explained in Proposition 5.8. For example, let a(b0) denote the

standard deviation of xt, a(b0) =
√

var(xt) = (E(x2t ) − E(xt)
2)

1
2 , and a(bT ) be a

consistent estimator of a(b0). By the delta method,
√
T (a(bT ) − a(b0)) has an ap-

proximate normal distribution with variance d(b0)Cov(Ω
−1)d(b0)

′ in a large sample

where d(b0) is the derivative of a(·) evaluated at b0.

In the GMM, while parameters may enter moment conditions nonlinearly, sam-

ple moments may not because the moment conditions may not be equal to zero in

that case. For example, in order to estimate the variance of xt in the above example,

the moment condition would be b− (xt − x̄)2 where b is the variance to be estimated

and x̄ is the sample mean. However, because the sample mean enters the moment

condition in a nonlinear way, E(b− (xt− x̄)2) is not equal to zero, which prevents the
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GMM estimation.

By contrast, in the minimum distance estimation, sample moments may enter

moment conditions in nonlinear ways. For example, Ambler, Cardia, and Zimmer-

mann (2004) (section 3) estimate a pair of correlations

ρ̄1t =
(x1 − x̄1)(x2 − x̄2)

σ̄1σ̄2
(11.9)

and

ρ̄2t =
(x3 − x̄3)(x4 − x̄4)

σ̄3σ̄4
,(11.10)

where x̄i and σ̄i are the sample mean and variance of xi. The optimal estimators are

obtained by minimizing

{ 1
T

T∑
t=1

(ρ− ρ̄t)}′WT{
1

T

T∑
t=1

(ρ− ρ̄t)}(11.11)

where ρ is a (2 × 1) vector of population correlations of xit for i = 1, 2, 3, 4 and

ρ̄t = [ ρ̄1t ρ̄2t ]′.

Although this setup resembles the GMM, it cannot be embedded in the standard

GMM framework because the sample mean and variance enter the moment conditions

nonlinearly. Instead, this is a minimum distance estimator.

The minimum distance estimator can be used to estimate a DSGE model by

matching the model-implied moments with empirical moments in a similar way as

GMM while allowing the sample mean to enter moment conditions nonlinearly. An

application can be found in Garćıa-Cicco, Pancrazi, and Uribe (2009).

11.4 The Kalman Filter

We introduced the ML estimator for an i.i.d. process. However, this i.i.d. assumption

rarely holds in time series data. In linear models with time dependence, the likelihood
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function can be evaluated using a recursive linear algorithm called the Kalman filter

(Kalman, 1960). The Kalman filter estimates an evolution of unobserved variable(s) of

interest in a discrete-time dynamic system by sequentially updating a linear projection

using current observations. Because this filtering process minimizes the mean squared

prediction error, it yields an optimal estimator among the class of linear projections.

Due to its accuracy and practicality, various extensions of the Kalman filter have been

developed and applied in a broad area of study. In econometric, it is used to construct

exact finite-sample forecasting, evaluate the exact likelihood function, and estimate

parameters in ARMA models or time-varying parameters in linear regressions, just

to name a few examples.

In order to formulate the Kalman filter algorithm, the process of interest is

modeled in a set of linear equations called the state-space representation. This equa-

tion system characterizes the relationship between observed and unobserved variables.

Let xt be an r-dimensional vector of unobserved variables, yt be an n-dimensional

vector of observed variables, and zt be a k-dimensional vector of exogenous variables.

Suppose yt depends linearly on xt and zt:

(11.12) yt = A′ · zt +H′ · xt + et,

where et is (n × 1) vector white noise with E(ete
′
j) = R for t = j and 0 otherwise,

and A′ and H′ are (n× k) and (n× r) matrices of parameters, respectively.

The unobserved vector xt, called the state vector, is assumed to evolve according

to a linear stochastic difference equation

(11.13) xt+1 = F · xt + ut+1,

where ut+1 is also (r × 1) vector white noise with E(utu
′
j) = Q for t = j and 0
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otherwise, and F is an (r × r) matrix of parameters. The disturbances et and ut are

assumed to be independent of each other at all lags, E(etu
′
j) = 0 for all t and j, and

the initial state z1 is uncorrelated with any realizations of et and ut, E(etz
′
1) = 0

and E(utz
′
1) = 0 for t = 1, · · · , T . Together with the state equation (11.13), the

latter assumption implies that et and ut are uncorrelated with all lagged values of xt:

E(etx
′
j) = 0 and E(utx

′
j) = 0 for j = t− 1, t− 2, · · · , 1.

Equation (11.12) is called the observation equation, and equation (11.13) the

state equation. Together, they comprise the state-space representation of the dynam-

ics of y.

The Kalman filter recursively generates least square forecasts of the unobserved

state vector xt as a linear function of the observed data yt and zt. Let x̂t+1|t ≡

Ê(xt+1|Ωt) denote the best forecasts of xt+1 based on the data available at time t,

Ωt ≡ (y
′
t,y

′
t−1, · · · ,y

′
1, z

′
t, z

′
t−1, · · · , z

′
1). The accuracy of each forecast is measured by

an associated (r×r) error covariance matrix, Pt+1|t ≡ E[(xt+1−x̂t+1|t)(xt+1−x̂t+1|t)
′].

In order to initiate the recursive process, the unconditional mean of the initial

state x̂1|0 and its covariance P1|0 must be chosen. If the eigenvalues of F are inside

the unit circle, x̂1|0 is simply set equal to 0 with an associated covariance matrix

whose column vectors are given by vec(P1|0) = [Ir2 − (F×F)]−1 · vec(Q). Otherwise,

the researcher’s best guess of x1|0 can be used as x̂1|0, and a positive definite matrix

that summarizes the confidence in this guess is used as P1|0.

Suppose we have data on (y1,y2, · · · ,yT , z1, z2, · · · , zT ). For simple illustration,

assume that the matrices F, Q, A, H, and R are known and constant. Given x̂1|0 and

P1|0, the linear projection of x̂t+1|t and associated covariance of this forecast Pt+1|t
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are iterated on

x̂t+1|t = Fx̂t|t−1 +Kt(yt −A′zt −H′x̂t|t−1),
Pt+1|t = F[Pt|t−1 −Pt|t−1H(H′Pt|t−1H+R)−1H′Pt|t−1]F

′ +Q,
(11.14)

for t = 1, 2, · · · , T , where Kt ≡ FPt|t−1H(H′Pt|t−1H + R)−1 is called the Kalman

gain. That Kt depends negatively on R implies that, when computing the projection

for next period, the Kalman filter attaches a smaller (larger) weight to the observation

the larger (smaller) the noise in the observed data is (and hence the larger (smaller)

R is).

The previous period’s projections are updated based on the current realization

of the observable as follows:

x̂t|t = x̂t|t−1 + F−1K(yt −A′zt −H′x̂t|t−1),
Pt|t = Pt|t−1 −Pt|t−1H(H′Pt|t−1H+R)−1H′Pt|t−1.

(11.15)

Notice that equations (16.61) and (16.62) are related by:

x̂t+1|t = Fx̂t|t,

Pt+1|t = FPt|tF
′ +Q.

Thus, the Kalman filter repeats a project-and-update cycle in which it makes projec-

tions x̂t|t−1, updates these projections based on the current observations to get x̂t|t,

and uses them to obtain next projections x̂t+1|t. This recursive nature implies that all

the necessary information is contained in previous forecasts and information sets, and

hence the filtering does not require all the previous data to be stored and re-processed

in each estimation step. This is one of the appealing features of the Kalman filter for

practical implementations.

Finally, the forecast of yt+1 is obtained as follows. The exogeneity assumption

of zt implies that it contains no information about xt beyond what is contained in
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the t− 1 information set Ωt−1 ≡ (y
′
t−1,y

′
t−2, · · · ,y

′
1, z

′
t−1, z

′
t−2, · · · , z

′
1). Hence,

Ê(xt|zt,Ωt−1) = Ê(xt|Ωt−1) = x̂t|t−1.

From the observation equation (11.12) and by the law of iterated projections, the

forecast of yt+1 is given by

ŷt+1|t ≡ Ê(yt+1|zt+1,Ωt)

= A′zt+1 +H′Ê(xt+1|zt+1,Ωt)

= A′zt+1 +H′x̂t+1|t,

with error covariance

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′] = H′Pt+1|tH+R.

The Kalman filter minimizes the error covariance of the estimated objects; there-

fore, the forecasts x̂t+1|t and ŷt+1|t are best estimators within the class of linear filters

(i.e. forecasts that are linear functions of (zt,Ωt−1)). If we further assume that initial

state x1|0 and innovations {et,ut}Tt=1 are multivariate Gaussian, then the forecasts

are optimal among any functions of (zt,Ωt−1).

11.4.1 Evaluation of the Likelihood Function using the Kalman
Filter

One of the applications of the Kalman filter is the evaluation of unconditional likeli-

hood for a DSGE model. Consider a state-space representation of the solution of the

DSGE model:

xt = F(µ)xt−1 + ut

ut = G(µ)vt,
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where xt is an (r×1) vector of model variables, and E(utu
′
t) = G(µ)E(vtv

′
t)G(µ)

′
=

Q(µ). A measurement equation maps xt into the n× 1 vector of observable variables

yt:

yt = H(µ)
′
xt + et,

where et is an n× 1 vector of measurement errors with E(ete
′
j) = R for t = j and 0

otherwise. Given time-series data and the model’s parameter values µ (so that F (µ),

G(µ), Q(µ), and H(µ) are known), the Kalman filter infers a sequence of conditional

distribution for xt given xt−1 and evaluate the likelihood.

In order to implement the Kalman filter, assume that et, ut, and vt are normally

distributed. The initial unconditional values are given by

x̂1|0 = 0, P1|0 = FP1|0F
′ +Q

where vec(P1|0) = (I− F⊗ F′)−1vec(Q).

Given the initial values, the projection x̂t|t−1 and its associated covariance ma-

trix Pt|t−1 are iterated on:

x̂t|t−1 = Fx̂t−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q,

where vec(Pt|t−1) = (I−F⊗F′)−1vec(Q). These projections are then used to construct

the conditional distribution of yt, N(ŷt|t−1,Σt|t−1), where the conditional mean ŷt|t−1

and conditional variance matrix Σt|t−1 are given by

ŷt|t−1 = H′x̂t|t−1

Σt|t−1 = E[(yt − ŷt|t−1)(yt − ŷt|t−1)
′]

= H′Pt|t−1H+R.
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The likelihood function for yt is thus given by:

L(yt|µ) = (2π)−m/2|Σ−1
t|t−1|

1/2 exp

[
−1

2
(yt − ŷt|t−1)

′Σ−1
t|t−1(yt − ŷt|t−1)

]
.

The next iteration is initiated by updating x̂t|t−1 and Pt|t−1:

xt|t = xt|t−1 +Pt|t−1HΣ−1
t|t−1(yt − yt|t−1)

Pt|t = Pt|t−1 −Pt|t−1HΣ−1
t|t−1H

′Pt|t−1.

Finally, the likelihood from each iteration is multiplied to yield the sample likelihood:

L(y|µ) =
T∏
t=1

L(yt|µ).

This likelihood function is maximized to yield the ML estimator of linearized DSGE

models.

Appendix

11.A Examples of State-Space Representations

This appendix contains examples of the state-space representation for AR(p) and

MA(p) processes. There are several ways of representing a given process in state-

space form. For more examples, see Hamilton (1994, Ch. 13).

Example 1: Univariate AR(p) Process Consider a univariate AR(p) process:

yt+1 − µ = ϕ1(yt − µ) + ϕ2(yt−1 − µ) + · · ·+ ϕP (yt−p+1 − µ) + εt+1,

where E(εtεj) = σ2 for j ̸= t and 0 otherwise. One example of the state-space repre-

sentation for this process is
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xt =


yt − µ
yt−1 − µ

...
yt−p+1 − µ

, F =


ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 , ut+1 =


εt+1

0
...
0

, Q =


σ2 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0

 ,
yt = yt, A

′ = µ, zt = 1, H′ = [ 1 0 · · · 0 ], et = 0,R = 0.

Example 2: Univariate MA(1) Process

For a univariate MA(1) process

yt = µ+ εt + θεt−1

where E(εtεj) = σ2 for j ̸= t and 0 otherwise, the state-space representation is given

by

xt =

[
εt
εt−1

]
, F =

[
0 0
1 0

]
, ut+1 =

[
εt+1

0

]
, Q =

[
σ2 0
0 0

]
,

yt = yt, A
′ = µ, zt = 1, H′ = [1 θ] , et = 0,R = 0.
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Chapter 12

INTRODUCTION TO
BAYESIAN APPROACH

Over the last decade, Bayesian analysis has become an increasingly popular method

in economics. As you will see in this chapter, the Bayesian approach differs from the

classical frequentist approach in various aspects. The fundamental difference lies in

its probabilistic interpretation of the object of interest such as unknown parameters

and random events. In the Bayesian framework, unknown parameters are treated as

random variables while the observed data are treated as fixed. This interpretation

allows us to assign a probability distribution associated with the parameters upon

which Bayesian inferences are made.

This chapter introduces basic concepts and implementation of Bayesian analysis.

Next section explains probability density functions in Bayesian statistics, followed by

their application to generating point estimates and constructing Bayesian credible

intervals. We then discuss posterior odds ratio tests for hypothesis testing and model

comparison. Details of each topic can be found in DeJong and Dave (2007), Judge

et al(1985), and Zellner (1996). The appendix to this chapter explains simulation

methods that are widely used in the implementation of Bayesian analysis.

286
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12.1 Bayes Theorem

Bayesian analysis centers around the representation of our uncertainty about the

object of interest such as true values of unknown parameters. A prior distribution

represents our initial knowledge or subjective beliefs about the unknown parameters

held prior to observing data. After the data has been observed, sample information is

incorporated into the prior to form a posterior distribution which assigns a probability

to alternative parameter values based on the information from the prior and the

data. Bayes’ theorem is a mathematical formula in probability theory that relates

the posterior distribution to the prior and the sample information represented by a

likelihood function.

Suppose we are interested in a vector of unknown parameters θ. Let p(θ) denote

a prior density function for θ, and y a vector of sample observations from a density

f(y|θ). A joint probability density for θ and y is given by

(12.1) P (θ,y) = p(θ)f(y|θ) = f(y)p(θ|y).

Rearranging the second equality in (12.1) yields a posterior density function for θ:

p(θ|y) = p(θ)f(y|θ)
f(y)

.

This result is Bayes’ theorem, showing how our prior knowledge p(θ) is combined

with sample information f(y|θ) to generate the posterior distribution. Since we are

interested in the distribution of θ, f(y) may be treated as a normalizing constant,

and p(θ|y) is in general analyzed up to constant proportionality:

(12.2) p(θ|y) ∝ p(θ)f(y|θ).
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Here, f(y|θ) is algebraically identical to a likelihood function l(θ|y), and (12.2) may

be expressed as p(θ|y) ∝ p(θ)l(θ|y); that is, the posterior distribution is proportional

to the product of the prior and the likelihood function. The posterior distribution

serves as an essential element of Bayesian inferences such as generating point esti-

mates, constructing confidence intervals, and conducting hypothesis testing which we

discuss in next sections.

12.2 Parameter Estimates

In general, Bayesian point estimates are obtained by specifying a loss function L(θ, θ̂)

which quantifies the consequences of choosing θ̂ when the true value is θ. An optimal

point estimate is the value θ̂ which minimizes the expected loss where the expectations

are with respect to the posterior distribution of θ:

min
θ̂
E
(
L(θ, θ̂)

)
= min

θ̂

∫
L(θ, θ̂)p(θ|y)dθ.

In the case of a quadratic loss function L(θ, θ̂) = (θ − θ̂)′Φ(θ − θ̂) where Φ is a

symmetric positive definite matrix, an optimal point estimate is given by the mean of

the posterior distribution. Alternatively, if the loss is measured by an absolute error

L(θ, θ̂) = |θ − θ̂|, then the median of the posterior distribution becomes an optimal

point estimate.

12.3 Bayesian Intervals and Regions

A Bayesian counterpart of a classical confidence interval is called a posterior credible

interval (or region if θ is a vector of parameters). For a scalar θ in a parameter space
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Ω, a 100 · (1− α) percent posterior credible interval is a subset S ⊂ Ω such that

(12.3) Pr(θ ∈ S|y) =
∫
S

p(θ|y)dθ = 1− α.

For any given α, the interval S satisfying (12.3) may not be unique. Of those satisfying

(12.3), a highest posterior density interval is obtained by imposing an additional

condition that the value of p(θ|y) at any θ inside S is at least as large as that

evaluated outside S; that is,

p(θi|y) ≥ p(θj|y) for all θi ∈ S and θj /∈ S,

which implies that the end points of the interval, say θ and θ, satisfy p(θ|y) = p(θ|y).

If the posterior density is unimodal, a highest posterior density interval is an interval

that satisfies (12.3) with a minimum distance between θ and θ.

While a highest posterior density interval is identical to a 100 · (1− α) percent

confidence interval in the classical framework, their interpretations are different. A

classical confidence interval is a random interval which would contain a fix value θ

with probability (1−α) if we repeatedly draw samples from population and construct

an interval each time. On the other hand, a highest posterior density interval is a

fixed interval within which a random variable θ lies with probability (1− α).

12.4 Posterior Odds Ratio and Hypothesis Testing

Posterior distributions are also employed to assess relative plausibility of competing

hypotheses. We evaluate the relative plausibility with a ratio of posterior proba-

bilities associated with the hypotheses, called a posterior odds ratio. Unlike the

classical hypothesis testing, a posterior odds ratio test treats the competing hypothe-

ses symmetrically, and its conclusion is not designed to necessarily accept or reject
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the hypotheses. Instead, the test merely infers which hypothesis is more likely given

the priors and sample information.

Suppose we are interested in comparing two hypotheses, H0 and H1, with prior

probabilities p(H0) and p(H1). Let θi denote a parameter vector associated with

hypothesis Hi, i = 0, 1. For H0, the joint density function for y, θ0, H0 is,

p(y,θ0, H0) = f(y)p(θ0, H0|y)

= p(θ0, H0)f(y|θ0, H0)

or

p(θ0, H0|y) =
p(θ0, H0)f(y|θ0, H0)

f(y)

=
p(H0)h(θ0|H0)f(y|θ0, H0)

f(y)
,(12.4)

where h(θ0|H0) is the conditional prior distribution for θ0 given H0. The posterior

distribution of H0 can be obtained by integrating (12.4) with respect to θ0:

p(H0|y) =
p(H0)

∫
h(θ0|H0)f(y|θ0, H0)dθ0

f(y)
.

Given that p(H1|y) has been obtained in an analogous way, the posterior odds

ratio is,

p(H0|y)
p(H1|y)

=
p(H0)

p(H1)

∫
h(θ0|H0)f(y|θ0, H0)dθ0∫
h(θ1|H1)f(y|θ1, H1)dθ1

=
p(H0)

p(H1)

f(y|H0)

f(y|H1)
.(12.5)

The larger the value of this ratio, the more the test is in favor of H0.

The first term in (12.5), p(H0)/p(H1), is called a prior odds ratio, and the second

term f(y|H0)/f(y|H1) is the ratio of averaged likelihoods, called a Bayes factor. If
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we assume, prior to observing the data, that the two hypotheses are equally likely,

then the prior odds ratio is 1. In that case, the relative plausibility is determined by

the Bayes factor, and we can conveniently interpret its value using the following scale

developed by Jeffreys (1961):

Bayes factor Evidence in favor of H0

1:1 - 3:1 Very slight
3:1 - 10:1 Slight
10:1 - 100:1 Strong to very strong
100:1 - Decisive

Although the posterior odds ratio itself does not make an explicit conclusion about

accepting or rejecting one hypothesis with respect to the other, it is still possible to

make an explicit choice between the two, if necessary. In such cases, a loss function

is assumed to measure the consequences of choosing each hypothesis, and we accept

one which yields the lowest expected loss, with the expectation with respect to the

posterior probability of the hypothesis.

One useful application of a posterior odds ratio is the assessment of relative plau-

sibility of competing models which may not be nested (for empirical applications, see

Lubik and Schorfheide, 2007; Rabanal and Rubio-Ramirez, 2005). Its implementation

follows the same procedure as simple hypothesis testing, but now the probabilities

are conditional on the model specification, considering all possible parameter values

rather than the parameters used by the model. Suppose we are interested in compar-

ing two structural models M1 and M2 with an associated parameter vector θi and

prior probability p(Mi), i = 1, 2. Let y denote sample observations on variables in
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the model. As in (12.5), the posterior odds ratio is given by

p(M1|y)
p(M2|y)

=
p(M1)

p(M2)

∫
h(θ1|M1)f(y|θ1,M1)dθ1∫
h(θ2|M2)f(y|θ2,M2)dθ2

=
p(M1)

p(M2)

f(y|M1)

f(y|M2)
.

Again, if the two models are equally likely a priori, the prior odds ratio is 1, and the

Bayes factor can be interpreted according to Jeffreys’ scale.

Appendix

12.A Numerical Approximation Methods

As we have seen, calculating an explicit form of posterior distributions often involves

evaluation of high-dimensional integrals. In practice, the integrals of high-order func-

tions are increasingly difficult to solve analytically, and, as a result, the posterior

distribution may be intractable. To overcome this difficulty, numerical approxima-

tion methods are prominently used in the Bayesian analysis. This section explains

three leading simulation techniques popularly used in the literature: the Importance

Sampling, the Gibbs sampler and the Metropolis-Hastings algorithm. The latter two

are in the class of the Markov chain Monte Carlo methods.

12.A.1 Importance Sampling

The idea behind the importance sampling is to obtain sample draws {θi} from some

known distribution and assign weights to each draw so that the limiting distribution

of the weighted sample converges to the target distribution.

Suppose we are interested in evaluating

(12.A.1) E[h(θ)] =

∫
h(θ)f(θ)dθ
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but f(θ) is not available as a sampling distribution. Let I(θ|µ) denote a known dis-

tribution from which {θi} can be obtained. This distribution is called the importance

sampler and µ represents its parameterization. Equation (12.A.1) can be rewritten

as

E[h(θ)] =

∫
h(θ)

f(θ)

I(θ)
I(θ)dθ

=

∫
h(θ)w(θ)I(θ)dθ.(12.A.2)

where w(θ) ≡ f(θ)/I(θ). In (12.A.2), w(θ) serves to mitigate the direct influence of

I(θ|µ) on θi by assigning the weight or “importance” of different points in the sample

space.

After a sample {θi}Ni=1 has been obtained from I(θ) rather than f(θ) for some

large N , E[h(θ)] is approximated by the sample mean:

ĥ =
1

N

N∑
i=1

h(θi)w(θi).

Geweke (1989) outlines criteria for choosing an importance sampler and formal

diagnostics for the adequacy of a chosen sampler. Poor samplers tend to assign weights

on only a small fraction of the sample rather than being approximately uniform,

requiring a large number of draws to achieve convergence.

12.A.2 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are iterative sampling schemes to gen-

erate sample draws {xi} with the Markov property:

Pr(xi+1|xi, xi−1, xi−2, · · · ) = Pr(xi+1|xi) for all i

where i indexes the Monte Carlo draws. These computer-intensive algorithms are

particularly powerful in approximating multi-dimensional integrals with high accu-
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racy. This section explains two widely used methods to simulate Markov chains: the

Gibbs sampler and the Metropolis-Hastings algorithm. Further details are provided

by Casella and George (1992) for the Gibbs sampler and Chib and Greenberg (1995)

for the Metropolis-Hastings algorithm.

The Gibbs Sampler

Consider a q-dimensional vector of parameters θ that is partitioned into k blocks,

θ = (θ1,θ2, · · · ,θk), k ≤ q. Suppose we wish to obtain the marginal distribution of

the ith block:

P (θi|x) =
∫

· · ·
∫
P (θ1, · · · ,θk|y)dθ1, · · · , dθi−1dθi+1 · · · dθk

when the joint density P (θ|y) is intractable. We assume that, for all i, the con-

ditional posterior probability density for θi, P (θi|y,θ−i), is available as a sampling

distribution where θ−i denotes all components of θ excluding θi. The Gibbs sampler

generates a Markov chain of random variables θ
(1)
i , · · · ,θ(N)

i ∼ P (θi|y) by sampling

from P (θi|y,θ−i).

The algorithm is initiated with some starting values θ(0) =
(
θ
(0)
1 ,θ

(0)
2 , · · · ,θ(0)

k

)
,

and the subsequent sampling proceeds as follows.

(i) Draw a random observation θ
(1)
1 from P (θ1|y,θ(0)

2 ,θ
(0)
3 , · · · ,θ(0)

k ).

(ii) Draw a random observation θ
(1)
2 from P (θ2|y,θ(1)

1 ,θ
(0)
3 , · · · ,θ(0)

k ).

...

(iii) Draw a random observation θ
(1)
k from P (θk|y,θ(1)

1 ,θ
(1)
2 , · · · ,θ(1)

k−1).

(iv) Return to step 1 and draw θ
(2)
1 from P (θ1|y,θ(1)

2 ,θ
(1)
3 , · · · ,θ(1)

k ), and so on.

Repeating this process N times generates a Markov chain of length N , {θ(j)}Nj=1.
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The effect of the fixed starting values θ(0) is eliminated by discarding some iter-

ations at the beginning of the chain, a practice called a burn-in. With the remaining

m observations, P (θi|y) is approximated by

P̂ (θi|x) =
1

m

m∑
j=1

P (θi|y,θ(j)
−i ).

Alternatively, Gelfand and Smith (1990) suggest generating s independent Markov

chains of length N and using the final value θ(N) from each sequence. Other ap-

proaches to exploiting convergence are discussed in Casella and George (1992).

Metropolis-Hastings Algorithm

The Gibbs sampler described above requires that the full conditional distribution

is available in a tractable form as a sampling distribution for θ(i). There are also

MCMC methods for the case in which it is unavailable. The best known of these is

the Metropolis-Hastings algorithm.

Suppose the target density P (θ|x) is not available as a sampling distribution,

but there is a known density g(θ|θ(i−1),µ), where
∫
g(θ|θ(i−1),µ)dθ = 1, from which

θ(i) can be obtained. The Metropolis-Hastings algorithm is initialized with a starting

value θ(0) and, given {θ(j)}i−1
j=1, θ

(i) is obtained as follows:

(i) Draw a random sample θ̃
(i)

from g(θ|θ(i−1),µ). This serves as a candidate

for θ(i).

(ii) Define the probability of accepting θ̃
(i)

for θ(i):

(12.A.3) π
(
θ̃
(i)|θ(i−1)

)
= min

(
1,

P (θ̃
(i)|x)

P (θ(i−1)|x)
g(θ(i−1)|θ(i−1),µ)

g(θ̃
(i)|θ(i−1),µ)

)
.

(iii) Draw a value δ from a uniform distribution on [0, 1].

(iv) If π(θ̃
(i)|θ(i−1)) > δ, set θ(i) = θ̃

(i)
; otherwise, discard θ̃

(i)
and draw a new

candidate.
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A sequence of accepted draws {θ(i)}Ni=1 is a Markov chain with transition prob-

ability λ(θ̃
(i)|θ̃(i−1)

) = π(θ̃
(i)|θ(i−1))g(θ̃

(i)|θ(i−1),µ) for i = 1, · · · , N and θ̃(i) ̸= θ̃(i−1).

Under mild regularity conditions, this converges in distribution to P (θ|x) as N in-

creases.

Note that the calculation of π(θ̃
(i)|θi−1) does not require knowledge about a

normalizing constant in P (·) or g(·) since they appear in both the numerator and the

denominator of (12.A.3) and simply cancel out. This is one of the attractive features

of this algorithm for approximating posterior distributions since they are often known

up to constant proportionality as in (12.2).

In application, the candidate-generating density g(θ|θ(i−1),µ) can be specified

in various ways. A random walk chain utilizes g(θ|θ(i−1),µ) = g1(θ − θ(i−1)|µ), and

θ̃
(i)

follows the process θ̃
(i)

= θ(i−1) + εi where εi ∼ g(ε) (Metropolis et al, 1953).

Choices for g1 include the multivariate normal and the multivariate-t densities. Alter-

natively, an independent chain draws a candidate independently of the last accepted

draw. This is implemented by choosing a density that is independent across all Monte

Carlo replications: g(θ|θ(i−1),µ) = g2(θ|µ) (Hastings, 1970). Another possibility is

an autoregressive chain. A vector autoregressive process of order 1 follows θ̃
(i)

=

a+B(θ(i−1)−1)+υi drawn from the density g(θ|θ(i−1),µ) = g(θ̃
(i)−a−B(θ(i−1)−1))

where a is a vector, B is a matrix, and υi ∼ g(υ) (Tierney, 1994).

12.B Application of the MCMC methods

In this section, we describe an application of the MCMC methods by nan Chen,

Watanabe, and Yabu (1990). They propose a new method of data augmentation

based on the Gibbs sampler to account for an endogeneity problem arising from the
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use of time-aggregated data. Their application considers the estimation of the effects

of foreign exchange interventions by a central bank.

Suppose the exchange rate movements and the central bank’s intervention in

the foreign exchange market can be represented by the following two-equation system:

st,h − st,h−1 = αIt,h + εt,h(12.B.4)

It,h = β(st,h−1 − st−1,h−1) + ηt,h(12.B.5)

for t = 1, · · · , T and h = 1, · · · , 24, where st,h is the log price of the domestic currency

per unit of the foreign currency at hour h of day t , It,h is the central bank’s purchase

of the domestic currency between h − 1 and h of day t, εt,h ∼ i.i.d.N(0, σ2
ε), and

ηt,h ∼ i.i.d.N(0, σ2
η). If st,h and It,h are both observable at the hourly frequency, we

can obtain unbiased estimates of α and β by estimating (12.B.4) and (12.B.5) by

OLS.

Suppose instead that It,h is not observable and only the daily sum of hourly

interventions It ≡
∑24

h=1 It,h is available. The above model can be transformed into a

daily-frequency model by summing up both sides of (12.B.4) and (12.B.5) over h:

st,24 − st−1,24 = αIt + εt(12.B.6)

It = β
24∑
h=1

(st,h−1 − st−1,h−1) + ηt(12.B.7)

where st,24 − st−1,24 =
∑24

h=1(st,h − st,h−1) and xt =
∑24

h=1 xt,h for x = {I, ε, η}.

This model, however, suffers from an endogeneity problem, and the OLS estimates

from (16.56) and (16.57) may be biased. To see this, consider a rise in εt,h. It

increases st,h − st,h−1 in (12.B.4) and It,h+1 in (12.B.5) for β > 0, and hence It and

εt are positively correlated. Alternatively, a rise in ηt,h increases It,h in (12.B.5) and
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appreciates the currency in (12.B.4) for α < 0, implying that
∑

(st,h − st,h−1) and ηt

are negatively correlated.

Recognizing this problem, nan Chen, Watanabe, and Yabu (1990) propose an

algorithm to obtain a posterior distribution of the parameters using the Gibbs sam-

pler. They first introduce an auxiliary variable It,h to substitute the unobserved

hourly interventions, and assume a flat distribution as the priors of α and β, and

distributions IG
(
υε
2
, δε

2

)
and IG

(
υη
2
, δη

2

)
for σ2

ε and σ2
η. The algorithm proceeds as

follows.1

(i) Generate α conditional on st,h, It,h, and σ2
ε . The posterior distribution is

α ∼ N(ϕs, ωs) where ϕs =
∑
It,h(st,h − st,h−1)/

∑
I2t,h and ωs = σ2

ε/
∑
I2t,h.

(ii) Generate β conditional on st,h, It,h, and σ2
η. The posterior distribution

is β ∼ N(ϕI , ωI) where ϕI =
∑
It,h(st,h−1 − st−1,h−1)/

∑
(st,h−1 − st−1,h−1)

2, and

ωI = σ2
η/
∑

(st,h−1 − st−1,h−1)
2.

(iii) Generate σ2
ε conditional on st,h, It,h, and α. The posterior distribution is

σ2
ε ∼ IG(υε+T

2
, δε+RRSs

2
) where RRSs =

∑
(st,h − st,h−1 − αIt,h)

2.

(iv) Generate σ2
η conditional on st,h, It,h, and β. The posterior distribution is

σ2
η ∼ IG(υη+T

2
, δη+RRSI

2
) where RRSI =

∑
(It,h − β(st,h−1 − st−1,h−1))

2.

(v) Generate It,h conditional on st,h, It, α, β, σ
2
ε , and σ

2
η. The posterior distri-

bution is derived as follows.

If It is unknown, the posterior distribution is given by (It,1, · · · , It,24)′ ∼ N(Ξt,Φ)

where Ξt = (ξt,1, · · · , ξt,24)′ and Φ = diag(ψ, · · · , ψ) with ψ = ( 1
σ2
η
+ α2

σ2
ε
)−1 and

ξt,h =
(
ψ 1

σ2
η

)
[β(st,h−1 − st−1,h−1)] +

(
ψα2

σ2
ε

)
[α−1(st,h − st,h−1)]. Since It is known,

consider the posterior distribution (It,1, · · · , It,23, It)′ ∼ N(Ξ∗
t ,Φ

∗) where Ξ∗
t = BΞt

1The summations indicate
∑

≡
∑T

t=1

∑24
h=1.
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and Φ∗ = BΦB′ with

(24×24)

B
=


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
1 1 · · · 1

 .
Partition Ξ∗

t and Φ∗ as follows:

Ξ∗
t =

 (23×1)

Ξ∗
t,1

(1×1)

Ξ∗
t,2

 ,Φ∗ =

 (23×23)

Φ∗
11

(23×1)

Φ∗
12

(1×23)

Φ∗
21

(1×1)

Φ∗
22

 .
The posterior distribution of (It,1 · · · , It,23) conditional on It is given by

(It,1 · · · , It,23|It)′ ∼ N(Ξ∗
t,1 +Φ∗

12(Φ
∗
22)

−1(It −Ξ∗
t,2),Φ

∗
11 −Φ∗

12(Φ
∗
22)

−1Φ∗
21).

After (It,1 · · · , It,23) has been generated from this posterior distribution, It,24 is ob-

tained from It,24 = It −
∑23

h=1 It,h.

Applying this method to the Japanese data, nan Chen, Watanabe, and Yabu

(1990) generate three Markov chains of the length 2,000 after discarding the first

2,000 draws in each chain as a burn-in phase. They obtain the point estimate of each

parameter using the mean of the generated posterior distribution, and find that the

effect of intervention is more than twice as large as the magnitude estimated by OLS

using daily observations, suggesting the quantitative significance of the endogeneity

problem.
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Chapter 13

UNIT ROOT NONSTATIONARY
PROCESSES

This chapter concerns univariate stochastic processes. Since the seminal work of

Nelson and Plosser (1982), much theoretical and empirical research has been done in

the area of unit root nonstationarity. They found that the null hypothesis of unit root

nonstationarity was not rejected for many macroeconomic series. When one or more

variables of interest are unit root nonstationary, standard asymptotic distribution

theory does not apply to the econometric system involving these variables. The

spurious regression results discussed in Section 14.2 are concrete examples of this

type of problem.

When a variable is unit root nonstationary, it has a stochastic trend. If lin-

ear combinations of two or more unit root nonstationary variables do not contain

stochastic trends, then these variables are said to be cointegrated. Then the cointe-

grating vector, which eliminates the stochastic trends, can be estimated consistently

by regressions without the use of instrumental variables, even when no variables

are exogenous. If the cointegrating vector includes structural parameters, then the

econometrician can estimate these structural parameters without making exogeneity

301
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assumptions.1

The rest of this chapter is organized as follows. In Section 13.1, univariate unit

root econometrics is discussed. It begins with definitions of basic concepts such as

difference stationarity and trend stationarity. Then a decomposition of a difference

stationary variable into a deterministic trend, a stochastic trend, and a stationary

component is discussed. Spurious regression results, tests for the null of difference

stationarity, and tests for the null of stationarity are reviewed.

13.1 Definitions

Consider a univariate stochastic process, {xt : t = · · · ,−2,−1, 0, 1, 2, · · · }, which

is a sequence of random variables. Many macroeconomic variables tend to grow

over time, so that their distributions shift upward over time. Hence they are not

stationary. However, there are many possible forms of nonstationarity, and it is not

clear which form of nonstationarity is appropriate in representing macroeconomic

variables. It may be reasonable to assume that the growth rate or the first difference

of the (natural) log of a variable is stationary for many macroeconomic variables. Let

us now assume that the first difference of xt (∆xt = xt − xt−1) is stationary. Then xt

is either difference stationary or trend stationary. If xt is stationary after removing a

deterministic time trend, then xt is said to be trend stationary. Since ∆xt is assumed

to be stationary, xt has a linear time trend when xt is trend stationary:

xt = θ + µt+ ϵt,(13.1)

1Stock and Watson (1988), Diebold and Nerlove (1990), Campbell and Perron (1991), and Watson
(1994) are examples of surveys for unit root econometrics.
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where ϵt is stationary with mean zero.2 If ∆xt is stationary but xt is not trend

stationary, then xt is said to be difference stationary. Alternatively, it is called unit

root nonstationary or integrated of order one. The trend stationary and difference

stationary processes have different properties on their long-run variances. The long-

run variance of a stationary variable yt is defined by

ω2 =
∞∑

τ=−∞

E{[yt − E(yt)][yt−τ − E(yt)]}.(13.2)

After taking the first difference, a difference stationary process has a positive long-run

variance, while trend stationary process has a long-run variance of zero.

A special case of a difference stationary process is a random walk. If E(xt+1| xt,

xt−1, xt−2, · · · ) = xt and if E((∆xt+1)
2|xt, xt−1, xt−2, · · · ) is constant over time, then

xt is a random walk. In general, if xt is difference stationary, then ∆xt has nonzero

serial correlation; however, if xt is a random walk, then ∆xt does not have serial

correlation.

13.2 Decompositions

It is often convenient to decompose a difference stationary process into components

representing a deterministic trend, a stochastic trend, and a stationary component.

Let xt be a difference stationary process:

xt − xt−1 = µ+ ϵt(13.3)

for t ≥ 1 where ϵt is stationary with mean zero. Here µ is called a drift, which is the

2Note that ϵt is not assumed to be iid because serial correlation is allowed in a stationary process.
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mean of ∆xt. Then

xt = µ+ xt−1 + ϵt(13.4)

= 2µ+ xt−2 + ϵt−1 + ϵt

= 3µ+ xt−3 + ϵt−2 + ϵt−1 + ϵt

= · · ·

= µt+ x0 +
t∑

τ=1

ϵτ .

Hence

xt = µt+ x0t ,(13.5)

where x0t is

x0t = x0 +
t∑

τ=1

ϵτ ,(13.6)

where x0 is an initial value. Relation (13.5) decomposes the difference stationary

process xt into a deterministic trend arising from drift µ, and the difference stationary

process without drift, x0t .

Let us now consider Beveridge and Nelson (1981) decomposition, which further

decompose x0t into a random walk component and a stationary component. Since

∆x0t is covariance stationary, it has the Wold representation:

(1− L)x0t = A(L)νt,(13.7)

where L is the lag operator, A(L) =
∑∞

τ=0AτL
τ , A0 = 1, νt = x0t−Ê(x0t |x0t−1, x

0
t−2, · · · ),

and Ê(·|x0t−1, x
0
t−2, · · · ) is the linear projection operator. Then

x0t = zt + ct,(13.8)
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where

zt = zt−1 + A(1)νt,(13.9)

is the random walk component or a stochastic trend, and

ct = −{(
∞∑
τ=1

Aτ )νt + (
∞∑
τ=2

Aτ )νt−1 + (
∞∑
τ=3

Aτ )νt−2 + · · · }(13.10)

is the stationary component of xt. Thus a difference stationary process xt is decom-

posed into a deterministic trend, a stochastic trend, and a stationary component.

The variance of the random walk component, Var(∆zt), is equal to A(1)
2Var(νt),

which in turn is equal to the long-run variance of ∆xt and 2π times the spectral density

of ∆xt at frequency zero. If the long-run variance is zero, then xt = µt + ct, and xt

is trend stationary.

Cochrane (1988), among others, uses Var(∆zt)
Var(∆xt)

as a measure of the persistence of

xt. This measure is zero for trend stationary xt and is one for a random walk. He

estimates Var(∆zt) by
1
k
times the variance of k-differences of xt,

1
k
V ar(∆kxt), for a

large enough k. His estimator is essentially the same as the Bartlett estimator, which

was advocated by Newey and West (1987) in a different context. Any estimator of

the long-run variance or the spectral density at frequency zero can be used for the

purpose of estimating Cochrane’s measure of persistence.

13.3 Tests for the Null of Difference Stationarity

This section explains Dickey-Fuller (1979), Said-Dickey (1984), Phillips-Perron (1988),

and Park’s (1990) tests for the null of difference stationarity. More recent work to

improve small sample properties of tests includes Kahn and Ogaki (1990), Elliott,

Rothenberg, and Stock (1996), and Hansen (1993).
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13.3.1 Dickey-Fuller Tests

Dickey and Fuller (1979) propose to test for the null of a unit root in an AR(1)

model:3

xt = θ + µt+ αxt−1 + ϵt.(13.11)

where ϵt is NID. One of their tests is based on T (α̂−1), where T is the sample size and

α̂ is the OLS estimator for α in (13.11). Another test is based on the t-ratio for the

hypothesis α = 1. These test statistics do not have standard distributions. Depending

on whether or not a constant and a linear time trend are included, distributions of

these tests under the null are different.4 Fuller (1976, Tables 8.5.1 and 8.5.2) tabulates

critical values for Dickey-Fuller tests.

Whether or not a constant and a linear time trend should be included in the

regression depends on what type of alternative is appropriate. If the alternative

hypothesis is that xt is stationary with mean zero, then no deterministic terms should

be included. This alternative is not appropriate for most macroeconomic time series.

If the alternative hypothesis is that xt is stationary with unknown mean, then a

constant should be included. This alternative is appropriate for the time series that

exhibit no consistent tendency to grow (or shrink) over time. On the other hand, if

the alternative is that xt is trend stationary, then a constant and a linear time trend

should be included. This alternative is appropriate for the time series that exhibit

a consistent tendency to grow (or shrink) over time. When these test statistics are

3It should be noted that Dickey and Fuller’s (1981) joint tests with deterministic terms can have
significantly lower power than Dickey and Fuller’s (1979) one-tailed single unit root tests as explained
by Park (1989).

4If the data are demeaned prior to the regression, then the test statistics have the same distri-
butions as those from the regression with a constant in (13.11). If the data are detrended prior to
the regression, then the test statistics have the same distributions as those from the regression with
a constant and a linear time trend.
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negative and greater than the appropriate critical value in absolute value, then the

null of a unit root is rejected in favor of one of these alternatives.

Dickey-Fuller tests assume that the econometrician knows the order of autore-

gression. The following tests treat the case of unknown order of autoregression.

13.3.2 Said-Dickey Test

Said and Dickey (1984) extend the Dickey-Fuller’s t-ratio test to the case where the

order of autoregression is unknown. Consider an AR process of order p:

xt = θ + µt+ a1xt−1 + a2xt−2 + · · ·+ apxt−p + νt.(13.12)

We assume that this process’ autoregressive roots are less than or equal to one in

absolute value, and that there is at most one root whose absolute value is equal to

one. If there is a root with absolute value equal to one, then the root is assumed to

be one, so that the process is unit root nonstationary. It should be noted that the

null hypothesis that a1 = 1 in (13.12) does not have anything to do with the unit root

hypothesis if p > 1. The unit root hypothesis is concerned with the autoregressive

roots, and not with autoregressive coefficients. The first order autoregressive coeffi-

cient is equal to the autoregressive root only for an AR(1) process. For the purpose

of testing for a unit root, it is convenient to reparameterize (13.12) as follows:5

∆xt = θ + µt+ ρxt−1 + β1∆xt−1 + · · ·+ βp−1∆xt−p+1 + νt,(13.13)

where

ρ = −(1− a1 − a2 − · · · − ap),(13.14)

5For example, consider an AR(2) process. Rearranging (13.12) yields xt − xt−1 = θ + µt− (1−
a1 − a2)xt−1 − a2(xt−1 − xt−2) + νt. Therefore, we obtain ∆xt = θ + µt + ρxt−1 + β1∆xt−1 + νt,
where ρ = −(1− a1 − a2) and β1 = −a2.
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and

βi = −[ai+1 + ai+2 + · · ·+ ap] for i = 1, 2, · · · , p− 1.(13.15)

With this reparameterization, ∆xt has an invertible autoregressive representation

when ρ = 0. Hence xt is unit root nonstationary if and only if ρ = 0, and one can test

the null hypothesis of unit root nonstationarity by testing ρ = 0. Said and Dickey

show that the t-ratio for the hypothesis ρ = 0 has the same asymptotic distribution as

the Dickey-Fuller t-ratio test. Some authors call this test the augmented Dickey-Fuller

(ADF) test while others reserve the word ADF for the corresponding cointegration

test. A constant and a linear time trend are included or excluded according to the

appropriate alternative hypothesis as before.

In many applications, the Said-Dickey test results are very sensitive to the

choice of the order of autoregression, p. Ng and Perron (1995) analyze the choice of

truncation lag, and categorize the existing methods into two rules: rules of thumb

and data dependent rules. The former includes fixing p regardless of the sample size,

T , or choosing p as a fixed function of T according to

p = int{c( T
100

)
1
d},(13.16)

where c = 4, 12 and d = 4 are used in Schwert (1989). The latter includes information-

based rules such as Akaike information criterion (AIC) and Schwartz information

criterion (SIC) according to

Ip = logσ̂2
p + p

CT

T
,(13.17)

where σ̂2
p = 1

T

∑T
t=1 ν̂

2
t , and CT = 2 for AIC and CT = logT for SIC. Sequential tests

for the significance of the coefficients on lags also fall into this category. Based on
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Hall’s (1994) work, Campbell and Perron (1991) recommend starting with a reason-

ably large value of p that is chosen a priori and decrease p until the coefficient on

the last included lag is significant.6 Ng and Perron (1995) show that rules of thumb

are dominated by data dependent rules. They also show that general-to-specific se-

quential tests are better than information-based rules since the latter has severe size

distortion.

13.3.3 Phillips-Perron Tests

Phillips (1987) and Phillips and Perron (1988) use a nonparametric method to correct

for serial correlation of ϵt. Their modification of the Dickey-Fuller T (α̂ − 1) test is

called Z(α) test, while their modification of the Dickey-Fuller t-ratio test is called Z(t)

test. These corrections are based on a nonparametric estimate of the long run variance

of ϵt. See Chapter 6 for a discussion of nonparametric estimation methods. Phillips-

Perron tests are constructed so that they have the same asymptotic distributions as

corresponding Dickey-Fuller tests.

An advantage of the Phillips-Perron tests over the Said-Dickey test is that they

tend to be more powerful as shown in the Monte Carlo experiments of Phillips and

Perron. A drawback of the Phillips-Perron tests is that they are subject to more

severe size distortions than the Said-Dickey test (see Monte Carlo results of Phillips

and Perron, 1988; Schwert, 1989). Size distortion exists when the actual size of a test

in small samples is very different from the size of the test indicated by asymptotic

theory. Such differences are due to approximations involved in the asymptotic theory.

6According to Hall (1994), compared to general-to-specific rules, specific-to-general rules are not
generally asymptotically valid.
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Table 13.1: Critical Values of Park’s J(p, q) Tests for the Null of Difference Station-
arity

Size J(0,3) J(1,5) J(2,6) J(3,8) J(4,10) J(5,11)
.010 .1118 .1228 .0886 .1093 .1348 .1157
.025 .2072 .1977 .1409 .1684 .1974 .1652
.050 .3385 .2950 .2050 .2394 .2660 .2210
.100 .5773 .4520 .3101 .3425 .3642 .3076
.150 .8042 .5959 .4034 .4299 .4516 .3800
.200 .9243 .7326 .4968 .5177 .5335 .4470

Source: Park and Choi’s (1988) Table 1-B.

13.3.4 Park’s J Tests

Park’s (1990) J tests based on a variable addition method were originally proposed by

Park and Choi (1988). These tests are based on spurious regression results. Consider

a regression

xt =

p∑
τ=0

µτ t
τ +

q∑
τ=p+1

µτ t
τ + ηt.(13.18)

Here the maintained hypothesis is that xt possesses the deterministic time polynomials

up to the order of p (typically, p is zero or one). The additional time polynomials are

spurious time trends. Let F (p, q) be the standard Wald test statistic (without any

correction for serial correlation of ηt ) for the null hypothesis µp+1 = · · · = µq = 0.

Under the null hypothesis that ηt is unit root nonstationary, spurious regression results

imply that F (p, q) explodes, but 1
T
F (p, q) has an asymptotic distribution. The J(p, q)

test is defined as 1
T
F (p, q). The null hypothesis of difference stationarity is rejected

against the alternative of trend stationarity when J(p, q) is small because J(p, q)

converges to zero under the alternative hypothesis of trend stationarity. Part of

Park and Choi’s table of critical values for J tests are reproduced in Table 13.1 for

convenience.

The J(p, q) tests do not require the estimation of the long-run variance of ηt,



13.4. TESTING THE NULL OF STATIONARITY 311

and thus have an advantage over the Said-Dickey and Phillips-Perron tests in that

neither the order of autoregression nor the lag truncation number need to be chosen.

Park and Choi’s Monte Carlo experiments show that J tests have relatively stable

sizes and are not dominated by Said-Dickey and Phillips-Perron tests in terms of

size-adjusted power.

13.4 Testing the Null of Stationarity

In some cases, it is useful to test the null of stationarity (or trend stationarity) rather

than the null of difference stationarity. For example, if an econometrician plans to

apply econometric theory that assumes stationarity, a natural procedure is to test

the null of stationarity rather than test the null of difference stationarity. Tests for

the null of stationarity will also lead to tests for the null of cointegration as will be

discussed in Chapter 14. However, most of the tests in the unit root literature take

the null of a unit root rather than the null of stationarity. Only recently, Fukushige,

Hatanaka, and Koto (1994), Kahn and Ogaki (1992), Kwiatkowski, Phillips, Schmidt,

and Shin (1992), Bierens and Guo (1993), and Choi and Ahn (1999) among others

have developed tests for the null of stationarity.

Park’s (1990) G tests for the null of stationarity were first developed by Park

and Choi’s (1988). These tests, which have been used in empirical work by several

researchers, are based on the same spurious regression results as Park’s J tests. With

the notations in Section 13.3.4, G(p, q) = F (p, q) σ̂
2

ω̂2 , where σ̂2 = 1
T

∑T
t=1 η̂t

2, ω̂2

is an estimate of the long-run variance of ηt, and η̂t is the estimated residual in

regression (13.18). Under the null that xt is stationary after removing the maintained

deterministic time terms of time polynomial of order p, the G(p, q) test statistic has
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asymptotic chi-square distribution with the q − p degrees of freedom. Under the

alternative hypothesis that xt is difference stationary (after removing the maintained

deterministic terms), the G(p, q) statistic diverges to infinity. This result is due to the

spurious regression result that time polynomials tend to mimic a stochastic trend.

Unlike Park’s J tests, Park’s G tests require estimation of the long-run variance.

Kahn and Ogaki’s (1992) Monte Carlo experiments on Park’s G tests suggest that it

is advisable to use relatively small q when the sample size is small and not to use the

prewhitening method discussed in Section 6.2.

13.5 Near Observational Equivalence

Most of the tests described in sections 13.3 and 13.4 seek to discriminate between

difference stationary and trend stationary processes. In the finite samples that we

observe, there is a conceptual difficulty with this task. In finite samples, any difference

stationary process can be approximated arbitrarily well by a series of trend station-

ary processes. This evaluation can be done by driving the dominant autoregressive

root of trend stationary processes to one from below. After all, it is very difficult

to discriminate between the dominant autoregressive root of 0.999 and that of one.

This type of problem exists for virtually any hypothesis testing. Hypothesis testing

for unit root nonstationarity is special because the opposite is also true: any trend

stationary process can be approximated arbitrarily well by a series of difference sta-

tionary processes. This approximation can be done by driving the long-run variance

of the first difference of difference stationary processes to zero. Some authors call

this problem the near observational equivalence problem (see, e.g., Cochrane, 1988;

Campbell and Perron, 1991; Christiano and Eichenbaum, 1991; Blough, 1992; Faust,
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1996).

13.6 Asymptotics for Unit Root Processes

This Appendix explains asymptotic theory for unit root proceeses. Many of the results

depend on the Functional Central Limit Theorem (FCLT) explained in Appendix 5.B.

13.6.1 Continuous Mapping Theorem

Theorem 13.1 Let h : R → R be a measurable function with discontinuity points

confined to a set D where P (D) = 0. If Xn ⇒ X, then h(Xn) ⇒ h(X).

It is instructive to illustrate how the CMT can be used in the AR(1) model

when β = 1:

yt = βyt−1 + εt.

Consider the sampling error of the OLS estimator,

n(β̂ − 1) =

1

n

∑n
t=2 yt−1εt

1

n2

∑n
t=2 y

2
t−1

.

Asymptotic properties of the denominator can be established by the FCLT and the

CMT. Let Wn(r) =
y[nr]√
n
. Note that the denominator can be written

1

n2

n∑
t=2

y2t−1 =
1

n

n∑
t=2

(
yt−1√
n

)2

=

∫ 1

0

[Wn(r)]
2 dr.

Since Wn(r) ⇒ W (r) and the integral is the continuous function of Wn(r), by the

above theorem, ∫ 1

0

[Wn(r)]
2 dr ⇒

∫ 1

0

[W (r)]2 dr.
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13.6.2 Dickey-Fuller test with serially uncorrelated distur-
bances

We consider two cases for DF tests with the null: when the true process is a random

walk with or without a drift, and when the equation is estimated with or without a

trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a random walk

Suppose that the data are generated by a random walk without drift

yt = yt−1 + ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Consider a

regression equation

∆yt = α + ρyt−1 + ϵt

= x′
tβ + ϵt,

where xt = (1, yt−1)
′, and β = (α, ρ)′. Define a scaling matrix

ST =

[ √
T 0
0 T

]
and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtϵt

]}

=

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1 [
T− 1

2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt

]
,

where under the null of ∆yt = ϵt[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]
L−→

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]
and[

T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt

]
L−→

[
σW (1)

σ2
∫
WdW

]
.
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Thus, we get

[
T

1
2 α̂
T ρ̂

]
L−→

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]−1 [
σW (1)

σ2
∫
WdW

]
L−→

[
σ 0
0 1

] [
1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
.

In particular,

T ρ̂
L−→

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
=

∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which is the DF ρ test. Note that the coefficients on ∆yt−i follow a normal distribution

asymptotically so that the usual test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1

L−→ σ2

[
1 σ

∫
W (r)dr

· σ2
∫
W (r)2dr

]−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ 1[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.

Therefore, we get the DF t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→
[∫
WdW −W (1)

∫
W (r)dr

]
/
[∫
W (r)2dr − (

∫
W (r)dr)2

]{
1/
[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.
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The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, suppose that the data are generated by a random walk with or without a drift

yt = µ+ yt−1 + ϵt.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 + ϵt.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation

using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1)) + ϵt

= (1− ρ)µ+ (δ + ρµ)t+ ρξt−1 + ϵt

= α+ τt+ ρξt−1 + ϵt

= x′
tβ + ϵt,

where xt = (1, t, ξt−1)
′, and β = (α, τ, ρ)′. Define a scaling matrix

ST =

 √
T 0 0

0 3
√
T 0

0 0 T


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtϵt

]}

=

 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

−1  T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt

 ,
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where under the null of ∆ξt = ϵt 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

 L−→

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

 and

 T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt

 L−→

 σW (1)
σ
∫
rdW

σ2
∫
WdW

 .
Due to the block diagonal property, we can write T

1
2 α̂

T
3
2 τ̂
T ρ̂

 L−→

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

−1  σW (1)
σ
∫
rdW

σ2
∫
WdW


L−→

 σ 0 0
0 σ 0
0 0 1

 1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 .
In particular,

T ρ̂
L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 ,
which is the DF ρ test.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

−1

L−→ σ2

 1 1
2

σ
∫
W (r)dr

· 1
3

σ
∫
rW (r)dr

· · σ2
∫
W (r)2dr

−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→

[ 0 0 1
]  1 1

2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.
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Therefore, we get the DF t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW


[ 0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.

13.6.3 Said-Dickey test with serially correlated disturbances

We consider two cases for Said-Dickey tests with the null: when the true process is

a random walk with or without a drift, and when the equation is estimated with or

without a trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a unit root process without a drift

Consider a DGP:

a(L)yt = ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Let

a(L) = a(1)L+ b(L)(1− L),

where b(L) = 1−
∑p−1

i=1 biL
i and bi = −

∑p
j=i+1 ai, and rearrange the equation

b(L)∆yt = −a(1)yt−1 + ϵt or

∆yt = ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt,

where ρ = −a(1) = −1 +
∑p

i=1 ai. Note that the assumption of a single unit root in

the DGP implies ρ = 0. Under the null, we get an MA representation

∆yt = c(L)ϵt

= ut
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where c(L) = b(L)−1 = 1 +
∑∞

i=1 ciL
i.

Consider a regression equation

∆yt = α + ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt

= α + ρyt−1 + z′tb+ ϵt

= x′
tβ + ϵt,

where zt = (∆yt−1, · · · ,∆yt−p+1)
′, b = (b1, · · · , bp−1)

′, xt = (1, yt−1, z
′
t)

′, and β =

(α, ρ,b′)′. Define a scaling matrix

ST =

 √
T 0 0
0 T 0

0 0
√
T Ip−1


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtϵt

]}

=

 1 T− 3
2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

−1  T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 ,
where under the null of ∆yt = ut 1 T− 3

2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

 L−→

 1 λ
∫
W (r)dr 0

· λ2
∫
W (r)2dr 0

0 0 V

 and

 T− 1
2

∑T
i=1 ϵt

T−1
∑T

i=1 yt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 L−→

 σW (1)
σλ
∫
WdW
h

 .
Due to the block diagonal property, we can write[

T
1
2 α̂
T ρ̂

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1 [
σW (1)

σλ
∫
WdW

]
L−→

[
σ 0
0 σ

λ

] [
1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
and

T− 1
2 (b̂− b)

L−→ V−1h ∼ N(0, σ2V−1).
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In particular,

T ρ̂
L−→ σ

λ

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1 [
W (1)∫
WdW

]
.

From λ
σ
= c(1) = b(1)−1, we get the Said-Dickey ρ test

T ρ̂

1−
∑p−1

i=1 b̂i

L−→
∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which follows the same asymptotic distribution as the DF ρ test. Note that the

coefficients on ∆yt−i follow a normal distribution asymptotically so that the usual

test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2

 1 T− 3
2

∑T
i=1 yt−1 T−1

∑T
i=1 z

′
t

· T−2
∑T

i=1 y
2
t−1 T− 3

2

∑T
i=1 yt−1z

′
t

· · T−1
∑T

i=1 ztz
′
t

−1

L−→ σ2

 1 λ
∫
W (r)dr 0

· λ2
∫
W (r)2dr 0

0 0 V

−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σ/λ[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

.

Therefore, we get the Said-Dickey t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→
(σ/λ)

[∫
WdW −W (1)

∫
W (r)dr

]
/
[∫
W (r)2dr − (

∫
W (r)dr)2

]
(σ/λ)

{
1/
[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

,

which follows the same asymptotic distribution as the DF t test.
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The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, consider a DGP:

a(L)yt = µ+ ϵt

and rearrange the equation

b(L)∆yt = µ− a(1)yt−1 + ϵt or

∆yt = µ+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Under the null, we get an MA representation

∆yt = θ + c(L)ϵt

= θ + ut

where θ = c(1)µ.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation

using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1)) +

p−1∑
i=1

bi(∆ξt−i + µ) + ϵt

= (1− ρ+

p−1∑
i=1

bi)µ+ (δ + ρµ)t+ ρξt−1 + z′tb+ ϵt

= α + τt+ ρξt−1 + z′tb+ ϵt

= x′
tβ + ϵt,
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where zt = (∆ξt−1, · · · ,∆ξt−p+1)
′, b = (b1, · · · , bp−1)

′, xt = (1, t, ξt−1, z
′
t)

′, and β =

(α, τ, ρ,b′)′. Define a scaling matrix

ST =


√
T 0 0 0

0 3
√
T 0 0

0 0 T 0

0 0 0
√
T Ip−1


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtϵt

]}

=


1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t


−1 

T− 1
2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 ,
where under the null of ∆ξt = ut

1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t

 L−→


1 1

2
λ
∫
W (r)dr 0

· 1
3

λ
∫
rW (r)dr 0

· · λ2
∫
W (r)2dr 0

0 0 0 V

 and


T− 1

2

∑T
i=1 ϵt

T− 3
2

∑T
i=1 tϵt

T−1
∑T

i=1 ξt−1ϵt
T− 1

2

∑T
i=1 ztϵt

 L−→


σW (1)
σ
∫
rdW

σλ
∫
WdW
h

 .
Due to the block diagonal property, we can write T

1
2 α̂

T
3
2 τ̂
T ρ̂

 L−→

 1 1
2

λ
∫
W (r)dr

· 1
3

λ
∫
rW (r)dr

· · λ2
∫
W (r)2dr

−1  σW (1)
σ
∫
rdW

σλ
∫
WdW


L−→

 σ 0 0
0 σ 0
0 0 σ

λ

 1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 and

T− 1
2 (b̂− b)

L−→ V−1h ∼ N(0, σ2V−1).

In particular,

T ρ̂
L−→ σ

λ

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 .
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From λ
σ
= c(1) = b(1)−1, we get the Said-Dickey ρ test

T ρ̂

1−
∑p−1

i=1 b̂i

L−→
[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW

 and

which follows the same asymptotic distribution as the DF ρ test. Note that the

coefficients on ∆yt−i follow a normal distribution asymptotically so that the usual

test can be applied for restrictions on these variables.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2


1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1 T−1

∑T
i=1 z

′
t

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1 T−2

∑T
i=1 tz

′
t

· · T−2
∑T

i=1 ξ
2
t−1 T− 3

2

∑T
i=1 ξt−1z

′
t

· · · T−1
∑T

i=1 ztz
′
t


−1

L−→ σ2


1 1

2
λ
∫
W (r)dr 0

· 1
3

λ
∫
rW (r)dr 0

· · λ2
∫
W (r)2dr 0

0 0 0 V


−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σ

λ

[ 0 0 1
]  1 1

2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

.

Therefore, we get the Said-Dickey t-test

tρ̂ =
T ρ̂

Tsρ̂

L−→

[
0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  W (1)∫
rdW∫
WdW


[ 0 0 1

]  1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1  0
0
1


1
2

,

which follows the same asymptotic distribution as the DF t test.
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13.6.4 Phillips-Perron test

We consider two cases for PP tests with the null: when the true process is a random

walk with or without a drift, and when the equation is estimated with or without a

trend. See Hamilton (1994) for details.

The regression equation includes a constant term but no time trend when
the true process is a unit root process without a drift

Consider a DGP:

a(L)yt = ϵt,

where ϵt follows an i.i.d. sequence with mean zero, and variance σ2. Let

a(L) = a(1)L+ b(L)(1− L),

where b(L) = 1−
∑p−1

i=1 biL
i and bi = −

∑p
j=i+1 ai, and rearrange the equation

b(L)∆yt = −a(1)yt−1 + ϵt or

∆yt = ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt,

where ρ = −a(1) = −1 +
∑p

i=1 ai. Note that the assumption of a single unit root in

the DGP implies ρ = 0. Under the null, we get an MA representation

∆yt = c(L)ϵt

= ut

where c(L) = b(L)−1 = 1 +
∑∞

i=1 ciL
i.

Consider a regression equation

∆yt = α+ ρyt−1 + ut

= x′
tβ + ut,
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where xt = (1, yt−1)
′, β = (α, ρ)′, and ut is a regression error with mean zero and

variance σ2
u. Define a scaling matrix

ST =

[ √
T 0
0 T

]
and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtut

]}

=

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1 [
T− 1

2

∑T
i=1 ut

T−1
∑T

i=1 yt−1ut

]
,

where under the null of ∆yt = ut[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]
and[

T− 1
2

∑T
i=1 ut

T−1
∑T

i=1 yt−1ut

]
L−→

[
λW (1)

λ2
∫
WdW

]
+

[
0

1
2
(λ2 − γ0)

]
.

Thus,[
T

1
2 α̂
T ρ̂

]
L−→

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1{[
λW (1)

λ2
∫
WdW

]
+

[
0

1
2
(λ2 − γ0)

]}
.

In particular,

T ρ̂
L−→

[
0 1

] [ 1
∫
W (r)dr

·
∫
W (r)2dr

]−1{[
λW (1)

λ2
∫
WdW

]
+

[
0

λ2−γ0
2λ2

]}
=

∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

+
(λ2 − γ0)/2λ

2∫
W (r)2dr − (

∫
W (r)dr)2

Note that the second component can be consistently estimated by

T 2s2ρ̂
σ̂2
u

λ̂2 − γ̂0
2

because

T 2s2ρ̂
L−→ σ2

u/λ
2∫

W (r)2dr − (
∫
W (r)dr)2

.
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Accordingly, we get the PP ρ test

T ρ̂−
T 2s2ρ̂
σ̂2
u

λ̂2 − γ̂0
2

L−→
∫
WdW −W (1)

∫
W (r)dr∫

W (r)2dr − (
∫
W (r)dr)2

,

which follows the same asymptotic distribution as the DF ρ test.

Similarly, the variance of β̂ follows

ST Σ̂β̂ST = σ̂2
u

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1

= σ̂2
u

[
1 T− 3

2

∑T
i=1 yt−1

· T−2
∑T

i=1 y
2
t−1

]−1

L−→ σ2
u

[
1 λ

∫
W (r)dr

· λ2
∫
W (r)2dr

]−1

.

In particular, the standard error of ρ̂ follows

T sρ̂
L−→ σu/λ[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

and the t-test follows

tρ̂ =
T ρ̂

Tsρ̂

L−→

{[∫
WdW −W (1)

∫
W (r)dr

]
+ λ2−γ0

2λ2

}
/
[∫
W (r)2dr − (

∫
W (r)dr)2

]
(σu/λ)

{
1/
[∫
W (r)2dr − (

∫
W (r)dr)2

]} 1
2

L−→ λ

σu


∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

+
λ2−γ0
2λ2[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

 .

Note that the second component can be consistently estimated by

Tsρ̂
σ̂u

λ̂2 − γ̂0

2λ̂

because

T 2s2ρ̂
L−→ σ2

u/λ
2∫

W (r)2dr − (
∫
W (r)dr)2

.

Accordingly, we get the PP t test

σ̂u

λ̂
tρ̂ −

Tsρ̂
σ̂u

λ̂2 − γ̂0

2λ̂

L−→
∫
WdW −W (1)

∫
W (r)dr[∫

W (r)2dr − (
∫
W (r)dr)2

] 1
2

,
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which follows the same asymptotic distribution as the DF t test. Note that γ0(=

E(u2t )) can be consistently estimated by σ̂2
u(=

1
T−2

∑T
t=1 û

2
t ) and that λ can be con-

sistently estimated by the Newey-West estimator

λ̂2 = γ̂0 + 2

q∑
j=1

(1− j

q + 1
)γ̂j,

where γ̂j =
1
T

∑T
t=j+1 ûtût−j.

The regression equation includes a constant term and a time trend when
the true process is a unit root process with or without a drift

Now, consider a DGP:

a(L)yt = µ+ ϵt

and rearrange the equation

b(L)∆yt = µ− a(1)yt−1 + ϵt or

∆yt = µ+ ρyt−1 +

p−1∑
i=1

bi∆yt−i + ϵt.

Under the null, we get an MA representation

∆yt = θ + c(L)ϵt

= θ + ut

where θ = c(1)µ.

Consider a regression equation

∆yt = µ+ δt+ ρyt−1 + ut.

Note that the regression is subject to collinearity because yt−1 contains a deterministic

time trend component if µ ̸= 0. To avoid the possible collinearity, rewrite the equation
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using a detrended series ξt = yt − µt

∆yt = µ+ δt+ ρ(ξt−1 + µ(t− 1))ut

= (1− ρ)µ+ (δ + ρµ)t+ ρξt−1ut

= α + τt+ ρξt−1 + ut

= x′
tβ + ϵt,

where xt = (1, t, ξt−1)
′, and β = (α, τ, ρ)′. Define a scaling matrix

ST =

 √
T 0 0

0 3
√
T 0

0 0 T


and write the deviation of the OLS estimates using the scaling matrix

ST (β̂ − β) =

{
S−1
T

[
T∑
i=1

xtx
′
t

]
S−1
T

}−1{
S−1
T

[
T∑
i=1

xtut

]}

=

 1 T−2
∑T

i=1 t T− 3
2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

−1  T− 1
2

∑T
i=1 ut

T− 3
2

∑T
i=1 tut

T−1
∑T

i=1 ξt−1ut

 ,
where under the null of ∆ξt = ut 1 T−2

∑T
i=1 t T− 3

2

∑T
i=1 ξt−1

· T−3
∑T

i=1 t
2 T− 5

2

∑T
i=1 tξt−1

· · T−2
∑T

i=1 ξ
2
t−1

 L−→

 1 1
2

λ
∫
W (r)dr

· 1
3

λ
∫
rW (r)dr

· · λ2
∫
W (r)2dr

 and

 T− 1
2

∑T
i=1 ut

T− 3
2

∑T
i=1 tut

T−1
∑T

i=1 ξt−1ut

 L−→

 λW (1)
λ
∫
rdW

λ2
∫
WdW

+

 0
0

1
2
(λ2 − γ0)

 .
Thus, we get T

1
2 α̂

T
3
2 τ̂
T ρ̂

 L−→

 1 1
2

λ
∫
W (r)dr

· 1
3

λ
∫
rW (r)dr

· · λ2
∫
W (r)2dr

−1
 λW (1)

λ
∫
rdW

λ2
∫
WdW

+

 0
0

1
2
(λ2 − γ0)


L−→

 λ 0 0
0 λ 0
0 0 1

 1 1
2

∫
W (r)dr

· 1
3

∫
rW (r)dr

· ·
∫
W (r)2dr

−1
 W (1)∫

rdW∫
WdW

+

 0
0

1
2
(λ2 − γ0)/λ

2

 .



13.6. ASYMPTOTICS FOR UNIT ROOT PROCESSES 329

In particular,
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Accordingly, we get the PP ρ test
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which follows the same asymptotic distribution as the DF ρ test.

Similarly, the variance of β̂ follows
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In particular, the standard error of ρ̂ follows
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and the t-test follows
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which follows the same asymptotic distribution as the DF t test.
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Appendix

13.A Asymptotic Theory

13.A.1 Functional Central Limit Theorem

For the purpose of deriving asymptotic distributions for unit root tests, it is conve-

nient to generalize the concept of convergence in distribution. Instead of considering

a sequence of random variables or random vectors, we will consider a sequence of

random functions. This consideration leads to a generalized version of the central

limit theorem.

Let (S,F, P r) be a probability space and S be a metric space with a metric d.

The class B of Borel sets in M is the σ-field generated by the open sets of M. If a

function x which maps S into M is measurable F/B, then x is a random element.

A random element x induces a probability measure Pr∗ on (M,B) when we define

Pr∗(B) = Pr(x ∈ B) for any B in B. A sequence {xj : j ≥ 1} of random elements is

said to converge in distribution to a random element x0 if

(13.A.1) ????
Masao
needs to
check this!

13.B Procedures for Unit Root Tests

13.B.1 Said-Dickey Test (ADF.EXP)

Said-Dickey test with the general-to-specific rules proceeds as follows:

(i) Choose whether or not a constant and a time trend should be included in the

regression by selecting an appropriate alternative hypothesis. If the variable of

interest does not exhibit any secular trend, an appropriate alternative hypothesis

should be that the variable is stationary with non-zero mean and without a
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time trend. In this case, the regression should include a constant but no time

trend. On the other hand, if the variable of interest exhibits a secular trend,

an appropriate alternative hypothesis is that the variable is trend stationary.

Therefore, the regression should include both a constant and a linear time trend.

(ii) Select the maximum order of lagged polynomials (the corresponding variable to

be determined is P).

(iii) Determine the order of autoregressive process by following Campbell and Perron

(1991)’s recommendation.

(iv) If the t ratio consistent with the specification of the regression form is negative

and greater than the appropriate critical value in absolute value, then reject the

null of a unit root.

13.B.2 Park’s J Test (JPQ.EXP)

Park’s J(p, q) test proceeds as follows:

(i) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(ii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

secular time trend, the maintained hypothesis is that it includes only a constant
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(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iii) If J(p,q) is smaller than the appropriate critical value, then reject the null of

difference stationarity.

13.B.3 Park’s G Test (GPQ.EXP)

Park’s G(p, q) test proceeds as follows:

(i) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(ii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

secular time trend, the maintained hypothesis is that it includes only a constant

(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iii) Specify an appropriate method to estimate the long-run covariance matrix, ΩT .
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See chapter 6 for more details (the corresponding variables to be specified are

MAXD, ST, BST, and MSERHO).

(iv) If G(p,q) is greater than the appropriate critical value, then reject the null of

stationarity.

Exercises

13.1 Imagine that you are applying the Said-Dickey (augmented Dickey-Fuller) test

to the log real GDP for the United States. Explain the Said-Dickey test (the definition,

the null and alternative hypotheses that are appropriate in this context, and the small

sample properties compared with the Phillips and Perron test). If the test statistic

takes the value of -3.33, do you reject the null hypothesis at the 5 percent level?

What if the value is -1.47? What if the value is +3.99? The critical values for the

Said-Dickey test are given in Table 13.2, in which p is the order of time polynomial

included in the regression.

Table 13.2: Probability of smaller values

0.01 0.025 0.05 0.10 0.90 0.95 0.975 0.99
p = 0 (a constant)

-3.43 -3.12 -2.86 -2.57 -0.44 -0.07 0.23 0.60
p = 1 (a constant and a time trend)

-3.96 -3.66 -3.41 -3.12 -1.25 -0.94 -0.66 -0.33

13.2 Imagine that you are applying the Said-Dickey (augmented Dickey-Fuller) test

to the log real exchange rate for the United States and United Kingdom for the pur-

pose of testing Purchasing Power Parity. Explain the Said-Dickey test (the definition,

the null and alternative hypotheses which are appropriate in this context, and the
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small sample properties compared with the Phillips and Perron test.) If the test

statistic takes the value of -2.93, do you reject the null hypothesis at the 5 percent

level? What if the value is -2.67? What if the value is +3.99. The critical values

for the Said-Dickey test are given in 13.2, in which p is the order of time polynomial

included in the regression.
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Chapter 14

COINTEGRATING AND
SPURIOUS REGRESSIONS

This chapter reviews properties of regression estimators and test statistics based on

the estimators when the regressors and regressant are difference stationary. When

the stochastic trends of two or more difference stationary variables are eliminated by

forming a linear combination of these variables, the variables are said to be cointe-

grated in the terminology of Engle and Granger (1987). Let zt be a n × 1 vector of

difference stationary random variables with ∆zt being stationary. If there exists a

nonzero vector of real numbers β such that β′zt is stationary, then zt is said to be

cointegrated with a cointegrating vector β. If β is a cointegrating vector, bβ is also a

cointegrating vector for any real number b. There may exist more than one linearly

independent cointegrating vector. This chapter covers the case in which there is only

one linearly independent cointegrating vector, and the case in which there exists no

cointegrating vector. Chapter 16 concerns the case when there are more than one

linearly independent cointegrating vectors.

When there is one cointegrating vector, a regression of one variable in zt on

the others is called a cointegrating regression. What is striking about cointegration

338
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is that a cointegrating vector that eliminates the stochastic trends can be estimated

consistently by a cointegrating regression without using instrumental variables, even

when no variables are exogenous.

When there is no cointegrating vector, a regression of one variable in zt on the

others is called a spurious regression. One reason why macroeconomists need to be

careful about unit root nonstationary variables is that the standard asymptotic theory

for regressions in Chapter 5 can be very misleading when variables in a regression are

difference stationary.

In the first section, cointegration, stochastic cointegration, and the deterministic

cointegration restriction are defined. Then some estimators for cointegrating vectors

are described. Tests for the null of no cointegration and the null of cointegration

as well as tests for the number of cointegrating vectors are presented. Section 14.6

discusses how cointegration may be combined with standard econometric methods

that assume stationarity.

14.1 Definitions

If β is a cointegrating vector, bβ is also a cointegrating vector for any real number

b. It is often convenient to normalize one of the elements of β by one. Suppose that

the first element of β is nonzero, then partition zt by zt = (yt,x
′
t)

′ and normalize β

by β = (1,−c′)′. Here yt is a difference stationary process, xt is a vector difference

stationary process, and c is a normalized cointegrating vector.

For most macroeconomic time series such as aggregate income, consumption,

and investment, we observe secular upward trends. A secular upward trend of a time

series implies that the expected value of the first difference of the series is positive,
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which implies that the drift term of the series is positive if the series is difference

stationary.

Nonzero drift terms in a system of difference stationary series introduce the de-

terministic trends in addition to the stochastic trends. Hence the cointegrating vector,

which eliminates the stochastic trends, may or may not eliminate the deterministic

trends from the system. In order to distinguish these cases, we now introduce the

notions of stochastic cointegration and the deterministic cointegration restriction, as

defined by Ogaki and Park (1997).1 Consider a vector difference stationary process

xt with drift:

xt − xt−1 = µx + vt(14.1)

for t ≥ 1 where µx is an (n−1)-dimensional vector of real numbers and vt is stationary

with mean zero. Recursive substitution in (14.1) yields

xt = µxt+ x0
t(14.2)

where x0
t is difference stationary without drift. Relation (14.2) decomposes the dif-

ference stationary process xt into deterministic trends arising from drift µx and the

difference stationary process without drift, x0
t . Suppose that yt is a scalar difference

stationary process with drift µy. Similarly, decompose yt into a deterministic trend

µyt and a difference stationary process without drift, y0t , as in (14.2):

yt = µyt+ y0t .(14.3)

Difference stationary processes yt and xt are said to be stochastically cointegrated

1Ogaki (1988) introduces these notions and calls them the stochastic and deterministic parts of
cointegration. West (1988) considers estimation under the deterministic cointegration restriction for
the special case of one stochastic trend in the system. Hansen (1992a) and Park (1992) consider the
deterministic cointegration restriction under more general cases.
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with a normalized cointegrating vector c when there exists an (n-1)-dimensional vec-

tor c such that yt − c′xt is trend stationary.2 This property means that stochastic

cointegration only requires that stochastic trend components of the series are cointe-

grated. We may then write y0t − c′x0
t = θc+ ϵt, where ϵt is stationary with mean zero.

Then by (14.2) and (14.3),

yt = θc +mct+ c′xt + ϵt(14.4)

where

mc = µy − c′µx.(14.5)

Suppose that

µy = c′µx(14.6)

holds. Then the deterministic cointegration restriction is said to hold. This means

that the cointegrating vector that eliminates the stochastic trends also eliminates the

deterministic trends. If this restriction is satisfied, then

yt = θc + c′xt + ϵt.(14.7)

and (yt,xt)
′ is cointegrated.

Another way to explain the deterministic cointegration is to use an idea of

cotrending. Suppose that a vector c∗ satisfies

µy = c∗′µx.(14.8)

Then yt − c∗′xt does not possess any deterministic trend, and yt and xt are cotrended

with a normalized cotrending vector c∗. If n > 2 and if one of the components

2If y0t − c′x0
t is stationary rather than trend stationary, yt and xt are said to be cointegrated.
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of µx is nonzero, there are infinitely many cotrending vectors. Consider an extra

restriction that the normalized cointegrating vector c is a cotrending vector. This

restriction, which we call the deterministic cointegration restriction, requires that the

cointegrating vector eliminates both the stochastic and deterministic trends. In this

case, Equation (14.7) holds and (yt,x
′
t)

′ is cointegrated.

14.2 Exact Finite Sample Properties of Regression

Estimators

This section studies exact finite sample properties of cointegrating and spurious re-

gression estimators. In the literature on unit root econometrics, asymptotic theory

and the method of Monte Carlo studies have been typically used. However, the con-

ditional Gauss-Markov theorem in Chapter 5 can be applied to study exact finite

sample properties as in Ogaki and Choi (2001).

Consider a regression of the form

yt = h′dt + c′xt + ϵt.(14.9)

where dt is a function of time, t. For example, dt = (1, t)′ as in (14.4) or dt = 1 as

in (14.7). If ϵt is stationary for some c, (14.9) is a cointegrating regression. If ϵt is

difference stationary for any c, then (14.9) is a spurious regression.

14.2.1 Spurious Regressions

Suppose that yt is a random walk and xt is a random walk that is independent of

yt. Granger and Newbold (1974) find that the standard Wald test statistic for the

hypothesis that the coefficient on xt is zero tends to be large (compared with standard

critical values) in ordinary least squares (OLS) regressions of yt onto xt in their Monte
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Carlo experiments. Later, Phillips (1986) show that the Wald test statistic diverges to

infinity as the sample size is increased. In a regression with two independent difference

stationary variables without drift, the random walk components will dominate the

stationary components at least asymptotically. Hence these spurious regression results

imply that the absolute value of the t-ratio of the regressor tends to be larger than the

critical valued implied by the standard statistical theory that assumes stationarity.

An econometrician who ignores unit root nonstationarity issues tends to spuriously

conclude that two independent difference stationary variables are related.

Another example of the spurious regression results is in Durlauf and Phillips

(1988). When a difference stationary variable without drift, yt, is regressed onto a

constant and a linear time trend, the Wald test statistic for the hypothesis that a

coefficient for the linear trend is zero diverges to infinity as the sample size increases.

The Gauss Markov theorem provides us with a tool to understand exact small

sample properties of estimators and test statistics of spurious regressions. The asymp-

totic theories of Phillips (1987, 1998) have been used to understand the spurious re-

gression problem, but have not been used to provide a solution to the problem. The

Gauss Markov theorem indicates a simple solution to the problem.

Let yt be a random walk that is generated from

∆yt = ϵt(14.10)

with an initial random variable y0 and a white noise ϵt that is conditionally ho-

moskedastic. Let xt be another random walk that is generated from

∆xt = vt(14.11)

with an initial random variable x0 and a white noise vt that is conditionally ho-
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moskedastic. We assume that {ϵt}Tt=1 and y0 are independent, and that they are

independent from {vt}Tt=1 and x0, so that xt and yt are independent random walks.

Let y = {yt}Tt=1, X = {xt}Tt=1 and e = {et}Tt=1 where ∆et = ϵt, and consider the OLS

estimator for y = Xb0 + e. Then the true value of the regression coefficient is zero:

b0 = 0.

Let Ix be the information set generated from y0 and X. Assumptions 5.1,

5.2, and 5.4 of the strict version of the theorem in Chapter 5 hold for the spurious

regression. However, Assumption 5.3 is violated because

E(ee′|Ix) = σ2Φ(14.12)

where σ2 = E(ϵ2t ), and

Φ =



1 1 1 · · · 1 1
1 2 2 · · · 2 2
1 2 3 · · · 3 3
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1 2 3 · · · T − 1 T − 1
1 2 3 · · · T − 1 T


.(14.13)

Thus the spurious regression violates Assumption 5.3, but not the other assumptions.

The OLS estimator is still unbiased. One can apply a GLS correction and obtain a

more efficient estimator.

When Assumption 5.5 is made, by applying GLS to the spurious regression, we

can solve the spurious regression problem: we can obtain the exact (unconditional) t

distribution for the usual t statistic.

We now consider spurious regressions of the form (14.9) which do not satisfy

the strict exogeneity assumption. For this purpose, we consider a particular data

generating process that leads to a spurious regression.
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Let et and zt be two time series of dimensions 1 and k, respectively, that are

generated from

∆et = ϵt, t = 1, 2, 3, · · · .(14.14)

∆zt = µ+ vt, t = −q, · · · ,−1, 0, 1 · · ·(14.15)

where (ϵt,v
′
t)

′ is a covariance stationary series, µ is a k-dimensional vector of real

numbers, e0 = 0, and z−q is a given random vector. We assume that the long-run

covariance matrix of vt,

Ω = lim
j→∞

j∑
−j

E(vtv
′
t−j)(14.16)

is nonsingular. We assume that zt is strictly exogenous with respect to ϵt.

An implication of the strict exogeneity assumption is that et and zt are not

cointegrated: that is, there is no nonzero vector β such that et − β′zt is stationary.

This property results because the assumption implies that

lim
j→∞

j∑
−j

E(ϵtv
′
t−j) = 0.(14.17)

Consider a series yt that is generated from

yt = h′dt + c′zt + γ(L−1)∆zt + η(L)∆zt + et, t = 1, 2, 3, · · · ,(14.18)

where γ(L−1) = γ1L
−1 + · · · + γpL

−p, η(L) = η0 + η1L + · · · + ηqL
q and dt is a

vector of deterministic variables that is (1, t)′ or 1 for example. Here γ1, · · · ,γp, and

η0, · · · ,ηq are 1× k vectors, and we assume that at least one of them is nonzero.

Under these assumptions, consider a regression of yt onto dt and zt:

yt = h∗′dt + c∗′zt + e∗t(14.19)
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This regression is a spurious regression: that is, for any vector c∗, e∗t is unit root

nonstationary. To see this property, assume that e∗t is stationary for a vector c∗.

Then (14.18) implies that et− (c∗− c)′zt is stationary. It follows that a cointegrating

relationship exists between et and zt contradicting the strict exogeneity assumption.

Given that et in (14.18) satisfies the exogeneity condition, c can be considered

the true value of the spurious regression coefficient c∗ in (14.19). With this interpre-

tation, one problem with (14.19) is that the strict exogeneity assumption is violated.

Let X be a matrix whose t-th row is given by (d′
t, z

′
t,∆z′t+p,∆z′t+p−1, · · · ,∆z′t,

∆z′t−1, · · · ,∆z′t−q), y = {yt}Tt=1, and e∗ = {e∗t}Tt=1. When

E(e∗e∗′|X) = σ2Ψ(14.20)

with a known matrix Ψ and a possibly unknown number σ, then the GLS can be

applied to (14.18). If et is a random walk, then with Φ given by (14.13) and σ2 =

E(ϵ2t ). Just as in the strict exogenous case, the finite sample properties of the GLS

estimators and test statistics based on GLS can be analyzed.

The GLS correction is basically the same as taking first differences for the

case of strictly exogenous regressors. The GLS correction, however, can be useful in

applications for which the strict exogeneity assumption is violated.

14.2.2 Cointegrating Regressions

Let et and zt be two time series of dimensions 1 and k, respectively. We assume

that zt is generated from (14.15), where (et,v
′
t)

′ is a covariance stationary series, µ

is a k-dimensional vector of real numbers, e0 = 0, and z−q is a given random vector.

We assume that the long-run covariance matrix of vt, Ω = limj→∞
∑j

−j E(vtv
′
t−j) is

nonsingular. We assume that zt is strictly exogenous with respect to et.
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Consider a series yt that is generated from

yt = h′dt + c′zt + γ(L−1)∆zt + η(L)∆zt + et, t = 1, 2, 3, · · · ,(14.21)

where γ(L−1), η(L) and dt are defined in (14.18).

Under these assumptions, consider a regression of yt onto dt and zt:

yt = h∗′dt + c∗′zt + e∗t(14.22)

This regression is a cointegrating regression. With an appropriate choice of h∗ and

c∗ = c, e∗t is stationary. However, since the strict exogeneity assumption is not

satisfied, the OLS estimator for (14.22) is biased.

In contrast, the OLS estimator for (14.21) is unbiased. It is the BLUE if et is

serially uncorrelated. This is because Assumptions 5.1, 5.2, 5.3 and 5.4 are satisfied,

and the conditional Gauss-Markov theorem applies. The OLS estimator for (14.21)

is called the dynamic OLS estimator. The GLS estimator for (14.21) is called the

dynamic GLS estimator.

14.3 Large Sample Properties

An important feature of the cointegration regression is that the OLS estimator is

consistent without any exogeneity assumption (see Phillips and Durlauf, 1986; Stock,

1987). Along with the spurious regression results discussed in the last section, it is

another example of the fact that the standard asymptotic theory in Chapter 5 does

not apply to regressions in the presence of unit root nonstationary variables. This

fact is well known in the literature. On the other hand, the fact that the conditional

probability version of the Gauss Markov theorem applies to cointegrating regressions

under the assumptions of the theorem has not been emphasized in the literature. In
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the context of cointegration, an assumption of the theorem requires that xt is strictly

exogenous.

In most applications, the strict exogeneity assumption is too restrictive. This

section discusses econometric methods for when the assumption is violated. The OLS

estimator is consistent (see Phillips and Durlauf, 1986; Stock, 1987), but is asymptot-

ically biased. It also has a nonstandard distribution, which makes statistical inference

very difficult. For example, the OLS standard errors calculated in the standard econo-

metric packages for OLS are not very meaningful for cointegrating regressions. Many

efficient estimation methods that solve all or some of these problems have been devel-

oped. Dynamic OLS and GLS estimators introduced in the last section were proposed

by Stock and Watson (1993). Phillips and Loretan (1991) and Saikkonen (1991) have

proposed similar estimators.

Dynamic OLS and GLS estimators correct the endogeneity problem parametri-

cally. Estimators proposed by Phillips and Hansen (1990) and Park’s (1992) Canoni-

cal Cointegrating Regressions correct the endogeneity problem nonparametrically. In

Chapter 16, we will explain Johansen (1988, 1991) Maximum Likelihood Estimation

method.

14.3.1 Canonical Cointegrating Regression

Johansen’s maximum likelihood estimation makes a parametric correction for long-

run correlation of ∆xt and et. Another way to obtain an efficient estimator is to utilize

a nonparametric estimate of the long-run covariance parameters. Both Phillips and

Hansen (1990) and Park (1992) employ such covariance estimates. Here, attention is

confined to Park’s Canonical Cointegration Regressions (CCR).
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Consider a cointegrated system

yt = h′dt + c′xt + ϵt(14.23)

∆xt = vt,(14.24)

where dt is a deterministic term that are usually constants, time trends, or both, yt

and xt are difference stationary, and ϵt and vt are stationary with zero mean. Here

yt is a scalar and xt is a (n− 1)× 1 random vector. Let

wt = (ϵt,v
′
t)

′.(14.25)

Define Φ(i) = E(wtw
′
t−i), Σ = Φ(0), Γ =

∑∞
i=0 Φ(i), and Ω =

∑∞
i=−∞Φ(i). Here Ω

is the matrix version of (14.16) and is the long run variance (or covariance) matrix of

wt. Partition Ω as

Ω =

[
Ω11 Ω12

Ω21 Ω22

]
(14.26)

where Ω11 is a scalar, andΩ22 is a (n−1)×(n−1) matrix, and partition Γ conformably.

Define

Ω11.2 = Ω11 −Ω12Ω
−1
22 Ω21(14.27)

and Γ2 = (Γ′
12,Γ

′
22)

′. The CCR procedure assumes that Ω22 is positive definite,

implying that xt is not itself cointegrated (see, e.g., Phillips, 1986; Engle and Granger,

1987). This assumption assures that (1,−c) is the unique cointegrating vector (up to

a scale factor).3

3For many applications, it is natural to assume that ∆−1ϵt is not cointegrated with xt. This
assumption implies that Ω11.2 is positive. Park (1992) calls cointegration between yt and xt singular
when Ω11.2 is zero. For the singular models, either a different CCR procedure described by Park
is necessary (the removable singularity case) or the CCR procedure is not applicable (the essential
singularity case).
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The OLS estimator in (14.23) is super-consistent in that the estimator converges

to c at the rate of T (sample size) even when ∆xt and ϵt are correlated. The OLS

estimator, however, is not asymptotically efficient. Consider transformations

y∗t = yt + π′
ywt(14.28)

x∗
t = xt + π′

xwt.(14.29)

Since wt is stationary, y
∗
t and x∗

t are cointegrated with the same cointegrating vector

(1,−c) as yt and xt for any πy and πx. The idea of the CCR is to choose πy and

πx, so that the OLS estimator is asymptotically efficient when y∗t is regressed on

x∗
t .

4 This requires
Masao

needs to
check this!

πy = Σ−1Γ2c+ (0,Ω12Ω
−1
22 )

′(14.30)

πx = Σ−1Γ2.(14.31)

In practice, long-run covariance parameters in these formulas are estimated, and

estimated πy and πx are used to transform yt and xt. As long as these parameters

are estimated consistently, the resultant CCR estimator is asymptotically efficient.

Here we have considered a single regression. If there are many cointegrating

regressions with disturbances with nonzero long-run covariances in an econometric

system of interest, then asymptotically it is more efficient to apply seemingly unre-

lated regressions. Park and Ogaki (1991a) develop a method of Seemingly Unrelated

Canonical Cointegrating Regressions (SUCCR) for this case. In the SUCCR, trans-

formations of yt and xt that are slightly different from (14.28) and (14.29) are applied

4Under general conditions, a sequence of functions 1√
T

∑T
t=1 wt converges in distribution to a

vector Brownian motion B with covariance matrix Ω. The OLS estimator converges in distribution
to ????
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in each regression. After transforming the variables, the standard seemingly unrelated

regression method is applied to the transformed variables.

14.3.2 Estimation of Long-Run Covariance Parameters

In order to use efficient estimators for cointegrating vectors based on nonparametric

correction such as CCR estimators, it is necessary to estimate long-run covariance

parameters Ω and Γ.

In many applications of cointegration, the order of serial correlation is unknown.

Let Φ(τ) = E(wtw
′
t−τ ),

ΦT (τ) =
1

T

T∑
t=τ+1

ŵtŵ
′
t−τ for τ ≥ 0,(14.32)

and ΦT (τ) = ΦT (−τ)′ for τ < 0, where ŵt is constructed from a consistent estimate

of the cointegrating vector. Many estimators for Ω in the literature have the form

ΩT =
T

T − p

T−1∑
τ=−T+1

k(
τ

ST

)ΦT (τ),(14.33)

where k(·) is a real-valued kernel, and ST is a band-width parameter. The factor T
T−p

is a small sample degrees of freedom adjustment. See Andrews (1991) for examples

of kernels. Similarly, Γ is estimated by

ΓT =
T

T − p

T−1∑
τ=0

k(
τ

ST

)ΦT (τ),(14.34)

Park and Ogaki (1991b) extend Andrews and Monahan’s (1992) VAR prewhiten-

ing method to the estimation of Γ so that it can be applied to cointegrating regres-

sions. The first step in the VAR prewhitening method is to run a VAR:

wt = A1wt−1 +A2wt−2 + · · ·+Akwt−k + ft.(14.35)
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Note that the model (14.35) need not be a true model in any sense. Then the

estimated VAR is used to form an estimate ft and estimators of the form (14.33)

and (14.34) are applied to the estimated ft to estimate the long-run variance of ft,

Ω∗ and the parameter Γ for ft, Γ
∗. The estimator based on the QS kernel with the

automatic bandwidth parameter can be used for ft for example. Then the sample

counterpart of the formulas

Ω = [I−
k∑

i=1

Ai]
−1Ω∗[I−

k∑
i=1

A′
i]
−1(14.36)

Γ = Φ(0) + [I−
k∑

i=1

Ai]
−1(Γ∗ − E(ftf

′
t))[I−

k∑
i=1

A′
i]
−1(14.37)

+ [I−
k∑

i=1

Ai]
−1

k−1∑
j=0

k∑
i=j+1

AiΦ(−i)

are used to form estimates of Ω and Γ.5

Monte Carlo experiments in Park and Ogaki (1991b) show that the VAR prewhiten-

ing improves small sample properties of CCR estimators substantially.

14.4 Tests for the Null Hypothesis of No Cointe-

gration

Many tests for cointegration apply unit root tests to the residuals of a cointegrating

regression. When tests for the null hypothesis of unit root nonstationarity are applied

to residuals, the null of no cointegration is tested against the alternative of cointe-

gration. It should be noted that the asymptotic distributions of these tests generally

depend on the number of the variables in the cointegrating regression.

Engle and Granger’s (1987) augmented Dickey-Fuller (ADF) test applies the

Said-Dickey test to the residual from cointegrating regressions. The asymptotic prop-

5See Park and Ogaki (1991a) for a derivation of (14.36) and (14.37).
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erties of the ADF test are studied in Phillips and Ouliaris (1990). These authors and

MacKinnon (1990) tabulate critical values from Monte Carlo simulations. Note that

these critical values assume the OLS is used for the cointegrating regression, so that

the efficient estimation methods discussed in Section 14.3 above should not be used

for this test. Just as the Said-Dickey test, the ADF test may be sensitive to the choice

of the order of AR.

Phillips and Ouliaris (1990) also study asymptotic properties of tests for cointe-

gration obtained by applying the Phillips-Perron test to OLS cointegrating regression

residuals. Asymptotic critical values are reported by Phillips and Ouliaris. This test

requires an estimate of the long run variance of the residual.

Park’s (1990) I(p,q) test basically applies his J(p, q) test to OLS cointegrating

regression residuals. This test was originally developed by Park, Ouliaris, and Choi

(1988). The I(p, q) test is computed by adding spurious time trends as additional

regressors in the cointegrating regression:

yt =

p∑
τ=0

µτ t
τ +

q∑
τ=p+1

µτ t
τ + c′xt + ϵt.(14.38)

Here, time polynomials up to the order of p represent maintained trends, while higher

order time polynomials are spurious trends. Part of Park, Ouliaris, and Choi’s (1988)

table of critical values for I(p, q) tests are reproduced here in Table 14.1. This test

has an advantage over ADF and Phillips-Ouliaris tests in that neither the order of

AR nor the bandwidth parameter needs to be chosen.
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Table 14.1: Critical Values of Park’s I(p, q) Tests for Null of No Cointegration

Number of Regressors Size I(0, 3) I(1, 5)
1 0.01 0.06864 0.10269

0.05 0.23286 0.25064
0.10 0.39897 0.49845

2 0.01 0.05520 0.00819
0.05 0.17539 0.21040
0.10 0.29622 0.32251

Note: These critical values are from Park, Ouliaris, and Choi (1988).

14.5 Tests for the Null Hypothesis of Cointegra-

tion

When an economic model implies cointegration, it is often more appealing to test

for the null of cointegration, so that an econometrician can control the probability

of rejecting a valid economic model. Phillips and Ouliaris (1990) discussed why it

was hard to develop tests for the null of cointegration. More recently, Fukushige,

Hatanaka, and Koto (1994), Hansen (1992b), and Kwiatkowski, Phillips, Schmidt,

and Shin (1992), among others, have developed tests for the null of cointegration.

Park’s (1990) H(p, q) test is computed by applying the CCR to (14.38). Thus,

this test essentially applies Park’s G(p, q) test to CCR residuals. A similar test

was originally developed by Park, Ouliaris, and Choi (1988), where G(p, q) tests were

applied to OLS residuals, and their tests have nonstandard distributions. In contrast,

Park’s H(p, q) tests have asymptotic chi-square distributions with q − p degrees of

freedom. Under the alternative of no cointegration, the H(p, q) statistic diverges to

infinity because spurious trends try to mimic the stochastic trend left in the residual.

Therefore, this test is consistent.
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In many applications, it is appropriate to model each variable in the econo-

metric system as first difference stationary with drift. Each variable possess a linear

deterministic trend as well as a stochastic trend in Section 14.1 because of drift. In

this case, H(1, q) statistics test the null hypothesis of stochastic cointegration. The

H(0, 1) test can be considered as a test for the deterministic cointegration restric-

tion because the restriction implies that the cointegrating vector that eliminates the

stochastic trends also eliminates the linear deterministic trends.

14.6 Generalized Method of Moments and Unit

Roots

When difference stationary variables are involved in the econometric system, standard

econometric methods that assume stationarity are not applicable because of spurious

regression problems. Hence econometricians detrend data by taking growth rates of

variables, for example. However, by detrending data, the econometrician loses the

information contained in stochastic and deterministic trends. It is thus natural to seek

a method to combine standard econometric methods and cointegrating regressions.

Estimating an error correction representation explained in Section 16.4 is an example

of such a method in vector autoregressions. Let us now consider this problem in the

context of Hansen’s (1982) Generalized Method of Moments (GMM) estimation. This

case is particularly useful because many estimators can be considered special cases of

GMM.

The asymptotic theory of GMM does not make strong distributional assump-

tions, such as that the variables are normally distributed. However, Hansen assumes

that xt is stationary. Hence if variables are difference stationary, the econometrician

needs to transform the variables to induce stationarity. One such transformation is
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to take the first difference of a variable, or to take the growth rate of the variables

if the log of the variable is difference stationary. But it may not be possible to take

growth rates of all variables for some functions in f(xt,b0) while retaining moment

conditions. In such cases, it may be possible to use cointegrating relationships to

induce stationarity by taking linear combinations of variables. In empirical appli-

cations of Eichenbaum and Hansen (1990) and Eichenbaum, Hansen, and Singleton

(1988), their economic models imply some variables are cointegrated with a known

cointegrating vector. They use this cointegration relationship to induce stationarity

for the equations involving the first order condition that equate the relative price and

the marginal rate of substitution.

In Cooley and Ogaki (1996) and Ogaki and Reinhart (1998a,b) explained in

the next chapter, their economic model implies a cointegration relationship, but the

cointegrating vector is not known. They employ a two-step procedure. In the first

step, they estimate the cointegrating vector, using a cointegrating regression. In the

second step, they plug in estimates from the first step into GMM functions, f(xt,b0).

This two step procedure is similar to Engle and Granger’s two step procedure for the

error correction model discussed in Section 16.4. Asymptotic distributions of GMM

estimators in the second step are not affected by the first step estimation because

cointegrating regression estimators converge at a faster rate than
√
T .

Appendix

14.A Procedures for Cointegration Tests

14.A.1 Park’s CCR and H Test (CCR.EXP)

Park’s canonical cointegrating regression (CCR) and H(p, q) test proceed as follows:
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(i) Define a regressand (the corresponding variable to be specified is Y) and re-

gressors. The latter includes both a vector of deterministic regressors6 (the

corresponding variable to be specified is X1) and difference stationary regressors

(the corresponding variable to be specified is X2).

(ii) Choose the order of the maintained trend (the corresponding variable to be spec-

ified is P) in the residuals to test for the null hypothesis of cointegration (H(p, q)

test). If either each variable exhibits no secular trend or some variables show a

secular trend with the deterministic cointegration restriction7, set P=0. On the

other hand, when some variables exhibit a time trend without the deterministic

cointegration, set P=1.

(iii) Select the largest order of additional time polynomials (the corresponding vari-

able to be specified is Q). If either each variable exhibits no secular trend or some

variables show a secular trend with the deterministic cointegration restriction,

set Q=1. But when some variables exhibit a time trend without the deterministic

cointegration, set Q=2. Choose an appropriate DQ depending on how many test

results you want. We recommend either DQ=2 or DQ=3.

(iv) Determine an appropriate method to estimate the long-run covariance matrix,

ΩT . See chapter 6 for details (the corresponding variables to be specified are

MAXD, ST, BST, and MSERHO. The default of the program is the prewhitened

QS kernel with automatic bandwidth selection).

(v) Impose restrictions on the cointegrating vector (the corresponding variable in

6It is typically either a constant or a constant and a linear time trend
7Typically, the economic model for the application tells us whether or not this restriction is

satisfied
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the program is B), if any (the corresponding variables to be specified are R and

RV matrices).

(vi) Check the statistical evidence about estimates and tests. For CCR estimates,

report the third stage result. For the H(p, q) test, report the fourth stage result.

For a linear restriction RB=RV, report the third stage result when the alternative

hypothesis is cointegration with RB ̸= RV, and report the fourth stage result

when the alternative hypothesis is no cointegration.

14.A.2 Park’s I Test (IPQ.EXP)

Park’s I(p,q) test proceeds as follows:

(i) Define a regressand (the corresponding variable to be specified is Y) and re-

gressors. The latter includes both a vector of deterministic regressors8 (the

corresponding variable to be specified is X1) and difference stationary regressors

(the corresponding variable to be specified is X2).

(ii) Choose the order of the maintained trend in the regression (the corresponding

variable in the program is P). If the variable of interest does not exhibit a secular

time trend, the maintained hypothesis is that it includes only a constant (set

P=0). However, if it shows a secular time trend, the maintained hypothesis is

that it possesses a linear time trend (set P=1).

(iii) Select the largest order of additional time polynomials (the corresponding vari-

able in the program is Q) and its range (the corresponding variable in the pro-

gram is DQ) in the regression. If the variable of interest does not exhibit a

8It is typically either a constant or a constant and a linear time trend
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secular time trend, the maintained hypothesis is that it includes only a constant

(set Q=1). However, if it shows a secular time trend, the maintained hypothesis

is that it possesses a linear time trend (set Q=2). Choose an appropriate DQ

depending on how many test results you want. We recommend either DQ=2 or

DQ=3.

(iv) Impose restrictions on the cointegrating vector (the corresponding variable in

the program is B), if any (the corresponding variables to be specified are R and

RV matrices).

(v) If I(p, q) is smaller than the appropriate critical value, then reject the null of no

cointegration.

14.B Weak Convergence to Stochastic Integral

Before we provide formal theorems of weak convergence to stochastic integral, by

using a a cointegrating regression, we show why the FCLT alone (even with the

CMT) is not enough to establish the asymptotic properties of the OLS estimator.

Consider the following cointegrating regression:

yt = βxt + ut,

where xt is an I(1) process and ut is an I(0) process. The OLS estimator is given by

β̂ =

∑T
t=1 ytut∑T
t=1 x

2
t

,

and its sample error can be written as

T (β̂ − β) =

1

T

∑T
t=1 xtut

1

T 2

∑T
t=1 x

2
t

.
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For the denominator, by the FCLT (along with the CMT) it can be shown that:

1

T 2

T∑
t=1

x2t
d−→
∫ 1

0

W 2(r)dr.

However, the numerator cannot be analyzed by the FCLT alone. It is evident that the

asymptotic distribution of the numerator cannot be established by the FCLT alone,

because the numerator is a mixture of I(1) and I(0) random variables. Therefore

we need a different too, so-called “weak convergence to the stochastic integral.” In

below, we present the most general version of the theorem.

Theorem 14.1 Let {Unt,Wnt} be a (2 × 1) stochastic array, let Xn(r) =
∑[nr]

t=1 Unt

and Yn(r) =
∑[nr]

t=1Wnt, and suppose that (Xn(r), Yn(r))
d−→ (BX(r), BY (r)). Assume

{Unt} is Lr-bounded and L2-NED of size -1 on {Vnt} with respect to constants {cUnt}.

If the one of the following assumptions hold:

1. {Wnt,Hnt} is a martingale difference array, where Hnt = σ((Wnk, Un,k−1, k ≤

t), and E(W 2
n,t+1|Hn,t) ≪ (cWn,t)

2 <∞, a.s.

2. Wnt =
∑∞

k=0 θkV1n,t−k where V1nt ∈ Vnt is a Lr-bounded zero-mean random

variable, independent of Vn,t′ for all t ̸= t′, and
∑∞

t=0

∑∞
k=t |θk| <∞

Then,

Gn =
n−1∑
j=1

(
j∑

i=1

Un,i

)
Wn,j+1

d−→
∫ 1

0

BX(r)dBY (r) + ΛXY

where ΛXY = limn→∞
∑n−1

i=1

∑i−1
m=0E(Un,i−mWn,i+1)
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Chapter 15

ECONOMIC MODELS AND
COINTEGRATING
REGRESSIONS

Economic models often imply cointegration. This chapter illustrates how to derive

cointegration restrictions from economic models.

In order to derive cointegration restrictions, one must show that a linear com-

bination of difference stationary random variables is stationary. This is often done

by showing that a linear combination of difference stationary variables is a time inde-

pendent function of a finite number of stationary random variables (see Proposition

2.2).

For many economic models, Proposition 2.2 can be directly used to show coin-

tegration. In some other models, one more step is necessary. There are cases in which

economic models imply that a linear combination of difference stationary variables

is a conditional expectation of a variable. For example, suppose that an economic

model implies

b′yt = E(zt|It),

where zt can be shown to be a stationary random variable because of Proposition

363
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2.2. Here, It is typically the information set available to the economic agents, which

includes both stationary and difference stationary random variables. Since zt is sta-

tionary, E(zt|It) is likely to be stationary. However, in order to formally show that

E(zt|It) is stationary, we need an additional assumption that E(zt|It) is equal to

E(zt|Jt), where Jt is a subset of It and includes only a finite number of stationary

variables. Then E(zt|Jt) is a time independent function of a finite number of station-

ary variables, and we can use Proposition 2.2.

This additional assumption is not stringent as long as zt is stationary. In order

to see this property, suppose that It is generated by the current and past values of a

difference stationary vector process xt:

∆xt = A∆xt−1 + ut.

where ut is a vector i.i.d. white noise process and all roots of the characteristic

equation lie outside the unit circle. Here xt can include current and lagged values of

many economic variables. If zt = c′∆xt+1, then

E(zt|It) = c′A∆xt = E(zt|∆xt).

15.1 The Permanent Income Hypothesis of Con-

sumption

The standard version of the permanent income hypothesis of consumption implies

cointegration. The exact form of cointegration depends on the assumption on the

form of the difference stationarity of labor income.

Consider a representative consumer who maximizes a quadratic utility function

Et[
∞∑
i=0

βj(Ct+i − γ)2],(15.1)
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subject to the budget constraint

At+1 = (1 + r)At + Y l
t − Ct(15.2)

and a no-Ponzi-game condition

lim
i→∞

(1 + r)iAt+i = 0 almost surely.(15.3)

Here Y l
t denotes labor income, and At is wealth at date t. Assuming that β = (1+r)−1,

the optimal consumption is

Ct = rAt + (1− β)Et[
∞∑
i=0

βiY l
t+i].(15.4)

Substituting (15.4) back in the budget constraint, we obtain

At+1 − At = Y l
t − (1− β)Et[

∞∑
i=0

βiY l
t+i].(15.5)

Let Yt = rAt + Y l
t be total income, which includes both labor income and property

income. Then (15.4) implies

Ct − Yt = (1− β)Et[
∞∑
i=0

βiY l
t+i]− Y l

t .(15.6)

The cointegration implication of the permanent income hypothesis is different

depending on whether we assume that the level of labor income is difference stationary

or we assume that the log of labor income is difference stationary as pointed out by

Cochrane and Sbordone (1988).

First, assume that the level of labor income is difference stationary so that

Y l
t − Y l

t−1 is stationary. Then rewrite (15.6) as

Ct − Yt = (1− β)Et[
∞∑
i=0

βi{Y l
t+i − Y l

t }].(15.6′)
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Since the right hand side of (15.6′) is stationary, the permanent income hypothesis

implies that Ct − Yt is stationary, which can be called the stationarity restriction. It

remains to show that Ct and Yt are difference stationary. From (15.5),

Yt+1 − Yt = −r(1− β)Et[
∞∑
i=0

βi{Y l
t+i − Y l

t }](15.7)

+ Y l
t+1 − Y l

t

because the right hand side is stationary, the left hand side is stationary, and Yt is

difference stationary. The stationarity restriction implies that Ct is a sum of difference

stationary Yt and a stationary variable. Hence Ct is difference stationary. Therefore

in this case, Ct and Yt are cointegrated with a (1,−1) cointegrating vector.

Second, assume that the log of labor income is difference stationary, so that

ln(Y l
t )− ln(Y l

t−1) is stationary. Divide the both sides of (15.6) by Yt to obtain

Ct

Yt
= 1 + (1− β)Et[

∞∑
i=0

βiY
l
t+i

Yt
]− Y l

t

Yt
.(15.8)

With an additional assumption that
Y l
t

At
is stationary, the right hand side of (15.8) is

stationary, and ln(Yt) and ln(Ct) are difference stationary. This additional assumption

holds in standard general equilibrium models (see, e.g., King, Plosser, and Rebelo,

1988).

Thus, depending on whether the level of labor income or the log of labor income

is assumed to be difference stationary, the permanent income hypothesis predicts

different forms of cointegration. Which assumption is more appropriate? We observe

from many economic data that the growth rate of an economic variable is stable over

time. From this observation, it is more appropriate to assume that the log labor

income is difference stationary rather than the level of labor income is difference

stationary.



15.2. PRESENT VALUE MODELS OF ASSET PRICES 367

Another observation is that the assumption that the level of labor income is

difference stationary implies that the level of saving, Yt − Ct, is stationary. Since

Yt is nonstationary, the saving rate Yt−Ct

Yt
is nonstationary under this assumption.

In contrast, the assumption that the log labor income is difference stationary implies

that the saving rate, Yt−Ct

Yt
= 1− Ct

Yt
, is stationary. Hence this assumption is consistent

with Kuznets’ (1946) stylized fact that the saving rate is stable in the U.S. in the

long-run.

15.2 Present Value Models of Asset Prices

The standard present value model implies that the stock price and the dividend are

cointegrated. The exact form of cointegration implied by the model depends on

whether the level or the log of the dividend is assumed to be difference stationary as

pointed out by Cochrane and Sbordone (1988).

Let pt be the real stock price (after the dividend is paid) in period t, and dt

be the real dividend paid to the owner of the stock in period t. Then the arbitrage

condition is

pt = E[b(pt+1 + dt+1)|It],(15.9)

where b is the constant real discount rate, and E(·|It) is the mathematical expectation

operator conditioned on the information set It in period t. Solving (15.9) forward and

imposing the no bubble condition, we obtain the present value formula:

pt = E(
∞∑
i=1

bidt+i|It).(15.10)

First, assume that dt is difference stationary, following Campbell and Shiller
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(1987). Then

pt −
b

1− b
dt = E[

∞∑
i=1

bi(dt+i − dt)|It].(15.11)

Since dt+i − dt is stationary for any i, the right hand side of (15.11) is stationary.

Hence we obtain a stationarity restriction that pt− b
1−b

dt is stationary. This restriction

implies that pt is a sum of a difference stationary random variable and a stationary

random variable. Hence pt is difference stationary. This restriction also implies that

pt and dt are cointegrated with a cointegrating vector [1,− b
1−b

]′.

Second, assume that ln(dt) is difference stationary. Then dividing both sides of

(15.10) by dt yields

pt
dt

= E[
∞∑
i=1

bi
dt+i

dt
|It].(15.12)

The right hand side of this equation is stationary. Hence, taking the log of both sides

of (15.12), we obtain a stationarity restriction that ln(pt)− ln(dt) is stationary. This

restriction implies that ln(pt) is a sum of a difference stationary random variable and a

stationary random variable. Hence ln(pt) is difference stationary. This restriction also

implies that ln(pt) and ln(dt) are cointegrated with a cointegrating vector (1,−1)′.

When dt is difference stationary, the cointegrating vector involves the discount

factor, b. Hence a cointegrating regression can be used to estimate this structural

parameter without making exogeneity assumptions. In addition to testing for coin-

tegration, one can test the model by obtaining another estimate of b and compare

it with a cointegrating regression estimate of b as explained in the next chapter. In

contrast, when ln(dt) is assumed to be difference stationary, the cointegrating vector

is known, and no structural parameter can be estimated by a cointegrating regres-

sion. Even in this case, it is possible to test the model by testing for cointegration.
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The near observational equivalence problem, however, tells us that cointegration test

results are not reliable. Hence it is more interesting to assume that dt is difference

stationary than to assume ln(dt) is difference stationary. Unfortunately, it is more

reasonable to assume that ln(dt) is difference stationary because the growth rates of

the stock price and the dividends are relatively stable over time.

15.3 Applications to Money Demand Functions

Another application of cointegration is to assume directly that a demand or supply

function is stable in the long run. The stable function can be estimated by a coin-

tegrating regression, and the model can be tested by testing for cointegration. The

most important application of this type is estimating a money demand function (see,

e.g., Hoffman and Rasche, 1991; Stock and Watson, 1993).

Let Mt be the real money balance, Yt be real income, and it be the nominal

interest rate. Let the money demand function be

ln(Mt) = a0 + a1 ln(Yt) + a2it + ut.(15.13)

If the money demand function is stable in the long run, ut is stationary. If we

assume that ln(Yt) and it are difference stationary, and that they are not stochastically

cointegrated, then the stable money demand function implies that ln(Mt) is difference

stationary, and that ln(Mt), ln(Yt), and it are cointegrated with (1,−a1,−a2)′ as a

cointegrating vector.

15.4 The Cointegration Approach to Estimating

Preference Parameters

Ogaki and Park (1997) develop a cointegration approach to estimating preference
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parameters by utilizing the information in stochastic and deterministic time trends.

The first order condition that equates the relative price and the contemporaneous

marginal rate of substitution of two goods is used to derive the restriction that the

relative price and consumption of the two goods are cointegrated.1 The cointegrat-
Masao

needs to
check this!

ing vector involves preference parameters that are estimated with a cointegrating

regression. In their application, they estimate the (long-run) intertemporal elastic-

ity of substitution (IES) of nondurable consumption, which is a key parameter in a

Consumption-Based Asset Pricing Model (C-CAPM). The parameter was also esti-

mated by Hansen’s (1982) GMM in a C-CAPM. The C-CAPM is rejected strongly

by Hansen and Singleton (1982) when stock returns and Treasury Bill rates are used

together. Possible reasons for the rejection of the C-CAPM have been pointed out.

These include liquidity constraints (see, e.g., Hayashi, 1985; Zeldes, 1989), unknown

preference shocks (e.g., Garber and King, 1983), time-nonseparable preferences (e.g.,

Eichenbaum, Hansen, and Singleton, 1988; Constantinides, 1990; Eichenbaum and

Hansen, 1990; Ferson and Constantinides, 1991; Ferson and Harvey, 1992; Cooley

and Ogaki, 1996; Heaton, 1995), and small information cost (Cochrane, 1998). GMM

estimation of nonlinear Euler equations also assumes that there are no measurement

errors.

1Ogaki and Park use Houthakker’s (1960) addilog utility function. The cointegration approach
can also be used to estimate the curvature parameters of the extended addilog utility function as in
Atkeson and Ogaki (1996), and the CES utility function as in Ogaki and Reinhart (1998). Deaton
and Wigley (1971), Deaton (1974), Miron (1986), and Ball (1990), among others, have estimated
addilog utility functions. Ogaki (1988) introduces the cointegration approach to estimate preference
parameters of the addilog utility function. Ogaki (1992) uses the cointegration approach to estimate
income elasticities for food and other goods; Braun (1994), to estimate a utility function for cash and
credit goods; Cooley and Ogaki (1996), to estimate a utility function for consumption and leisure;
Amano and Wirjanto (1996) and Amano, Ho, and Wirjanto (1998) to estimate models of import
demand; and Amano and Wirjanto (1997) to estimate a model of government spending. Working
independently, Clarida (1994, 1996) estimates addilog utility functions to estimate price and income
elasticities for imported goods with cointegrating regressions.
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The cointegration approach provides an estimator that is consistent even in

the presence of factors such as liquidity constraints, aggregation over heterogeneous

consumers, unknown preference shocks, a general form of time-nonseparability, mea-

surement errors, and the possibility that consumers do not know the true stochastic

law of motion of the economy. The GMM estimator is not consistent in the presence

of these factors, but the cointegrating regression estimator is consistent under certain

assumptions. It is important to develop such an estimator because a great amount

of recent research simulates economies with features that accounts for GMM’s rejec-

tions of the C-CAPM such as liquidity constraints in recent works (see, e.g., Deaton,

1991; Marcet and Singleton, 1991; Heaton and Lucas, 1992). An estimator that is

consistent in the presence of liquidity constraints can be used to guide the choice of

parameters for these simulations.

In Section 15.5, we will discuss Cooley and Ogaki’s (1996) test that compares the

estimates obtained using cointegration techniques with those obtained using GMM

in the spirit of Hausman’s (1978) specification test. Since the GMM estimator is

not consistent but the cointegrating regression estimator is consistent in the presence

of factors such as liquidity constraints, this test can be interpreted as a test for the

C-CAPM against an alternative hypothesis that such factors are present.

15.4.1 The Time Separable Addilog Utility Function

Suppose that a representative consumer maximizes the lifetime utility function2

U = E0[
∞∑
t=0

βtut(Ct)](15.14)

2The existence of a representative consumer under complete markets was discussed by Ogaki
(1997) for the general concave utility functions and by Atkeson and Ogaki (1996) for the extended
addilog utility function. Ogaki and Park (1997) discussed a sufficient condition for aggregation under
incomplete markets for the cointegration approach.
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subject to a life time budget constraint in complete markets at period 0, where β is

a discount factor and Ct = (C1t, C2t). Here Cit is real consumption of the i-th good,

and Et(·) denotes expectations conditional on the information available at period t.

The intraperiod utility function is assumed to be of a monotone transformation of

the addilog utility function:

ut(Ct) = ft(
2∑

i=1

σit
C1−αi

it − 1

1− αi

).(15.15)

where αi > 0 for i = 1, 2. The stochastic process {σ1t, σ2t}, which is assumed to

be (strictly) stationary, represents preference shocks. We refer to parameters α1 and

α2 as curvature parameters. Nonseparability across goods is allowed by an arbitrary

monotone transformation ft with f
′
t > 0.3 This utility function includes Houthakker’s

(1960) addilog utility function and the Cobb-Douglas utility function (α1 = α2 = 1)

as special cases. When α1 ̸= α2, preferences are not homothetic.

Since time separability is assumed, a two-stage budgeting scheme can be applied

to show that the consumer maximizes his/her intraperiod utility (15.15) subject to

the intraperiod budget constraint

P1tC1t + P2tC2t = Et,(15.16)

where Et is the total consumption expenditure at period t and Pit is the price of the

i-th good. Let the first good be the numeraire for each period (P1t ≡ 1).

The first order necessary conditions for the intraperiod optimization problem

include

P2t =
σ2tC

−α2
2t

σ1tC
−α1
1t

.(15.17)

3Ogaki and Park (1992) showed that the cointegration approach allows for measurement er-
rors, liquidity constraints, aggregation over heterogeneous consumers, and a general form of time-
nonseparability in preferences. The present paper shows that the cointegration approach also allows
for nonseparability across goods as long as time separability is assumed.
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Since the first good is the numeraire, P2t =
P2t

P1t
is the relative price between the second

good and the first good. Taking the natural logarithm of both side of (15.17) yields

p2t − α1c1t + α2c2t = ln(
σ2t
σ1t

)(15.18)

where pit = ln(Pit), cit = ln(Cit). Thus the first order condition (15.17) implies

a restriction that p2(t) − α1c1t + α2c2t be stationary. We call this restriction the

stationarity restriction.

The stationarity restriction summarizes the long-run implication from the de-

mand side. In order to model the supply side in the simplest way, let us consider

an endowment economy without production. Let C∗
it be the endowment of the i-th

good and c∗it = ln(C∗
it), so that cit = c∗it in an equilibrium. In a production economy,

we require that equilibrium consumption satisfies the trend properties of c∗i that we

assume. The trend properties of equilibrium consumption of the i-th good is likely

to be closely related to those of the technology shock to the i-th good industry in a

production economy. The stationarity restriction comes from an assumption of stable

preference shocks in the long-run. Preference parameters can be identified from the

stationarity restriction if the supply side exhibits much more volatility in the long-run

than the demand side. This can be done by assuming that at least one of c∗1t and c
∗
2t

has a stochastic trend. Stable preferences and technological shocks with stochastic

trends seem to be plausible assumptions for identification.4

First, let us consider the case where both c∗1t and c
∗
2t are difference stationary:

Assumption 15.1a The process {c∗it : t ≥ 0} is difference stationary for i = 1, 2.

4Ogaki (1988, 1989) showed that the Hansen and Singleton’s (1982) GMM approach cannot be
applied to the intraperiod first order condition of the addilog utility function when either c∗1t or c

∗
2t

is difference stationary. For this reason, Ogaki (1988, 1989) assumed the trend stationarity for c∗1t
and c∗2t to apply the GMM.
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Assumption 15.1b The processes {c∗1t : t ≥ 0} and {c∗2t : t ≥ 0} are not stochasti-

cally cointegrated.

Assumption 15.1b will be satisfied for equilibrium consumption in a production econ-

omy if the technological shock in the second good industry has a different stochastic

trend component from the technological shock in the food industry. Under assump-

tion 15.1a and 15.1b, the stationarity restriction implies that the stochastic trends

in (p2t, c1t, c2t)
′ are eliminated by a cointegrating vector (1,−α1, α2). The stationar-

ity restriction also implies that the cointegrating vector eliminates the deterministic

trends in (p2t, c1t, c2t)
′. Thus the deterministic cointegration restriction will be satis-

fied under assumption 15.1a and 15.1b.

Second, consider the case where the log of the endowment of one good is differ-

ence stationary and that of the other good is trend stationary. There are two cases

depending on which good is assumed to be trend stationary.

Assumption 15.2 The process {c∗1t : t ≥ 0} is difference stationary, and the process

{c∗2t : t ≥ 0} is trend stationary with a nonzero trend.

Assumption 15.2′ The process {c∗1t : t ≥ 0} is trend stationary with a nonzero

trend, and the process {c∗2t : t ≥ 0} is difference stationary.

Assumption 15.2 or Assumption 15.2′ will be satisfied for equilibrium consumption

in a production economy if the technological shock in one good is trend stationary

and the technological shock in the other good is difference stationary. For example,

Costello (1990, chapter III) analyzed trend properties of Solow residuals of several

industries and found some evidence that the Solow residual of the food industry is

trend stationary and that of other industries is difference stationary.
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Under assumption 15.2′, the stationarity restriction implies that p2t and c2t are

stochastically cointegrated with a cointegrating vector (1, α2)
′ and (p2t, c1t, c2t)

′ is

cotrended with a cotrending vector (1,−α1, α2)
′. The curvature parameters can be

identified from these conditions.

15.4.2 The Time Nonseparable Addilog Utility Function

The intra-period utility function is assumed to be of the addilog form

ut =
n∑

i=1

σit
S1−αi
it − 1

1− αi

,(15.19)

where αi > 0 for i = 1, · · · , n and σi’s represent preference shocks. Here the stochastic

process {(σ1t, · · · , σnt)′ : −∞ < t < ∞} is assumed to be (strictly) stationary. This

includes the case where some or all of σi’s are constant. When αi =1, we interpret

S
1−αi
it −1

1−αi
to be ln(Sit). Here Sit is the service flow from consumption purchases of good

i. Purchases of consumption goods and service flows are related by

Sit = {ai0Cit + ai1Ci,t−1 + · · ·+ aikCi,t−k} exp(θsi t)(15.20)

for i = 1, · · · , n, where Cit is real consumption expenditure for good i in period t.

Following Eichenbaum and Hansen (1990), we allow for the possibility of technological

progress in the transformation of purchases of good i into Sit in (15.20) via the

exponential deterministic trend exp(θsi t). Below, we will consider the case in which

the θsi ’s are known to be zero as well as the case in which the θsi ’s are unknown. Note

that the purchase of one unit of good i at period t increases Si,t+τ by aiτ exp(θ
s
i,t+τ )

units for nonnegative τ ≤ k. This type of method of specifying time-nonseparability

is used by Hayashi (1982), Eichenbaum, Hansen, and Singleton (1988), Eichenbaum

and Hansen (1990), and Heaton (1995), among others.
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In our empirical work, we take a measure of nondurable consumption as one

good (say good 1) and interpret the curvature parameter for nondurable consumption

(α1) as the long-run intertemporal elasticity of substitution (IES) for the consumption

of nondurables.5 As we will discuss in Section 2.4?????????????, this interpretation
Masao

needs to
check this!

relies on the assumption of additive separability across the goods. It should be noted

that this separability assumption is already made in Hansen and Singleton (1982)

and Ferson and Constantinides (1991), both of which use the GMM approach and

are closely related to this paper??????.
Masao

needs to
check this!

Let Pit be the purchase price of consumption good i. We take good 1 as a

numeraire for each period: P1t ≡ 1. The first order condition that equates the relative

price between good i and good 1 (Pit =
Pit

P1t
) with the marginal rate of substitution of

these goods is

Pit =
∂U/∂Cit

∂U/∂C1t

(15.21)

=
Et[
∑k

τ=0 β
τ ∂ut+τ

∂Cit
]

Et[
∑k

τ=0 β
τ ∂ut+τ

∂C1t
]

=
Et[
∑k

τ=0 β
τσi,t+τa

i
τ exp(θ

s
i,t+τ ){Si,t+τ}−αi ]

Et[
∑k

τ=0 β
τσ1,t+τa1τ exp(θ

s
1,t+τ ){S1,t+τ}−α1 ]

.

This first order condition forms the basis of the cointegration approach and summa-

rizes the information needed from the demand side. In order to model the supply side

in the simplest way, let us consider an endowment economy without production. Let

C∗
it be the endowment of good i and c∗it = ln(C∗

it). In equilibrium, cit = ln(Cit) = c∗it.

In a production economy, we require that equilibrium consumption satisfies the trend

properties we assume for c∗it. The trend properties of equilibrium consumption are

5This parameter is the long-run IES for nondurable consumption when we allow current and past
consumption to adjust. When preferences are time nonseparable, the short-run IES is different from
the long-run IES because we take past consumption to be fixed in the short-run.
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likely to be closely related to those of the technology shock to the good i industry in

a production economy.

We consider three alternative assumptions about the trend properties of C∗
it. In

each of the three assumptions,
C∗

it

C∗
i,t−1

is stationary for all i. This assumption ensures

that Sit

Cit exp(θsi t)
is stationary in equilibrium. To see this property, let S∗

it be the Sit

implied by C∗
it and note that

C∗
i,t+τ

C∗
it

is stationary for any fixed integer τ because
C∗

i,t+τ

C∗
it

=

C∗
i,t+τ

C∗
i,t+τ−1

C∗
i,t+τ−1

C∗
i,t+τ−2

· · · C∗
i,t+1

C∗
it

. It follows that the process { S∗
i,t+τ

C∗
it exp(θ

s
i t)

: −∞ < t <∞} is also

stationary for any τ because the right hand side of

S∗
i,t+τ

C∗
it exp(θ

s
i t)

= {ai0
C∗

i,t+τ

C∗
it

+ ai1
C∗

i,t+τ−1

C∗
it

(15.22)

+ · · ·+ aik
C∗

i,t+τ−k

C∗
it

} exp(θsi τ)

is stationary. We also make an extra assumption that the expectation of a stationary

variable conditional on the consumer’s information set is equal to the expectation

conditional on the stationary variables included in his information set. Then

Pit exp(θ
s
1t)[C

∗
1t exp(θ

s
1t)]

−α1

exp(θsi t)[C
∗
it exp(θ

s
i t)]

−αi

is stationary because the right hand side of

Pit exp(θ
s
1t)[C

∗
1t exp(θ

s
1t)]

−α

exp(θsi t)[C
∗
it exp(θ

s
i t)]

−αi
(15.23)

=
Et[
∑k

τ=0 β
τσi,t+τa

i
τ exp(θ

s
i τ){

S∗
i,t+τ

C∗
it exp(θ

s
i t)
}−αi ]

Et[
∑k

τ=0 β
τσ1,t+τa1τ exp(θ

s
1τ){

S∗
1,t+τ

C∗
1t exp(θ

s
1t)
}−α1 ]

is stationary. The right hand side of (15.23) is the ratio of conditional expectations

of the functions of stationary variables.

Taking the natural log of the left hand side, we define zt by

zt = pit − α1c
∗
1t + αic

∗
it + (1− α1)θ

s
1t− (1− αi)θ

s
i t(15.24)
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where pit = ln(Pit), c
∗
it = ln(C∗

it) for i = 1, · · · , n and conclude that zt is stationary.

We shall call this restriction as the stationary restriction. This restriction implies

that pit−α1c
∗
1t+αic

∗
it (= zt− (1−α1)θ

s
1t+(1−αi)θ

s
i t) is trend stationary in general,

and is stationary if and only if (1− α1)θ
s
1 − (1− αi)θ

s
i = 0.

In this section, we study the implications of the stationarity restriction. We

consider only the pair of good 1 and good 2 since our results generalize to any pair

of goods. The stationarity restriction is a result of the assumption of the long-run

stability of preferences. Preference parameters can be identified from the stationarity

restriction if the supply side is substantially more volatile than the demand side in

the long-run. This condition requires the assumption that at least one of c∗1t and c
∗
2t

has a stochastic trend.6 Stable preferences and technological shocks with stochastic

trends seem to be plausible assumptions for identification.

First, consider the case in which both c∗1t and c
∗
2t are difference stationary:7

Assumption 15.3a The process {c∗it : t ≥ 0} is difference stationary for i = 1, 2.

Assumption 15.3b The processes {c∗1t : t ≥ 0} and {c∗2t : t ≥ 0} are not stochasti-

cally cointegrated.

Assumption 15.3b will be satisfied for equilibrium consumption in a production econ-

omy if the technological shock in the good 1 industry has a different stochastic trend

component from the technological shock in the good 2 industry. Under assumption

15.3a and 15.3b, the stationarity restriction implies that p2t−α1c
∗
1t+α2c

∗
2t is trend sta-

tionary. Thus (p2t, c
∗
1t, c

∗
2t)

′ is stochastically cointegrated with a cointegrating vector

6Ogaki (1988) develops an econometric method based on GMM which uses the information in
deterministic trends to estimate the preference parameters of the addilog utility function when both
of c∗1t and c∗2t are trend stationary.

7A special case is that c∗1t and c∗2t are martingale when the real interest rate is constant and C∗
it

is lognormally distributed.
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(1,−α1, α2)
′. However, the deterministic cointegration restriction is not necessarily

satisfied under assumption 15.3a and 15.3b. The stationarity restriction implies that

p2t − α1c
∗
1t + α2c

∗
2t is stationary under the condition that there is no technological

progress in the transformation technology from consumption purchases to service

flows (namely, θsi = 0 for i = 1, 2), Hence, consider the following assumption:

Assumption 15.4 Assumption 15.3a and 15.3b are satisfied and θsi = 0 for i = 1, 2.

Under assumption 15.4, (p2t, c
∗
1t, c

∗
2t)

′ is stochastically cointegrated with a cointegrat-

ing vector (1,−α1, α2)
′ and satisfies the deterministic cointegration restriction.

Second, consider the case where the log of the endowment of good 1 is difference

stationary and that of good 2 is trend stationary:

Assumption 15.5a The process {c∗1t : t ≥ 0} is difference stationary and the process

{c∗2t : t ≥ 0} is trend stationary with a nonzero linear trend.

Assumption 15.5b θsi = 0 for i = 1, 2.

Assumption 15.5a will be satisfied for equilibrium consumption in a production econ-

omy if the technological shock in the good 1 industry is difference stationary and the

technological shock in the good 2 industry is trend stationary. Under assumption

15.5a, the stationarity restriction implies that p2t and c∗1t are stochastically cointe-

grated with a cointegrating vector (1,−α1)
′. Assumption 15.5a is enough to identify

α1. In order to identify α2 as well as α1, we need assumption 15.5b. Under assump-

tion 15.5a and 15.5b, the stationarity restriction implies that (p2t, c
∗
1t, c

∗
2t)

′ is cotrended

with a cotrending vector (1,−α1, α2)
′.
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15.4.3 Engel’s Law and Cointegration

The key assumption for the cointegration approach to estimating preference param-

eters is that preferences are stable over time. Ogaki (1992) tests this assumption by

comparing total expenditure elasticities (income elasticities in the context of the static

models) estimated from time series data obtained by the cointegration approach with

those estimated from household level cross-sectional data. The nonhomotheticity of

preferences studied by Ogaki (1992) also important implications on intertemporal

consumption decisions as in Atkeson and Ogaki (1996).

In cross sectional data, it is widely observed that a higher share of total expen-

diture goes to food for poorer households than is the case for richer households. A

time series counterpart of this observation, Engel’s law, is that the expenditure share

on food declines as the economy grows. Ogaki (1992) tests if Houthakker’s (1960)

addilog utility function can explain both of these cross sectional and time series ob-

servations simultaneously. The cointegration approach is used to estimate parameters

of the addilog utility function governing total expenditure elasticities of demand from

time series data. Information in stochastic and deterministic trends is exploited in

this approach.

Define µ = ∂ ln(C1t)
∂ ln(E(t))

as the total expenditure elasticity of demand for the first

good, using the intraperiod optimization problem. It can be shown that the addilog

utility function implies that the expenditure elasticity of demand for the first good is

µ = {α1

α2

+ ω1t(1−
α1

α2

)}−1,(15.25)

where ωit =
PitCit

Et
is the budget share of the i-th good. Thus the expenditure elasticity

for given levels of Et, C1t, and P2t can be estimated once α1

α2
is estimated.
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Comparing the expenditure elasticities implied by the addilog utility function

estimated from the cointegration approach and the estimates of the elasticities es-

timated from cross-sectional household data provides a tests for the cointegration

approach. The crucial assumption in the cointegration approach is that preferences

are stable relative to the trends in equilibrium consumption expenditures. The most

important factor that could cause problems with this assumption would probably be

trending demographic changes. If this factor causes important problems, then the

cointegration approach estimates from aggregate time series data will differ from the

estimates from cross-sectional data.

Ogaki (1992) shows that the cointegration approach estimates of the expenditure

elasticities from U.S. aggregate time series data are consistent with those from cross-

sectional household data for food, clothing, household operation, and transportation.

These empirical results support the assumption of stable preferences.

It should be noted that the expenditure elasticity is not constant. Suppose that

α1 > α2, so that the first good is a necessary good. For very poor consumers, ωit is

close to one, and the elasticity is equal to one. For very rich consumers, ωit is close

to zero, and the elasticity is equal to α2

α1
. When the relative price is constant, ωit falls

from one to zero as a consumer becomes richer, and the expenditure elasticity falls

from one to α2

α1
.

International comparison of elasticities is also of interest. Houthakker (1957)

finds some tendency for the expenditure elasticity of the demand for food to be higher

in low income countries than in high income countries. However, it seems important

to allow for subsistence levels for low income countries. Atkeson and Ogaki (1996)

estimate the extended addilog utility function, which generalizes the addilog utility
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function by allowing for subsistence levels:

u(C) =
n∑

i=1

θi
1− αi

[(Ci − γi)
1−αi − 1](15.26)

where αi > 0 and θi > 0 for i = 1, · · · , n. We refer to the parameters γi as subsistence

parameters and the parameters αi as curvature parameters. This utility function

contains as special cases two utility functions commonly used in demand studies.

If αi = 1 for i = 1, .., n, then this utility function yields the linear expenditure

system in that the intratemporal demand functions for consumption of each good in

excess of subsistence consumption are linear in expenditure in excess of subsistence

expenditure. More generally, if α1 = α2 = · · · = αn, then these preferences are quasi-

homothetic. If γi = 0 for i = 1, · · · , n, then this utility function is Houthakker’s

(1960) addilog utility function.

Atkeson and Ogaki (1996) discuss technical difficulties in estimating fixed sub-

sistence levels from nonstationary time series data, and estimate them from Indian

household panel data. The cointegration approach is applied to estimate the curvature

parameters in Indian and U.S. aggregate time series data after factoring the estimated

subsistence levels. They find little evidence against the hypothesis that preferences

are identical for Indian and U.S. households when we maintain the hypothesis that

the subsistence levels are the same for the two countries.

Houthakker (1957) finds that the expenditure elasticity of the demand for food

is much lower for the typical Indian household than for the typical U.S. households

in cross-sectional data. This finding can be consistent with identical preferences for

Indian and U.S. households because the extended addilog utility function implies that

the total expenditure elasticity of the demand for food will be different for rich and

poorer households. Ogaki (1992) reports that the extended addilog utility function
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estimated by Atkeson and Ogaki (1996) explains the ratio of Houthakker’s estimates

of the elasticities for India and United States.

15.5 The Cointegration-Euler Equation Approach

This section explains Cooley and Ogaki’s (1996) cointegration-Euler Equation ap-

proach, which combines the cointegration approach to estimating preference parame-

ters with Hansen and Singleton’s (1982) Euler equation approach based on GMM. In

the first step of this approach, a cointegrating regression is applied to an intratempo-

ral first order condition for the household’s maximization problem to estimate some

preference parameters. In the second step, GMM is applied to an Euler equation

after plugging in point estimates from the cointegrating regression in the first step.

Since the first step estimators are super consistent, asymptotic properties of the GMM

estimators in the second step are not affected by the first step estimation.

This section explains Cooley and Ogaki’s application of the approach on the

consumption-leisure choice model for time nonseparable preferences that are addi-

tively separable for consumption and leisure. The next section explains Ogaki and

Reinhart’s (1998) application to estimate the intertemporal elasticity of substitution

when preferences are nonseparable over nondurable and durable goods.

Cooley and Ogaki reexamine whether the time series properties of aggregate

consumption, real wages, and asset returns are consistent with a simple neoclassi-

cal representative agent economy. Previous empirical explorations of this issue have

rejected the neoclassical model in large part because the marginal rate of substitu-

tion between consumption and leisure does not equal the real wage as is implied by

the first order conditions of the model. They argue that an optimal labor contract
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model is more appropriate for understanding the time series behavior of real wages

and consumption. They show that a version of the optimal contract model restricts

the long-run relation between real wages and consumption. They exploit this long-

run restriction (cointegration restriction) to estimate preference parameters and test

the model. First, they employ the cointegration approach to estimate the long-run

intertemporal elasticity of substitution for nondurable consumption from a cointe-

grating regression. They test the model by testing for the cointegration restriction.

As further analysis, they use this estimated preference parameter in the asset

pricing equation implied by this economy to estimate the discount factor and a coeffi-

cient of time-nonseparability using Hansen’s (1982) Generalized Method of Moments

(GMM). From this they are able to construct another specification test of the model.

Mankiw, Rotemberg, and Summers (1985, hereafter Mankiw et al.) subjected

the Euler equations of an intertemporal labor supply model to a battery of tests and

found no evidence to support it. Not only did their formal tests reject the model,

but their point estimates of preference parameters implied a convex utility function.

They concluded that the observed “· · · economic fluctuations do not easily admit of

a neoclassical interpretation.”

Eichenbaum, Hansen, and Singleton (1988, hereafter Eichenbaum et al.) also

used the Euler equation approach, but their point estimates of preference parameters

were more reasonable. They attributed their different finding to two factors. First,

they removed trends by taking growth rates of variables and taking ratios of variables

while Mankiw et al. did not. Second, Eichenbaum et al. allowed time-nonseparability

of preferences. Though their point estimates were reasonable, their formal test statis-

tics typically rejected the model at the one percent level when they tested both asset
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pricing equations and the first order condition that equates the real wage with the

marginal rate of substitution between leisure and consumption. When they removed

the first order condition and tested the asset pricing equations, their tests did not

reject the model. However, the loss of precision of their estimates was substantial

when the first order condition was removed. Eichenbaum et al. interpreted their

results as suggesting that the optimal labor contract model might be appropriate for

understanding real wages.8

A given Pareto optimal allocation can be consistent with a wide variety of

institutional arrangements. In optimal labor contract models (see, e.g, Azariadis,

1975; Rosen, 1985; Wright, 1988), labor income contains a component that provides

workers with some degree of protection against business cycle fluctuations (also see

Hall, 1980). This insurance component of labor income inserts a wedge between

the marginal rate of substitution between leisure and consumption and wages. In

their empirical work, Gomme and Greenwood (1995) showed that accounting for

this component could help explain the observed pattern of fluctuations in income.

These arguments combined with the findings of Eichenbaum et al. suggest that the

imposition of the requirement that wages equal the marginal rate of substitution

between consumption and leisure is too confining.

Cooley and Ogaki use a restriction on the time series properties of real wages

and consumption that is implied by optimal labor contract to estimate preference

parameters and test the model. In the optimal contract model, the first order con-

dition for real wages and consumption does not hold on a period-by-period basis.

8Osano and Inoue (1991) used an approach similar to Eichenbaum et al. to test the overidentifying
restrictions of Euler equations, using aggregate Japanese data. They also noted that there was much
less evidence against the model when they removed the Euler equation associated with the equation
of real wages and the marginal product of labor.
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They show, however, that a version of the optimal contract model implies that the

real wage rate is equated with the marginal rate of substitution between consumption

and labor in the long- run. They exploit this long-run restriction for estimating and

testing the model.

In contrast to the research cited above, the cointegration approach yields re-

sults that are supportive of the representative agent model. In the first step of our

econometric procedure, we test the null hypothesis of cointegration and estimate the

long-run IES for three measures of nondurable consumption. Cooley and Ogaki do

not reject the null of cointegration and obtain reasonable estimates. The long-run

IES appears in the asset pricing equation derived from the representative consumer

model. Cooley and Ogaki use the estimated IES parameter from the cointegrating

regression in the first step in the asset pricing equation and apply GMM to estimate

the discount parameter and a coefficient of time-nonseparability. They use both stock

and nominal risk free returns. They form a specification test a la Hausman (1978)

through these steps. This specification test does not reject the model.

15.5.1 The Economy

We consider an economy populated by N households who have preferences defined

over consumption and the flow of services from their leisure time. Each household

maximizes

U = E0[
∞∑
t=0

βtut](15.27)

where Et denotes the expectation conditioned on the information available at t. In or-

der to develop intuition, let us first consider a simple intraperiod utility function that

is assumed to be time- and state-separable and separable in nondurable consumption,
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durable consumption, and leisure

ut =
C1−α

t − 1

1− α
+ v(lt)(15.28)

where v(·) is a continuously differentiable concave function, Ct is nondurable con-

sumption, and lt is leisure.

For now, assume that real wages do not contain any insurance component. Then

the usual first order condition for a household that equates the real wage rate with

the marginal rate of substitution between leisure and consumption is:

Wt =
v′(lt)

C−α
t

(15.29)

where Wt is the real wage rate. We assume that the stochastic process of leisure

is (strictly) stationary in the equilibrium as in Eichenbaum, Hansen, and Singleton

(1988) and that the random variables used to form the conditional expectations for

stationary variables are stationary. Then an implication of the first order condition

is that ln(Wt) − α ln(Ct) = ln(v′(lt)) is stationary. When we assume that the log of

consumption is difference stationary, this assumption implies that the log of the real

wage rate and the log of consumption are cointegrated with a cointegrating vector

(1,−α)′. We exploit this cointegration restriction to identify the curvature parameter

α from cointegrating regressions.

Given that the saving rate is stable in the long-run in the U.S. (as Kuznets,

1946, found), it is natural to impose a restriction that the ratio of total consumption

expenditure and labor income is stable at least when a consumer is rich enough. Since

we assume that consumption and leisure are additively separable in intertemporal

preferences, this restriction implies that α is equal to one when total consumption

expenditure is used as Ct in our model. In our empirical work, we use a measure
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of nondurable consumption as Ct, assuming that the other consumption goods (say,

durable consumption goods) are additively separable from the measure of nondurable

consumption good used in our analysis. For this reason, α can be different from one

even when the saving rate is stationary for rich enough consumers.9
Masao

needs to
check this!

We now introduce time-nonseparability of preferences. The intraperiod utility

function is assumed to be

ut =
S1−α
t − 1

1− α
+ v(lt, lt−1, ..., lt−k),(15.30)

where St is the service flow from nondurable consumption:

St = Ct + λCt−1.(15.31)

This type of time nonseparable specification of leisure has been used by many authors

and is useful because it can capture the fact that households may use leisure time in a

household production technology to augment a stock of household capital (Kydland,

1984; Greenwood and Hercowitz, 1991; Benhabib, Rogerson, and Wright, 1991).

The time-nonseparable specification for nondurable consumption is similar to

that considered by Eichenbaum, Hansen, and Singleton (1988), Eichenbaum and

Hansen (1990), Constantinides (1990), Heaton (1993, 1995), Allen (1992), and Braun,

Constantinedes, and Ferson (1993) among others, except that some of these authors

considered a more general form of time-nonseparability for nondurable consumption

than (15.31). We have habit formation for nondurable consumption when λ is neg-

9Since many economic models imply known cointegrating vectors when the log of the variables
are taken and because an attractive feature of cointegration is that unknown parameters can be
estimated without exogeneity assumptions, the fact that α is unknown in the model is impor-
tant. For this reason, this point that α can be different from one is explained in details in the
Appendix.???????????????
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ative and local substitutability or durability when λ is positive.10 Note that the

time-nonseparability does not affect the IES in the long-run when Ct and Ct−1 are

equal.11 We will refer to 1
α
as the long-run IES for nondurable consumption.

The usual first order condition for a household that equates real wage rate with

the marginal rate of substitution between leisure and consumption is now:

Wt =
∂U/∂lt
∂U/∂Ct

(15.32)

=
Et[
∑K

τ=0 β
τ ∂ut+τ

∂lt
]

Et[
∂ut

∂Ct
+ ∂ut+1

∂Ct
]

=
Et[
∑K

τ=0 β
τ ∂vt+τ

∂lt
]

Et[S
−α
t + βλS−α

t+1]
.

We assume that ln(Ct) is difference stationary in the equilibrium. Then

St+τ

Ct

=
Ct+τ

Ct

+ λ
Ct+τ−1

Ct

(15.33)

is stationary for any τ . Combined with the first order condition (15.32), it follows

that

WtC
−α
t =

Et[
∑K

τ=0 β
τ ∂vt+τ

∂lt
]

Et[{ St

Ct
}−α + βλ{St+1

Ct
}−α]

(15.34)

is stationary. Taking logs, ln(Wt) − α ln(Ct) is stationary as in the time-separable

case we discussed.

In Cooley and Ogaki’s empirical work, they estimate and test the first order

condition (15.32) through the cointegration restriction for aggregated real wages and

consumption. They also estimate and test the standard asset pricing equation for the

10The time-nonseparability for nondurable consumption allows us to separate the IES in the short-
run and the reciprocal of the RRA coefficient as Constantinides (1990) described, which could help
explain the equity premium puzzle of Mehra and Prescott (1985). Ferson and Constantinides (1991)
found evidence in favor of the asset pricing model with habit formation, using GMM.

11Alternatively, Ct grows at a constant rate in the long-run.
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time-nonseparable utility function

Et[β{S−α
t+1 + βλS−α

t+2}Rt+1]

Et[S
−α
t + βλS−α

t+1]
= 1(15.35)

for any gross asset return Rt.

In optimal labor contract models, labor income contains a component that

provides workers with some degree of protection against business cycle fluctuations.

This insurance component of labor income inserts a wedge between the marginal rate

of substitution between leisure and consumption and wages. To utilize information

in the first order condition (15.32) for estimation and testing, we start from the

observation that the cointegration restriction is robust as long as the measured wage

rate has the same trend as the marginal rate of substitution. Even when there is a

wedge between the real wage rate and the marginal rate of substitution, the stationary

restriction holds as long as the insurance component does not have (stochastic or

deterministic) trends. Intuition suggests that the fraction of the insurance component

in the wage rate is likely to be stationary rather than trending. Cooley and Ogaki

formalize this intuition by considering a version of an optimal contract model.

15.5.2 The 2-Step Estimation Method

In the first step, a cointegration regression is used to estimate α from the stationarity

restriction. Since the log real wage rate and log consumption are cointegrated, either

variable can be used as a regressand. In finite samples, the empirical results will be

different depending on the choice of the regressand. However, the results should be

approximately the same as long as cointegration holds and the sample size is large

enough.

The econometric model for our GMM procedure is based on the asset pricing
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equation (15.35), which implies Et(ϵ
0
gt) = 0, where

ϵ0gt = β[(Ca,t+1 + λCa,t)
−α + λβ(Ca,t+2 + λCa,t+1)

−α]Rt+1(15.36)

−[(Ca,t + λCa,t−1)
−α + λβ(Ca,t+1 + λCa,t)

−α]

where Ca indicates aggregate nondurable consumption. We define

ϵgt =
ϵ0gtg(λ)

(1 + βλ){Ca,t + λCa,t−1}−α

where g(λ) = 1 if λ ≤ 1 and g(λ) = 1 + (λ − 1)2 if λ > 1. We use ϵgt as the

disturbance for the GMM estimation. Since the scale factor g(λ)
(1+βλ){Ca,t+λCa,t−1}−α is

in the information available at t, Et(ϵgt) = 0. We scale the disturbance to achieve

stationarity required for the GMM,12 to avoid the trivial solutions that cause an

identification problem, and to incorporate the prior information that λ is likely to

be smaller than one in absolute value.13 Even though the asymptotic theory justifies

this type of scaling, small sample properties of the GMM estimator are affected by

the choice of the scaling factor. For this reason, the g(λ) function is designed not

to affect the disturbance when λ ≤ 1: we have little prior information about which

admissible value of λ is more plausible when the absolute value of λ is less than

one. The disturbance term is MA of order one because of the time-nonseparable

specification. The weighting matrix for the GMM estimation must take account of

the serial correlation.

A formal test statistic can be formed by using the estimate of α from the

cointegrating regression in the GMM procedure to obtain restricted estimates. In this

12The stationarity assumption of the GMM can be relaxed to some extent, but unit-root nonsta-
tionarity is not allowed. Hence the stationary inducing transformation is necessary for our model.

13Certain values of λ are not admissible because Ca,t + λCa,t−1 cannot be negative. In order to
exclude these values in the GMM nonlinear search, a very large positive number was returned as
ϵgt when they are tried. The numerical derivative program was modified accordingly. See Ogaki
(1993b) for details.
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restricted GMM estimation, we estimate only β and λ. We use the same weighting

matrix to form unrestricted estimates. We then take the difference of Hansen’s (1982)

chi-square test (Hansen’s JT test) statistic for the overidentifying restrictions from

the restricted estimation and that from the unrestricted estimation, in which β, λ,

and α are estimated. The difference is the likelihood ratio type test (denoted by CT ),

which has an asymptotic chi-square distribution with one degree of freedom.14 This

two step procedure does not alter the asymptotic distribution of GMM estimators

and test statistics because our cointegrating regression estimator is super consistent

and converges at a rate faster than
√
T .

15.5.3 Measuring Intertemporal Substitution: The Role of
Durable Goods

[To Be added??????]
Masao

needs to
check this!

15.6 Purchasing Power Parity

[?????? This section is incomplete]
Masao

needs to
check this!

Assume that there is only one good in the world economy, and that the law

of one price for the word economy (called Purchasing Power Parity (PPP)) holds at

each point in time. Let Pt be the domestic price of the good, and P F
t be the foreign

price of the good at t. Define the real exchange rate as

Sr
t =

StP
F
t

Pt

(15.37)

When the good is measured with the same unit in the two countries, PPP implies that

the real exchange rate is equal to one. This version of PPP is called absolute PPP.

14See, e.g., Ogaki (1993a) for an explanation of the likelihood ratio type test for GMM.
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When the good is measured with different units in the two countries, PPP implies

that the real exchange rate is constant. This version of PPP is called relative PPP.

Two cases are worth noting. First, if infinitely many stationary random variables

are involved in an economic model, it is often possible to show that an infinite sum

of a series of random variables (or vectors) converges to a stationary random variable

(or vector). Then it is possible to use Proposition ??.??.
Masao
needs to
check this!

Exercises

15.1 Suppose that a representative consumer maximizes the life time utility function

U = E0

∞∑
t=0

βtut(15.E.1)

at time 0, where Et(·) denotes expectations conditional on the information available

at time t, It, subject to a life time budget constraint in an Arrow-Debreu economy

with two goods. The intra-period utility function is assumed to be

ut =
C1−α1

1t − 1

1− α1

+ σ2
S1−α2
2t − 1

1− α2

(15.E.2)

where αi > 0 for i = 1, 2 and

S2t = eθt(C2t + δC2,t−1)(15.E.3)

is service flow from purchases of the second consumption good. Let P2t be the pur-

chasing price of the second good in terms of the first good and Rt be the ex post

gross rate of return of an asset in terms of the second good. Assume that {Ci,t+1

Cit
} is

stationary for i = 1, 2.

(a) Write down the parametric form of the first order condition that p2t, C1t, C2,t−1, C2t

and C2,t+1 should satisfy in an equilibrium. Explain your answer.
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(b) Show that ln S2t

C2t
is trend stationary.

(c) Give the definitions of stochastic cointegration and the deterministic cointegra-

tion restriction. In each of the following cases, which variables are stochasti-

cally cointegrated? Give a cointegrating vector and explain whether or not the

deterministic cointegration restriction is satisfied for these variables that are

stochastically cointegrated. Explain your answers.

Case 1: θ = 0 and lnCit is difference stationary for i = 1, 2.

Case 2: θ ̸= 0 and lnCit is difference stationary for i = 1, 2.

Case 3: θ = 0 and lnC1t is difference stationary, and lnC2t is stationary.

Case 4: θ ̸= 0 and lnC1t is difference stationary, and lnC2t is stationary.

Case 5: θ = 0 and lnC1t is difference stationary, and lnC2t is trend stationary with

a nonzero linear trend.

Case 6: θ ̸= 0 and lnC1t is difference stationary, and lnC2t is trend stationary with

a nonzero linear trend.

15.2 Take nondurables as the first good and durables in the national account as

the second good in Ogaki’s (1992) model. To obtain per equivalent adult consump-

tion, place an weight of 1 for the civilian noninstitutional population with ages 16

and over, and 0.55 on the rest of the total population. The consumption data are

in QNRND91.DAT(nondurables) and QNRD91.DAT(durables). These files also include

data descriptions in detail. These quarterly data files contain the current dollar con-

sumption in the first column and the 1987 dollar consumption in the second column

over the period 1947:1-1993:4. The population data are in MPOP92.DAT which con-

tains the total population in the first column and the total civilian noninstitutional
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population with ages 16 and over in the second column. This monthly data cov-

ers 1947:1-1992:1. Take the quarterly average of the equivalent adult population.

Use the sample period 1947:2-1989:4. All the files necessary for this exercise are in

http://economics.sbs.ohio-state.edu/ogaki. You can modify and rename *.EXP file for

each of the *.SET file mentioned in the problems. Imagine that you were reporting

your empirical results in a section of a paper to be published in a professional journal.

Report results in tables and explain purposes of tests and your results.

(a) Report G(1, q) test statistics with q = 2, 3 for lnC1t and lnC2t with non-

prewhitened QS kernel. Use GPQ.SET.

(b) Report augmented Dickey-Fuller (Said-Dickey) test statistics for lnC1t and

lnC2t.

(c) Report the third stage CCR estimators for preference parameters with lnC1t as

the regressand. Also report H(0, 1), H(1, q) test statistics with q = 2, 3, and

Wald test statistics for the null hypothesis α1 = α2 = 1 from the fourth stage

CCR with the singular values for the prewhitening VAR matrix bounded by

0.99 and the automatic bandwidth parameter bounded by
√
T where T is the

sample size. Use CCR.SET.
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Chapter 16

VECTOR AUTOREGRESSIONS
WITH UNIT ROOT
NONSTATIONARY PROCESSES

This chapter explains econometric methods related to VARs and cointegration. We

first introduce a broader concept of cointegration that allows us to treat the case in

which a vector time series includes both stationary and nonstationary variables. In

the previous chapters, cointegration is only defined for a vector time series that does

not include stationary variables. Then we discuss a method to impose long-run re-

strictions for VARs with stationary variables for which the nonstationary variables in

the vector time series are not cointegrated. We will explain various representations of

a cointegrated system such as Vector Error Correction Model (VECM) and Phillips’

triangular representation. Then we will present methods to impose long-run restric-

tions imposed on Phillips’ triangular representation and VECM representation. We

will introduce a structural Error Correction Model (ECM) by considering a foreign

exchange rate model in which prices and the exchange rate adjusts toward a long-run

equilibrium level. A method to estimate the structural speed of the adjustment coef-

ficient toward the long-run equilibrium level will be discussed. In the Appendix, we

400
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will discuss long-run and short-run restrictions imposed on VECM.

16.1 Identification on Structural VAR Models

16.1.1 Long-Run Restrictions for Structural VAR Models

Blanchard and Quah (1989) propose using long-run restrictions to identify the under-

lying shocks in a VAR system. Let yt be the logarithm of GDP and ut be the level

of the unemployment rate. Here yt is assumed to be difference stationary and ut is

assumed to be stationary. Let yt = (∆yt, ut)
′, and let et = (est , e

d
t )

′ be the underlying

shocks of the economy, where edt is the demand shock, and est is the supply shock. It

is assumed that the demand and supply shocks are uncorrelated, and that yt has an

MA representation in terms of et:

yt = µ+Φ(L)et(16.1)

= µ+Φ0et +Φ1et−1 +Φ2et−2 + · · · ,

where Φ(1) is normalized so that its principal diagonal components are 1’s, and

E(ete
′
t) = Λ.

The long-run restrictions are that the demand shock does not have any long-run

effect, and the supply shock does not have any long-run effect on unemployment, but

may have a long-run effect on the level of output. These restrictions imply that the

matrix Φ(1) is lower triangular.

Let yt = µ + Ψ(L)ϵt be the Wold representation, which can be estimated by

inverting the VAR representation for yt. Then ϵt = Φ0et, Σϵ = E(ϵtϵ
′
t) = Φ0ΛΦ′

0,

and Φj = ΨjΦ0 for all j. Once Φ0 is known, we can obtain et from ϵt, and Φj from

Ψj. Is Φ0 identified? An informal argument by Blanchard and Quah suggest that
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it is. Given Σϵ, the equation Φ0ΛΦ′
0 = Σϵ gives three restrictions because Σϵ is

symmetric. Given Ψ(1), the equation that the upper right-hand entry of Φ(1) is zero

gives one more restriction. There exist four restrictions for four unknown parameters

in Φ0.

The assumption that Φ(1) is lower triangular gives n(n−1)
2

necessary conditions.

From Φ(1)et = Ψ(1)ϵt it follows

Φ(1)ΛΦ(1)′ = Ψ(1)ΣϵΨ(1)′.(16.2)

Let P be a lower triangular matrix of the Cholesky decomposition of Ψ(1)ΣϵΨ(1)′

so that PP′ = Ψ(1)ΣϵΨ(1)′. Then,

Φ(1) = PΛ− 1
2(16.3)

and

Φ0 = Ψ(1)−1Φ(1),(16.4)

whereΛ = [diag(P)]2. Lastrapes and Selgin (1995) apply this model to study liquidity

effects using yt = [rt, yt, (mt − pt),mt]
′.

Gaĺı (1999) uses similar long-run restrictions to identify shocks. The main

methodological difference from Blanchard and Quah is that Gali uses different vari-

ables, log productivity and log hours. Log productivity replaces log GDP. Log hours

(or the first difference of log hours) replaces the unemployment rate. The log GDP and

unemployment rate used by Blanchard and Quah can lead shocks such as government

purchases and permanent labor-supply shocks to be mislabeled as the technological

shock. Gali defines correlation of two variables when all shocks but one are shut

down as conditional correlation. The estimated conditional correlations of hours and
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productivity are negative for nontechnology shocks. Hours how a persistent decline

in response to a positive technology shock. These findings are hard to reconcile with

a RBC model, but are consistent with a model with monopolistic competition and

sticky price.

16.1.2 Short-run and Long-Run Restrictions for Structural
VAR Models

Gaĺı (1992) uses both short-run and long-run restrictions to identify a structural VAR.

He considers an IS-LM model that consists of output (yt), money supply (mt), the

nominal interest rate (rt), and the price level (pt)
1:

B(L)yt = δ + et(16.5)

where B(L) = B0 −
∑p

i=1BiL
i, B0 has ones on its diagonal, yt = (∆yt,∆rt, rt −

∆pt,∆mt − ∆pt)
′, p is the lag order of VAR, L is the lag operator, and et =

(est , e
ms
t , emd

t , eist )
′ is the vector stochastic process describing supply, money supply,

money demand, and spending (IS) disturbances that are assumed to be serially un-

correlated. Let n denote the dimension of yt, that is, n = 4 in this model.

The model (16.5) can be estimated by the reduced form VAR:

A(L)yt = δϵ + ϵt(16.6)

where A(L) = I −
∑p

i=1AiL
i, A0 = I, and ϵt is the vector of innovations in the

elements of yt. Let Σϵ denote the variance-covariance matrix of ϵt. Provided that B0

is identified, all the structural parameters in (16.5) are computed from the estimates

of (16.6) using δ = B0δϵ and Bi = B0Ai for i = 1, 2, · · · , p. Structural shocks are

also constructed by et = B0ϵt.

1yt, mt, and pt are in logarithms.
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In order to identify B0, Gaĺı (1992) imposes an orthogonality condition (R0)

that the variance-covariance matrix of structural shocks, Λ, is diagonal. FromB0ΣϵB
′
0 =

Λ we have n(n+1)
2

= 10 independent restrictions, and leave n(n−1)
2

= 6 free parameters

in B0.

A second set of restrictions, building on Blanchard and Quah (1989), specifies

that the supply shock has long-run effects on the level of output but the three aggre-

gate demand shocks (ems
t , emd

t , and eist ) have no long-run effects on the level of output

(R1, R2, and R3). These restrictions identify the supply shock (est) from the other

shocks. These restrictions are denoted by Φ(1)1j = 0 for j = 2, 3, and 4.

A third set of restrictions is that the money supply and the money demand

shocks have no contemporaneous effects on output (R4 and R5). These restrictions

identify the IS shock from the two types of monetary shocks. Let Φ(L) = B(L)−1, in

particular, Φ0 = B−1
0 . These two restrictions are denoted by Φ0,1j = 0 for j = 2 and

3.

The final restriction identifies the money supply shock from the money demand

shock. Gaĺı (1992) assumes that the contemporaneous price does not enter the money

supply rule that is denoted by B0,23 +B0,24 = 0 (R6).2

The estimation of Gaĺı (1992) is dramatic, and is well described by Pagan and

Robertson (1995, 1998). From the long-run restrictions (R1 ∼ R3), Φ(1) becomes a

block lower triangular matrix, where Φ(L) = B(L)−1 in (16.5). Inverting Φ(1), we

also have a block lower triangular matrix B(1) so that B12(1) = B13(1) = B14(1) = 0.

We can impose this set of restrictions directly on the coefficients of the structural

2Gaĺı (1992) suggests two more alternative assumptions; contemporaneous output does not enter
the money supply rule (R7) and contemporaneous homogeneity in money demand (R8). In this
section, we focus on (R6).
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VAR. For notational convention, let bij and bs,ij be the (i, j) components of B0 and

Bs, respectively. By imposing these long-run restrictions (R1 ∼ R3), we can repa-

rameterize the first equation of (16.5) as

y1t = −b12∆py2t − b13∆
py3t − b14∆

py4t +

p∑
i=1

bi,11y1,t−i(16.7)

+

p−1∑
i=1

bi,12∆
p−iy2t−i +

p−1∑
i=1

bi,13∆
p−iy3t−i +

p−1∑
i=1

bi,14∆
p−iy4t−i + e1t,

where ∆py2t is, for example, y2t−y2,t−p, and estimate the coefficients by instrumental

variables using yit−1 for ∆pyit for i = 2, 3, 4. Similarly, with the short-run restriction

(R6), we can reparameterize the second equation of (16.5) as

y2t = −b21y1t − b23(y3t − y4t)(16.8)

+

p∑
i=1

bi,21y1,t−i +

p∑
i=1

bi,22y2,t−i +

p∑
i=1

bi,23y3,t−i +

p∑
i=1

bi,24y4,t−i + e2t,

where we use ϵ̂1t, a sample counterpart of the first error in (16.6) from a reduced

form VAR, and ê1t, a sample counterpart of the first shock in (16.7) from a structural

VAR, for y1t and y3t − y4t as an instrument, respectively. This result follows because

ϵ1t is orthogonal to e2t by the short-run restriction (R4) and e1t is orthogonal to e2t

by the orthogonality conditions. The third equation is given by

y3t = −b31y1t − b32y2t − b34y4t(16.9)

+

p∑
i=1

bi,31y1,t−i +

p∑
i=1

bi,32y2,t−i +

p∑
i=1

bi,33y3,t−i +

p∑
i=1

bi,34y4,t−i + e3t,

where ϵ̂1t, ê1t, and ê2t are used as the instrumental variables for y1t, y2t, and y4t,

respectively. The short-run restriction (R5) ensures that ϵ1t is orthogonal to e3t, while

the orthogonality conditions are used for e1t and e2t. Finally, the fourth equation is
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given by

y4t = −b41y1t − b42y2t − b43y3t(16.10)

+

p∑
i=1

bi,41y1,t−i +

p∑
i=1

bi,42y2,t−i +

p∑
i=1

bi,43y3,t−i +

p∑
i=1

bi,44y4,t−i + e4t

and estimated by instrumental variables using ê1t, ê2t, and ê3t for y1t, y2t, and y3t,

respectively from the orthogonality conditions.

The estimation method described above is a two-step instrumental variables

method because the reduced form VAR is estimated in the first step and some of the

residuals estimated in the first step are used for instrumental variables in the second

step.

16.2 Representations for the Cointegrated System

This section introduces four useful representations of a cointegrating system: the

vector moving average representation and Phillips’ triangular representation. For ex-

ample, these representations are useful in developing different methods to impose

long-run restrictions.3 For the illustration below, consider a vector of difference sta-

tionary processes zt = (yt,xt)
′ with a cointegrating vector β = (I,−c′)′.

16.2.1 Vector Moving Average Representation

The cointegrating relationship between yt and x, and the difference stationarity of xt

can be written as

yt = c′xt + ut(16.11)

xt = xt−1 + vt,(16.12)

3Details of these representations are discussed in Section 19.1 of Hamilton (1994).
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where ut and vt are stationary with zero mean.

Differencing (16.11) yields

(16.13) ∆yt = c′∆xt +∆ut = c′vt + ut − ut−1.

Let e1,t ≡ c′vt + ut and e2,t ≡ vt. Then, (16.56) can be written as

∆yt = e1,t − (e1,t−1 − c′e2,t−1) = (I− L)e1,t + c′Le2,t.

Stacking this along with (16.12) in a vector system yields the vector moving average

representation for (∆yt,∆xt)
′,[
∆yt

∆xt

]
= Φ(L)

[
e1,t
e2,t

]
,

where

Φ(L) ≡
[
I− L c′L
0 I

]
.

Note that the polynomial Φ(z) has a root at unity, |Φ(1)| = 0, and hence is non-

invertible. This suggests that ∆zt cannot be represented by any finite-order vector

autoregression since [Φ(L)]−1∆zt = et does not exist.

Stationarity of β′zt requires that the vector moving average representation sat-

isfies two necessary conditions. First, the matrix polynomial associated with the

moving average must satisfy

β′Φ(1) = 0.

Further, if some of the series in zt exhibit nonzero drift and thus include the deter-

ministic trend component µzt,

zt = µzt+ z0t ,

where µz ̸= 0, and z0t is difference stationary without drift, then the stationarity

requires that the deterministic cointegration restriction holds (Engle and Yoo, 1987;
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Ogaki and Park, 1997). That is, the cointegrating vector must eliminate the deter-

ministic trend from the system:

β′µz = 0.

Otherwise, the linear combination β′zt will grow deterministically at the rate β′µz.

16.2.2 Phillips’ Triangular Representation

Phillips’s (1991) triangular representation takes the form:

yt − c′xt = ut,(16.14)

∆xt = vt.(16.15)

To derive this, suppose an n×1 vector zt = (yt,xt)
′ is characterized by h cointegrating

relations. The matrix of h cointegrating vectors can be written as

β′ =


b

′
1

b
′
2
...
b

′

h

 =


1 b12 b13 · · · b1n
b21 b22 b23 · · · b2n
...

...
... · · · ...

bh1 bh2 bh3 · · · bhn

 ,
where the (1,1)-th element has been normalized to unity. After appropriate row

operations, it can be transformed as

β′ =


1 0 · · · 0 b∗1,h+1 b∗1,h+2 · · · b∗1,n
0 1 · · · 0 b∗2,h+1 b∗2,h+2 · · · b∗2,n
...

... · · · ...
...

... · · · ...
0 0 · · · 1 b∗h,h+1 b∗h,h+2 · · · b∗h,n

 =
[
Ih −c′

]
.

Therefore, with zt correspondingly partitioned into an h×1 vector yt and a (n−h)×1

vector xt,

β′zt =
[
Ih −c′

] [ yt

xt

]
= yt − c′xt

is stationary in equation (16.57). Equation (16.58) comes from the assumption that

zt is difference stationary. Thus, in Phillips’ triangular representation, variables on
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the left hand side are all stationary, and are expressed in the form of the moving

average.

The triangular representation has been widely used for estimating cointegrating

vectors. One of the reasons is that when presented in this way, the model’s (unknown)

coefficients appear only in equation (16.57). Therefore, we can estimate the cointe-

grating relationship using standard estimation methods for a system of simultaneous

equations.

As an example of Phillips’ representation, consider the 4-variable system of

Shapiro and Watson (1988). The model consists of four variables: labor input ht,

output yt, the inflation rate πt, and the long-run real interest rate it − πt. In the

short-run, these variables deviate from their long-run steady state values due to four

types of serially uncorrelated shocks: labor supply shocks vt, technological shocks et,

and two aggregate demand shocks ν1t and ν2t . Labor supply shocks and technology

shocks are uncorrelated with each other and with the aggregate demand shocks. In

this model, all shocks are assumed to have only short-term effects on the real interest

rate. That is, the nominal interest rate and the inflation rate are cointegrated so the

real interest rate is stationary. Let

zt = [ it πt ht yt ]′,

with a cointegrating vector

β′ = [ 1 −1 0 0 ].

We can partition zt into z1,t = it, and z2,t = ( πt ht yt )′. With the model’s long-
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run restrictions, Phillips’ triangular representation for this cointegrating system is

it − πt = c1 +Φi(L)[ vt et ν1t ν2t ]′,

∆πt = c2 +Φπ(L)[ vt et ν1t ν2t ]′,

∆ht = c3 +Σh(L)vt + (1− L)Φh(L)[ vt et ν1t ν2t ]′,

∆yt = c4 +Σh(L)vt + α−1Σe(L)et + (1− L)Φy(L)[ vt et ν1t ν2t ]′,

where ci for i = 1, · · · , 4, are constant, and the lag polynomials Σh(L) and Σε(L) are

assumed to have absolutely summable coefficients and roots outside the unit circle.

16.2.3 Vector Error Correction Model Representation

Vector autoregressive models originating with Sims (1980) have the following reduced

form:

A(L)yt = δϵ + ϵt,(16.16)

where A(L) = In −
∑p

i=1AiL
i, A(0) = In, and ϵt is white noise with mean zero and

varianceΣϵ. From the reduced form of the VAR model, A(L) can be re-parameterized

as A(1)L+A∗(L)(1−L), where A(1) has a reduced rank, r < n. Engle and Granger

(1987) showed that there exists an error correction representation:

A∗(L)∆yt = δϵ −A(1)yt−1 + ϵt,(16.17)

where A∗(L) = In −
∑p−1

i=1 A
∗
iL

i, and A∗
i = −

∑p
j=i+1Aj. Since yt is assumed to be

cointegrated I(1), ∆yt is I(0), and −A(1) can be decomposed as αβ′, where α and

β are n× r matrices with full column rank, r.

Monte Carlo experiments of Qureshi (2008) show that for OLS estimates of

level VAR very often exhibit explosive autoregressive roots for typical macro data. In
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contrast, the frequency of encountering explosive roots in OLS estimates of VECM is

much fewer. Because there is a general consensus among macroeconomists that the

absolute value of autroregessive roots is at most one, this is an important advantage

for VECM over level VAR.

16.2.4 Common Trend Representation

Another representation of a cointegrated VAR system is Stock and Watson (1988b)

common trend representation, which is a generalization of Beverage-Nelson decom-

position. Since ∆yt is stationary, we have

(1− L)yt = Φ(L)ϵt.(16.18)

Then

yt =
Φ(L)

1− L
(16.19)

=
Φ(1)

1− L
ϵt +

Φ(L)−Φ(1)

1− L
ϵt

= A

 z1,t
...

zn−r,t

+B(L)ϵt

where zi,t is a random walk and is called a stochastic trend. In a n-variable system,

there exist r cointegration relationship if and only if there exist (n − r) common

stochastic trend.

Example 16.1 If we have income and consumption, yt and ct, such that

yt = zt + eyt(16.20)

ct = zt + ect(16.21)
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where zt is a random walk, and eyt and ect are transitory income and consumption

shock, respectively. Then, (
yt
ct

)
= zt +

(
eyt
ect

)
.(16.22)

where zt is a common stochastic trend. In this case, there is one cointegrating rela-

tionship so that yt − ct = eyt − ect is stationary.

16.3 Long-Run Restrictions on Phillips’ Triangu-

lar Representation

Long-run restrictions can be imposed on Phillips’ Triangular representation. As an

illustration, consider the model of Shapiro and Watson (1988). In this model, yt =

(∆ht,∆yt,∆πt, it − πt)
′, where ht denotes labor supply, yt output, πt inflation, and

it the nominal interest rate. Since ht, yt, and πt are assumed to be I(1), ∆ht, ∆yt,

and ∆πt are stationary I(0). There are three sources of disturbances: labor supply

vt, technology et, and aggregate demand disturbances ν1t and ν2t , and thus et =

(vt, et, ν
1
t , ν

2
t )

′. The first two disturbances may be referred as supply shocks, and

are assumed to be orthogonal and serially uncorrelated, and uncorrelated with the

demand shocks. Since yt has been assumed to be stationary, none of the shocks has

a long-run effect on ∆ht, ∆yt, ∆πt, or it − πt.

Shapiro and Watson (1988) make two identifying restrictions: first, the aggre-

gate demand shocks have no permanent effect on the level of output; and second, the

long-run level of labor supply is exogenous. To impose these restrictions, consider, for

example, the long-run effect of ν1t on yt. In their setup, ϕ23k is the effect of ν1t on ∆yt

after k periods, and therefore
∑l

k=1 ϕ23k is the effect of ν1t on yt itself after l periods.

For ν1t to have no effect on yt in the long run, then we must have that
∑∞

k=0 ϕ23k = 0.
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Thus, the two assumptions impose restrictions that the long-run multipliers from ν1t

and ν2t to ht and yt, and from et to ht are zero. The resulting matrix of long-run

multipliers, Φ(1), is block lower triangular:

Φ(1) =


ϕ11 0 0 0
ϕ21 ϕ22 0 0
ϕ31 ϕ32 ϕ33 ϕ34

ϕ41 ϕ42 ϕ43 ϕ44

.
Because there are no restrictions on ϕ34, this identification scheme cannot be

used to disentangle the two aggregate demand shocks ν1t and ν2t , and only their joint

impact can be estimated.

In order to estimate et and Φ(L) using the observed data, Shapiro and Watson

(1988) follow Blanchard and Quah (1989), and use the block lower triangular structure

of Φ(1) and the assumption that the shocks are serially and mutually uncorrelated.

The Wold representation yt = δ + Ψ(L)ϵt can be obtained by first estimating and

then inverting the VAR representation of yt in the usual way.

The equation for ∆ht can be written as

∆ht =

p∑
j=1

βhh,j∆ht−j +

p∑
j=0

βhy,j∆yt−j +

p∑
j=0

βhπ,j∆πt−j +

p∑
j=0

βhi,j(it−j − πt−j) + vt.

Because the long-run multipliers from et, ν
1
t , and ν2t to ht are zero,

∑p
j=0 βhn,j = 0

for n = y, π, i. Imposing these constrains yields second differences. For example,

consider the long-run restriction of et on ht:

p∑
j=0

βhy,j∆yt−j = βhy,0∆yt + · · ·+ βhy,p−1∆yt−(p−1) + βhy,p∆yt−p

= βhy,0(∆yt −∆yt−1) + (βhy,0 + βhy,1)(∆yt−1 −∆yt−2) + · · ·

+(βhy,0 + βhy,1 + · · ·+ βhy,p−1)(∆yt−(p−1) −∆yt−p)

+(βhy,0 + βhy,1 + · · ·+ βhy,p−1 + βhy,p)(∆yt−p)
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The long-run restriction requires that βhy,0 + βhy,1 + · · · + βhy,p−1 + βhy,p = 0, and

hence the coefficient on ∆yt−p is zero. Thus we have

p∑
j=0

βhy,j∆yt−j = βhy,0∆
2yt + (βhy,0 + βhy,1)∆

2yt−1 + · · ·+ (βhy,0 + βhy,1 + · · ·+ βhy,p−1)∆
2yt−(p−1)

= γhy,0∆
2yt + γhy,1∆

2yt−1 + · · ·+ γhy,p−1∆
2yt−(p−1)

=

p−1∑
j=0

γhy,s∆
2yt−j.

The same operations can be done for
∑p

j=0 βhπ,j and
∑p

j=0 βhi,j as well. The resulting

equation to be estimated is

∆ht =

p∑
j=1

βhh,j∆ht−j+

p−1∑
j=0

γhy,j∆
2yt−j+

p−1∑
j=0

γh,π∆
2πt−j+

p−1∑
j=0

γhi,j(∆it−j−∆πt−j)+vt.

This equation cannot be consistently estimated by OLS because it includes contem-

poraneous values of some of the regressors which are correlated with vt. Therefore,

the IV estimation is used with {∆ht−s,∆yt−s,∆πt−s, it−s − πt−s}ps=1 as instruments.

Similarly, the equation for ∆yt is

∆yt =

p∑
j=1

βyh,j∆ht−j+

p∑
j=1

βyy,j∆yt−j+

p−1∑
j=0

∆2πt−j+

p−1∑
j=0

γyi,j(∆it−j−∆πt−j)+βyvvt+et.

Note that the contemporaneous value of ∆ht do not enter this equation since vt enters

directly. Again, the correlations between et and contemporaneous values of some of

the regressors require that it is estimated by the IV estimation using the same set of

instruments plus {vt−s}ps=1 as instruments.

The equations estimated for ∆πt and πt − it are reduced forms. They are

∆πt =

p∑
j=1

βπh,j∆ht−j+

p∑
j=0

βπy,j∆yt−j+

p∑
j=1

βππ,j∆πt−j+

p∑
j=1

βπi,j(it−j−πt−j)+βπvvt+βπeet+a
1
t ,

and

it−πt =
p∑

j=1

βih,j∆ht−j+

p∑
j=0

βiy,j∆yt−j+

p∑
j=1

βiπ,j∆πt−j+

p∑
j=1

βii,j)it−j−πt−j)+βivvt+βieet+a
2
t .
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The error terms a1t and a2t are linear combinations of the structural aggregate shocks

ν1t and ν2t . Since these disturbances are uncorrelated with the regressions, these two

equations can be estimated by OLS.

16.3.1 Long-run Restrictions and VECM

An alternative method to impose long-run restrictions is to use VECM. As ∆yt is

assumed to be stationary, it has a unique Wold representation:

∆yt = µ+Ψ(L)ϵt,(16.23)

where µ = Ψ(1)δϵ and Ψ(L) = In+
∑∞

i=1ΨiL
i. The above, which is in reduced form,

can be represented in structural form as:

∆yt = µ+Φ(L)et

Φ(L) = Ψ(L)Φ0(16.24)

et = Φ−1
0 ϵt,

where Φ(L) = Φ0+
∑∞

i=1ΦiL
i, and et is a vector of structural innovations with mean

zero and variance Λ.

Long-run restrictions are imposed on the structural form, as in Blanchard and

Quah (1989). Stock and Watson (1988a) developed a common trend representation

that was shown to be equivalent to a VECM representation. When cointegrated

variables have a reduced rank, r, there exist k = n − r common trends. These

common trends can be considered to be generated by permanent shocks, so that et

can be decomposed into (ek′t , e
r′
t )

′, in which ekt is a k-dimensional vector of permanent

shocks and ert is an r-dimensional vector of transitory shocks. As developed in King,

Plosser, Stock, and Watson (1989, 1991, KPSW for short), this decomposition ensures
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that

Φ(1) =
[
A 0

]
,(16.25)

where A is an n×k matrix and 0 is an n×r matrix with zeros, representing long-run

effects of permanent shocks and transitory shocks, respectively. In order to identify

permanent shocks, in general, causal chains, in the sense of Sims (1980), are imposed

on permanent shocks:

A = ÂΠ,(16.26)

where Â is an n×k matrix, and Π is a k×k lower triangular matrix with ones in the

diagonal. As Jang (2001a) shows, Â is constructed using the cointegrating vectors:

Â = β̂⊥.(16.27)

See Appendix 16.A for detail.

16.3.2 Identification of Permanent Shocks

The main interest lies in the identification of structural permanent shocks, not in

structural transitory shocks.4 Following KPSW, we decompose Φ0 and Φ−1
0 as:

Φ0 =
[
H J

]
, Φ−1

0 =

[
G
E

]
(16.28)

where H,J,G and E are n× k, n× r, k × n, and r × n matrices, respectively. Note

that the permanent shocks are identified once H (or G) is identified, and that these

two matrices have a one-to-one relation, G = ΛkH′Σ−1
ϵ , where Λk is the variance-

covariance matrix of permanent shocks, ekt .
5 Therefore, the above decomposition of

Φ0 does not generate additional free parameters.

4Fisher, Fackler, and Orden (1995) consider the identification of transitory shocks imposing causal
chains on transitory shocks.

5One can easily derive this relation from the relation Φ−1
0 Σϵ = ΛΦ′

0.
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The identifying scheme below basically follows that of KPSW, but enables one

to generalize their model as described below. See Jang (2001a) for details. Following

KPSW, let D = (β̂
′
⊥β̂⊥)

−1β̂
′
⊥Ψ(1) and P be a lower triangular matrix chosen from

the Cholesky decomposition of DΣϵD
′. Then Π and Λk are uniquely determined by

Π = P(Λk)−
1
2 ,(16.29)

where Λk = [diag(P)]2, and H and G are identified by

H =

[
D

α′Σ−1
ϵ

]−1 [
Π
0

]
(16.30)

and

G = ΛkH′Σ−1
ϵ .(16.31)

Accordingly, the permanent shocks and the short run dynamics are identified by

ekt = Gϵt(16.32)

and

Φ(L)k = Ψ(L)H,(16.33)

where Φ(L)k denotes the first k columns of Φ(L).

The specific solutions forH andG in the form of matrices enable one to general-

ize the model. Jang (2001b) considered a structural VECM in which structural shocks

are partially identified using long-run restrictions and are fully identified by means of

additional short-run restrictions (See Jang, 2001b, for the method of identification in

structural VECMs with short-run and long-run restrictions). Jang and Ogaki (2001)

consider a special case, where impulse response analysis is used to examine the effects
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of only one permanent shock, and the recursive assumption on the permanent shocks

in (16.26) can be relaxed, which implies Π is lower block triangular. Note that we

can compute the impulse responses to the kth shock as long as the kth column of H,

Hk, is identified. Note also that the third column of Π does not contain any unknown

parameters. Analogous to (16.30), Hk is identified by

Hk =

[
D

α′Σ−1
ϵ

]−1

Sk(16.34)

where Sk is an n-dimensional selection vector with one at the kth row and zeros at

other rows. Similarly, Gk is identified by:

Gk = Λk
k,kH

′
kΣ

−1
ϵ(16.35)

and it follows from the identity relation of GH = Ik that

Λk
k,k = (H′

kΣ
−1
ϵ Hk)

−1,(16.36)

where Λk
k,k is the variance of the kth permanent shock. Thus, the kth permanent shock

is identified by

ekt,k = Gkϵt.(16.37)

16.3.3 Impulse Response Functions

Impulse response analysis has been widely used in the applied VAR literature. It is,

however, not straightforward to compute the impulse response from VECMs. The

reduced-form VECM is usually converted to a levels VAR model for impulse response

analysis.6 Noting that the presence of unit roots prevents the inversion of a levels

6Mellander, Vredin, and Warne (1992) provide an algorithm to compute impulse response without
converting VECM to levels VAR following the scheme in Campbell and Shiller (1988) and Warne
(1991).
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VAR model to a moving average (MA) representation, Lütkepohl and Reimers (1992)

suggested the following algorithm to get impulse responses recursively in a cointe-

grated system. First, estimate the reduced-form VECM in (16.17), then convert the

VECM to a levels VAR representation in (16.16) using the following relations:7

Ai =


In −A(1) +A∗

1 i = 1
A∗

i −A∗
i−1 for 2 ≤ i ≤ p− 1

−A∗
p−1 i = p.

(16.38)

Though a Wold representation does not exist in the presence of unit roots, Lütkepohl

and Reimers (1992) showed that impulse responses can be recursively computed by

Ψm =

p∑
l=1

Ψm−lAl, m = 1, 2, 3, · · ·(16.39)

Φm = ΨmΦ0,(16.40)

where Ψ0 = In, Φm = (ϕm,ij), and ϕm,ij is an m-step response of the ith variable to

the jth innovation.8 In particular, the impulse response function of permanent shocks

in this paper is calculated by9

Φk
m = ΨmH, m = 1, 2, · · · .(16.41)

As a special case, discussed in Section 16.3.2, the impulse response function of

the kth permanent shock is uniquely calculated from

Φk
m,k = ΨmHk, m = 1, 2, · · ·(16.42)

where Φk
m,k is equivalent to the kth column of Φk

m in (16.41).

7We assume that n > p without any loss of generality.
8This algorithm can be simplified by rewriting VAR in (16.16) as a companion VAR(1) form.

Then, Ψm is the first n row and n column submatrix of Am
c , in which Ac is a companion form

coefficient matrix.
9One may calculate the impulse response to a one standard deviation permanent shock by

ΨmH(Λk)
1
2 .
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16.3.4 Forecast-Error Variance Decomposition

Denoting the h-step forecast error by

yt+h − Etyt+h =
∞∑
i=0

Ψi(ϵt+h−i − Etϵt+h−i)(16.43)

=
h−1∑
i=0

Ψiϵt+h−i,

the forecast error variance is computed by the diagonal components of

E(yt+h − Etyt+h)
2 =

h−1∑
i=0

ΨiΣϵΨ
′
i.(16.44)

In particular, the forecast error variance of the lth variable, yl,t+h, is computed by

h−1∑
i=0

Ψi,l·ΣϵΨ
′
i,l·(16.45)

where Ψi,l· denotes the lth row of Ψi.

To isolate the fraction of the forecast error variance attributed to permanent

shocks, it is convenient and necessary to decompose the contribution of permanent

shocks and transitory shocks as follows:

yt+h − Etyt+h =
∞∑
i=0

ΨiΦ0(et+h−i − Etet+h−i)(16.46)

=
h−1∑
i=0

Ψi

[
H J

] [ ekt+h−i

ert+h−i

]
,

where Ψi is defined in (16.39). Since et is serially uncorrelated,

E(yt+h − Etyt+h)
2 =

h−1∑
i=0

Ψi

[
H J

] [ Λk 0
0 Λr

] [
H′

J′

]
Ψ′

i(16.47)

=
h−1∑
i=0

Ψi(HΛkH′ + JΛrJ′)Ψ′
i.
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Therefore, the contribution of permanent shocks to forecast error variance of the

h-step forecast is estimated by the diagonal components of

h−1∑
i=0

Φk
iΛ

kΦk′
i .(16.48)

In particular, the contribution of the mth permanent shock, ekm, to the forecast error

variance of the lth variable, yl,t+h, is
10

h−1∑
i=0

(Φk
i,lm)

2Λk
m,m,(16.49)

where Λk
m,m is the variance of the mth permanent shock.

Finally, dividing (16.49) by (16.45) yields the fraction of the h-step forecast

error variance of the lth variable attributed to the mth structural shock.

Section 16.3.2 discusses the special case of the contribution of the kth permanent

shock, ekk, to the forecast error variance of the lth variable, yl,t+h, which is computed

by

h−1∑
i=0

(Φk
i,lk)

2Λk
k,k(16.50)

where Λk
k,k is the variance of the kth permanent shock. Dividing (16.50) by (16.45)

gives the portion of the contribution of the kth structural shock to the h-step forecast

error variance of the lth variable.

16.3.5 Summary

In summary, the estimation and identification of VECM with long-run restrictions

are executed by the following procedure:

1. Select the lag length of VECM using some criteria such as AIC and BIC.

10By the virtue of the assumption that permanent shocks are uncorrelated mutually, we can
separate the contribution of each permanent shock.



422 CHAPTER 16. VAR WITH NONSTATIONARY PROCESSES

2. Estimate cointegrating vectors and determine the rank of cointegrating vectors

in (16.17).

3. Convert VECM to levels VAR using (16.38).

4. Impose long-run restrictions implied by economic theory11, and identify struc-

tural parameters using (16.30) and (16.31).

5. Compute impulse responses to a structural shock using (16.41).

6. Compute forecast-error variance decompositions using (16.45) and (16.49).

7. Compute confidence intervals of impulse responses and standard errors of forecast-

error variance decompositions using Monte Carlo integration as described in

Appendix 16.B.

16.4 Structural Vector Error Correction Models

In this section, we introduce ECM. Let yt be an n-dimensional vector of first difference

stationary and stationary random variables. Let ℓi = (0, ...0, 1, 0, ...0)′ with 1 on the

ith element. If the ith element of yt is stationary, then ℓiyt is stationary. When a time

series includes stationary variables, we extend the definition of cointegration, and say

that yt is cointegrated with ℓi as a cointegrating vector. Suppose that yt has a VAR

representation

yt = δϵ +A1yt−1 +A2yt−2 + · · ·+Apyt−p + ϵt.(16.51)

11For example, one may adopt a long-run restriction that a monetary shock does not affect the
level of real output.
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where δϵ is an n × 1 vector. Just as in Said-Dickey’s reparameterization for the

univariate case, it is convenient to reparameterize Equation (16.51) as

∆yt = δϵ −A(1)yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.52)

where

A(1) = In −
p∑

j=1

Aj and A∗
i = −

p∑
j=i+1

Aj for i = 1, 2, · · · , p− 1.(16.53)

This reparameterization is convenient because −A(1) summarizes the long-run prop-

erties of the series. We assume that there exist r linearly independent cointegrating

vectors, so that β′yt−1 is stationary, where β
′ is a r×n matrix of real numbers whose

rows are linearly independent cointegrating vectors. Then −A(1) = αβ′ for an n× r

matrix of real numbers, α. Hence Equation (16.52) can be written as

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.54)

This representation is called an ECM.

In many applications of standard ECMs, elements in α are given structural

interpretations as parameters of the speed of adjustment toward the long-run equi-

librium represented by β′yt−1. It is of interest to study conditions under which the

elements in α can be given such a structural interpretation. In the model of the next

section, the domestic price level gradually adjusts to its PPP level with a speed of ad-

justment parameter b. We will investigate conditions under which b can be estimated

as an element in α from (16.54).

The standard ECM, (16.54), is a reduced form model. A class of structural

models can be written in the following form of a structural ECM:

B0∆yt = µ∗ +α∗β′yt−1 +B1∆yt−1 + · · ·+Bp−1∆yt−p+1 + et,(16.55)
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where Bi is an n× n matrix, µ∗ is an n× 1 vector, and α∗ is an n× r matrix of real

numbers. Here B0 is a nonsingular matrix of real numbers with ones along its prin-

cipal diagonal, and et is a stationary n-dimensional vector of random variables with

Ê[et|Ht−τ ] = 0, where τ > 0. Even though cointegrating vectors are not unique, we

assume that there is a normalization that uniquely determines β, so that parameters

in α∗ have structural meanings.

In order to see the relationship between the standard ECM and the structural

ECM, we premultiply both sides of (16.55) by B−1
0 to obtain the standard ECM

(16.54), where δϵ = B−1
0 µ∗,α = B−1

0 α∗,A∗
i = B−1

0 Bi, and ϵt = B−1
0 et. Thus the

standard ECM estimated by Engle and Granger’s two step method or Johansen’s

(1988) Maximum Likelihood method is a reduced form model. Hence it cannot be

used to recover structural parameters in α∗, nor can the impulse-response functions

based on ϵt be interpreted in a structural way unless some restrictions are imposed

on B0.

As in a VAR, various restrictions are possible for B0. One example is to assume

that B0 is lower triangular. If B0 is lower triangular, then the first row of α is equal

to the first row of α∗, and structural parameters in the first row of α∗ are estimated

by the standard methods to estimate an ECM.

16.5 An Exchange Rate Model with Sticky Prices

This section presents a simple exchange rate model in which the domestic price adjusts

slowly toward the long-run equilibrium level implied by Purchasing Power Parity

(PPP). Kim, Ogaki, and Yang (2007) use this model to motivate a particular form

of a structural ECM in the previous section. This model’s two main components
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are a slow adjustment equation and a rational expectations equation for the exchange

rate. The single equation method is only based on the slow adjustment equation. The

system method utilizes both the slow adjustment and rational expectations equations.

A similar method was applied to an exchange rate model with the Taylor rule by Kim

and Ogaki (2009).

Let pt (p
∗
t ) be the log domestic (foreign) price level, and et be the log nominal

exchange rate. We assume that these variables are first difference stationary and PPP

holds in the long-run, so that the real exchange rate, pt − p∗t − et, is stationary,

or yt = (pt, et, p
∗
t )

′ is cointegrated with a cointegrating vector (1, -1, -1). Let µ

= E[pt − p∗t − et], then µ can be nonzero when different units are used to measure

prices in the two countries.

Using Mussa’s (1982) model, the domestic price is assumed to adjust slowly to

the PPP level

(16.56) ∆pt+1 = b(µ+ p∗t + et − pt) + Et[p
∗
t+1 + et+1]− (p∗t + et)

where ∆xt+1 = xt+1 − xt for any variable xt, E[· |It] is the expectation operator

conditional on It, the information available to the economic agents at time t, and a

positive constant b (0 ≤ b ≤ 1) is the adjustment coefficient. The idea behind (3) is

that the domestic price slowly adjusts toward its PPP level of p∗t +et, while it adjusts

instantaneously to the expected change in its PPP level. The adjustment speed is

slow (fast) when b is close to zero (one). From (3),

(16.57) ∆pt+1 = d+ b(p∗t + et − pt) + ∆p∗t+1 +∆et+1 + εt+1

where d = bµ , εt+1 = Et[p
∗
t+1 + et+1] − (p∗t+1 + et+1). Hence εt+1 is a one-period

ahead forecasting error, and E[εt+1|It] = 0. (4) can be referred to as the structural
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gradual adjustment equation which implies a first order AR structure for the real

exchange rate. To see this, let st = p∗t + et − pt be the log real exchange rate. Then

(4) implies

(16.58) st+1 = − d+ (1− b)st − εt+1

We define the half-life of the real exchange rate as the number of periods required for

a unit shock to dissipate by one half in (5). Without measurement errors, b can be

estimated by OLS directly from (4). In the presence of measurement errors, IV are

necessary.

Let the money demand equation and the Uncovered Interest Parity (UIP) con-

dition be

(16.59) mt = θm + pt − hit

(16.60) it = i∗t + E[et+1|It]− et

where mt is the log nominal money supply minus the log real national income, it (i
∗
t )

is the nominal interest rate in the domestic (foreign) country. In (6), we are assuming

that the income elasticity of money is one. From (6) and (7),

(16.61) E[et+1|It]− et = (1/h){θm + pt − ωt − hE[(p∗t+1 − p∗t )|It]}

where ωt = mt + hr∗t and r∗t is the foreign real interest rate, r∗t = i∗t −E[p∗t+1|It] + p∗t .

Following Mussa (1982), solving (3) and (8) as a system of stochastic difference

equations

(16.62) pt = E[Ft|It−1]−
∞∑
j=1

(1− b)j{E[Ft−j|It−j]− E[Ft−j|It−j−1]}
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(16.63) et =
bh+ 1

bh
E[Ft|It]− p∗t −

1

bh
pt

where Ft = (1−δ)
∑∞

j=0 δ
jωt+j and δ = h/(1+h). We assume that ωt is first difference

stationary. Since δ is a positive constant that is smaller than one, this implies that

Ft is also first difference stationary. From (9) and (10), et+p
∗
t −pt =

bh+1
bh

∑∞
j=0(1−

b)j{E[Ft−j|It−j]− E[Ft−j|It−j−1]}, which means et + p∗t − pt is stationary.
7

For a structural ECM representation from the exchange rate model, we use

Hansen and Sargent’s (1980; 1982) formula for linear rational expectations models.

From (16.63),

(16.64) ∆et+1 =
bh+ 1

bh
(1− δ)E[

∞∑
j=0

δj∆ωt+j+1|It]−
1

bh
∆pt+1 −∆p∗t+1 + εe,t+1

where εe,t+1 =
bh+1
bh

[E(Ft+1|It+1)−E(Ft+1|It)], so that the law of iterated expectation

implies E[εe,t+1|It] = 0. The system method using Hansen and Sargent’s (1982)

method is applicable because this equation involves a discounted sum of expected

future values of ∆ωt.

Hansen and Sargent’s (1982) method can be applied to this model by projecting

the conditional expectation of the discounted sum, E[δj∆ωt+j+1|It], onto an econo-

metrician’s information set Ht. We take the econometrician’s information set at t,

Ht, to be the one generated by linear functions of current and past values of ∆p∗t . For

simplicity, we follow West (1987) in that we choose a single variable to generate the

information set Ht. In terms of the orthogonality condition, any variable in It can

be used for this purpose.8 Replacing E[
∑∞

j=0 δ
j∆ωt+j+1|It] by the econometrician’s

linear forecast based on Ht in (11), we obtain

(16.65) ∆et+1 =
bh+ 1

bh
(1− δ)Ê[

∞∑
j=0

δj∆ωt+j+1|Ht]−
1

bh
∆pt+1 −∆p∗t+1 + u2,t+1
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where u2,t+1 = εe,t+1 +
bh+1
bh

(1 − δ)E[(
∑∞

j=0 δ
j∆ωt+j+1|It) − Ê(

∑∞
j=0 δ

j∆ωt+j+1|Ht)]

and Ê[u2,t+1|Ht] = 0. Following Hansen and Sargent (1980, 1982) we obtain (See

appendix A.)

(16.66) Ê[
∞∑
j=0

∆ωt+j+1|Ht] = ξ1∆p
∗
t + ξ2∆p

∗
t−1 + ...+ ξp∆p

∗
t−p+1

A system of four equations will be9:

(16.67) ∆pt+1 = d+∆p∗t+1 +∆et+1 − b(pt − p∗t − et) + u1,t+1

(16.68) ∆et+1 = − 1

bh
∆pt+1−∆p∗t+1+αξ1∆p

∗
t +αξ2∆p

∗
t−1+ ...+αξp∆p

∗
t−p+1+u2,t+1

(16.69) ∆p∗t+1 = β1∆p
∗
t + β2∆p

∗
t−1 + ...+ βp∆p

∗
t−p+1 + u3,t+1

(16.70) ∆ωt+1 = γ1∆p
∗
t + γ2∆p

∗
t−1 + ...+ γp−1∆p

∗
t−p+2 + u4,t+1

where α = bh+1
bh

(1− δ) and u1,t+1 = εt+1 with a set of nonlinear restrictions imposed

by (16.66),

ξ0 = γ(δ)[1− δβ(δ)](16.71)

ξj = δγ(δ)[1− δβ(δ)]−1(βj+1 + δβj+1 + ...+ δp−jβp) + (γj + δγj + ...+ δp−jγp)

for j = 1, ..., p. We call (16.67) the gradual adjustment equation, and (16.68)-(16.70)

the Hansen and Sargent equations. Given the data for [∆pt+1, ∆et+1,∆p
∗
t+1,∆ωt+1]

′,

GMM can be applied to the system of four equations, (14)-(17).10

It is instructive to observe the relationship between the structural ECM and

the reduced form ECM in the exchange rate model (See appendix B.). Comparing

G and B shows that the speed of adjustment coefficient for the domestic price is
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b in the structural model, while it is b2h/(bh + 1) in the reduced form model. b

in the structural form is not a deep structural parameter, unlike parameters of a

production function or a utility function. However, it is clearly a parameter of

interest because it determines the half-life of the real exchange rate. The reduced

form speed of adjustment coefficient is a nonlinear function of b, and thus cannot be

directly compared with the half-life estimates in the literature.

16.6 The System Method

Since standard methods of estimating (16.54) may not recover the structural param-

eters of interest in α∗, Kim, Ogaki, and Yang (2001) propose a system method based

on GMM that does not require restrictions on B0.

To apply the system method to (14)-(17) of the exchange rate model, we need

data for ∆ωt, which requires knowledge of h. Even though h is unknown, a cointe-

grating regression can be applied to money demand if money demand is stable in the

long-run, as in Stock and Watson (1993). For this purpose, we augment the model

as follows:

(16.72) mt = θm + pt − hit + ζm,t

where ζm,t is assumed to be stationary so that money demand is stable. By redefining

mt as mt − ζm,t, the same equations as those in section 3.2 are obtained. For the

measurement of ∆ωt, the ex ante foreign real interest rate can be replaced by the ex

post value because of the Law of Iterated Expectations. Using (16.72), we obtain

(16.73) ∆ωt+1 = ∆pt+1 − h∆it+1 + h∆i∗t+1 − h(∆p∗t+2 −∆p∗t+1)

With this expression, ∆ωt can be measured from price and interest rate data once h is
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obtained, even if data for the monetary aggregate and national income are unavailable.

We have now obtained a system of four equations, (16.67)-(16.70). Because

E[ui,t|It−τ ] = 0 and Ê[ui,t|Ht] = 0, we obtain a vector of IV z1,t in It−τ for u1,t and zi,t

in Ht for ui,t (i = 2, 3, 4).11 Using the moment conditions E[zi,tui,t] = 0 for i = 1, ..., 4

we form a GMM estimator, imposing the Hansen-Sargent restrictions and the other

cross-equation restrictions implied by the model.12 Given estimates of cointegrating

vectors from the first step, this system method provides more efficient estimators than

Kim’s (2004) single equation method as long as the restrictions implied by the model

are true.13 The cross-equation restrictions can be tested by Wald, Likelihood Ratio

(LR) type, and Lagrange Multiplier (LM) tests in the GMM framework (see Ogaki,

1993). When restrictions are nonlinear, LR and LM tests are known to be more

reliable than Wald tests.

16.7 Tests for the Number of Cointegrating Vec-

tors

Johansen’s (1988; 1991) maximum likelihood (ML) estimation is based on an error

correction representation:

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.74)

where yt and ϵt are n× 1 vectors of random variables, α and β are n× r matrices of

real numbers, and A∗
i ’s are n × n matrices of real numbers. The first term αβ′yt−1

is called an error correction term.12 Engle and Granger (1987) show that first differ-

ence stationary yt has a possibly infinite order error correction representation with a

12Johansen uses an error correction term αβ′yt−p instead of more conventional αβ′yt−1. However,
these two representations can be shown to be equivalent.
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nonzero α under general regularity conditions if yt is cointegrated with r linear inde-

pendent cointegrating vectors. The columns of β are these cointegrating vectors. It

should be noted that Johansen’s assumption that the error correction representation

of finite order can be very restrictive in some applications. For example, Gregory, Pa-

gan, and Smith (1993) show that linear quadratic economic models with adjustment

costs imply moving average terms in the error correction representation. Phillips’s

(1991) ML estimation method may be useful in these circumstances.

Johansen makes an additional assumption that ϵt is normally distributed and

derives a maximum likelihood estimator for β. In his procedure, all parameters are

jointly estimated and his estimators are asymptotically efficient. Another way to es-

timate an error correction representation is to use Engle and Granger’s (1987) two

step estimation method. In the first step, cointegrating vectors are estimated. For

example, if there is only one linear independent cointegrating vector, it can be esti-

mated by OLS. Other efficient estimators may be used in this first step. Then the rest

of the parameters in the error correction representation are estimated in the second

step. Since cointegrating vector estimators converge faster than
√
T , the first step

estimation does not affect the asymptotic distributions of the second step estimators.

In the second step, only stationary variables are involved, so standard econometric

theory can be used. See 16.C for Johansen’s maximum likelihood estimation and the

cointegration rank test for detail.

Johansen’s (1988; 1991) likelihood ratio tests and Stock and Watson’s (1988a)

tests for common trends are often used to determine the number of cointegrating

vectors in a system. These tests take the null hypothesis that a n×1 vector process yt

has r ≥ 0 linear independent cointegrating vectors (or it has n−r common stochastic
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trends) against the alternative that it has k > r linear independent cointegrating

vectors (or it has n − k common stochastic trends). Hence if r = 0, these statistics

test the null hypothesis of no cointegration against the alternative of cointegration.

Podivinsky’s (1998) Monte Carlo results suggest that there can be severe size

distortion problem with Johansen’s tests when the sample size is small. For example,

when there is no cointegrating vector in the data generation process and when asymp-

totic critical values are used, he finds a tendency for the test with the null hypothesis

of r = 0 to overreject and the test with the null hypothesis of r ≤ 1 to underreject.

16.8 How Should an Estimation Method be Cho-

sen?

There exist many estimation and testing methods for cointegration. It is advisable

for an applied researcher to try at least two methods and check sensitivity of empir-

ical results. When the researcher chooses a main method to be used, the following

considerations naturally come to mind.

16.8.1 Are Short-Run Dynamics of Interest?

If, in addition to cointegrating vectors, the short-run dynamics are of interest, then

it seems (at least conceptually) natural to estimate short-run dynamics and cointe-

grating vectors simultaneously. For example, this process can be done by applying

Johansen’s ML method to estimate an error correction model.

On the other hand, the researcher is often interested in the cointegrating vec-

tor but not in short-run dynamics (see, e.g., Atkeson and Ogaki, 1996; Clarida, 1994,

1996; Ogaki, 1992). In such cases, it is desirable to avoid making unnecessary assump-

tions about short-run dynamics. An estimation method that uses a nonparametric
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method to estimate long-run covariance parameters such as CCR is natural in these

circumstances.

16.8.2 The Number of the Cointegrating Vectors

In some empirical applications, the researcher may have many economic variables

and may not have any guidance from economic models about which variables may be

cointegrated. In such applications, tests for the number of cointegrating vectors are

useful. It should be noted, however, that these tests may not have very good small

sample properties because of the near observational equivalence problem discussed in

Section 13.5. For this reason, it is desirable to use economic models to give some a

priori information about which variables should be cointegrated.

In some applications, an economic model implies that there exist two or more

linearly independent cointegrating vectors. In this case of multiple cointegrating vec-

tors in a cointegrating regression, neither OLS nor CCR can be used to identify coin-

tegrating vectors. Tests for the null of cointegration based on CCR discussed above

also assume that there is only one cointegrating vector and hence cannot be used.

However, it is sometimes possible to use a priori information from economic models

to handle multiple cointegrating vectors with the CCR methodology.13 Johansen’s

ML method has an advantage that it allows multiple cointegrating vectors. However,

as pointed out by Park (1990) and Pagan (1995) among others, cointegrating vectors

may not be identified even by the Johansen’s ML method.

13See Kakkar and Ogaki (1993) for an example of an empirical application.
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16.8.3 Small Sample Properties

It is known that Johansen’s ML estimates and test results can be very sensitive to

the choice of the order of autoregression in empirical applications (see, e.g., Stock

and Watson, 1993). Therefore, it is important to check sensitivity of empirical results

with respect to the order of autoregression when Johansen’s method is used. This

sensitivity may be related to the fact that Johansen’s estimator for a normalized

cointegrating vector has a very large mean square error when the sample size is small

(see Park and Ogaki, 1991). Gonzalo (1993) also reports this property even though

he emphasizes that Johansen’s estimator has good small sample properties when the

sample size is increased. Podivinsky’s (1998) result that Johansen’s likelihood ratio

tests have severe size distortion problems in some circumstances discussed in Section

16.7 may be due to these observations.

Park and Ogaki (1991) find that the CCR estimator typically has smaller mean

square errors than Johansen’s ML estimator when the prewhitening method is used.

Han and Ogaki (1991) find that Park’s tests for the null of cointegration have rea-

sonable small sample properties.

To improve small sample properties of CCR estimators, iterations on the esti-

mation of the long-run covariance parameters are recommended. In empirical appli-

cations of CCR, OLS is typically used as an initial estimator. Since OLS coincides

with CCR when there is no correlation between the disturbance term and the first

difference of the regressors at all leads and lags, the initial OLS may be called the first

stage CCR. The second stage CCR is obtained from the long-run covariance parame-

ters calculated from the first stage CCR estimates. The third stage CCR is obtained

from the long-run covariance parameters calculated from the second stage CCR es-
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timates, and so on. Park and Ogaki (1991) report that the small sample properties

of the third stage CCR estimator are typically better than those of the second stage

CCR estimator. On the other hand, the fourth stage CCR estimator sometimes had

a significantly larger mean square error. For Park’s tests for the null of cointegration

to be consistent, it is necessary to bound both the eigenvalues of the VAR prewhiten-

ing coefficient matrices and the bandwidth parameter estimate. For example, while

using the first order VAR for prewhitening, Han and Ogaki (1991) bound the singular

values of the VAR coefficient matrix by 0.99 and the bandwidth parameter by the

square root of the sample size. When the variables are cointegrated, the CCR estima-

tors have better small sample properties without these bounds. Consequently, they

recommend reporting the third stage CCR estimates without the bounds imposed

and the fourth stage CCR test results with the bounds imposed.

Appendix

16.A Estimation of the Model with Long-Run Re-

strictions

The three variable model in KPSW highlights a real-business-model with permanent

productivity shocks. Under the assumption of constant returns to scale, a production

function with stochastic trends can be described as

yt = log λt + 1− θkt(16.A.1)

log λt = µλ + log λt−1 + ξt(16.A.2)

where yt and kt denote output per capita and capital stock per capita, respectively,

in logarithms. Total productivity, λt, follows a logarithmic random walk, and ξt
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is iid with mean zero and variance σ2. Let ct and it be consumption per capita

and investment per capita, respectively. In the steady state, output, consumption

and investment have the same growth rate of µλ+ξt
θ

which can be interpreted as a

common stochastic trend. Thus, the ‘great ratios’, ct−yt and it−yt, follow stationary

stochastic processes, implying yt, ct and it are cointegrated with one common trend,

or equivalently, with two cointegrating relations. Therefore, there exists only one

permanent innovation, vk1t that can be interpreted as a productivity shock, ξt. Let

xt = (yt, ct, it)
′, then Φ(1) in (16.25) becomes

Φ(1) =

 1 0 0
1 0 0
1 0 0

(16.A.3)

Since Φ(1) is normalized, the first column in 16.A.3 captures the long run effects of

a unit shock of v1t .
14 It is straightforward to estimate structural parameters following

a scheme described in Section 16.3.1 where k = 1, Â = (1 1 1)′ and Π = 1.

To incorporate nominal shocks, a six-variable model is considered in KPSW.

First, money demand has the following relation

mt − pt = βyyt − βRRt + ut(16.A.4)

where mt − pt is the logarithm of real balances, Rt is the nominal interest rate, and

ut is the money-demand disturbance. Second, the Fisher equation is considered to

introduce nominal shocks

Rt = rt + Et∆pt+1(16.A.5)

where rt is the ex ante real interest rate and pt is the logarithm of the price level. Six

variables (yt, ct, it,mt − pt, Rt,∆pt) follow an I(1) process and exhibit cointegrating

14vk1t is equal to
ξt
θ so that standard deviation of vk1t is equal to

σ
θ .
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relationships. It has already been shown that there are two cointegrating relations

among three variables (yt, ct, it). An additional cointegrating relationship is captured

by the money demand equation in (16.A.4) provided that money-demand disturbance

is stationary. Consequently, there exist three cointegrating relationships, reflecting

that the system can be described by three stochastic common trends. Letting xt =

(yt, ct, it,mt − pt, Rt,∆pt)
′, three permanent shocks consist of a real balance shock, a

neutral inflation shock, and a real interest shock so that A is constructed as

A = ÂΠ =


1 0 0
1 0 ϕ1

1 0 ϕ2

βy −βR −βR
0 1 1
0 1 0


 1 0 0
π21 1 0
π31 π32 1

(16.A.6)

KPSW assumed Â to be known, and constructed the parameters in Â by the esti-

mates from Dynamic OLS in each cointegrating equation. It is notable that these two

cointegrating relationships are used as c− y = ϕ1(R −∆p) and i− y = ϕ2(R −∆p)

provided that the real interest rate follows a nonstationary process. This assump-

tion implies that the ‘great ratios’ exhibit permanent shifts from a permanent real

interest shock.15 The issue on nonstationarity of real interest is in order. The null

hypothesis that the ex post real interest rate16 has a unit root is investigated using

the Dickey-Fuller test, and is not rejected at the 10% significance level. This model

is a benchmark in KPSW.

This property, in turn, implies that ϕ1 and ϕ2 are zero since regression of the

I(0) variable on the I(1) variable gives the estimate of zero from the theoretical

15A higher real interest rate raises the consumption-output ratio and lowers the investment-output
ratio, which implies that ϕ1 is positive and ϕ2 is negative.

16Three nominal interest rates are used in King et al. (1989); three month U.S. Treasury bills,
an average rate on four to six month commercial paper, and the yield on a portfolio of high-grade
longer term corporate bonds.
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viewpoint.17 KPSW also investigate sensitive analysis other than the benchmark

model. First, the coefficients, ϕ1 and ϕ2, are set equal to zero. This modification,

however, does not affect the main results in the benchmark model. Second, assuming

that real interest rates are stationary, a model with four cointegrating relationships

is considered, where two stochastic common trends are interpreted as a real balance

shock and a neutral inflation shock. In this case, Â is constructed as

Â =


1 0
1 0
1 0
βy −βR
0 1
0 1

(16.A.7)

The main conclusions, however, in the benchmark model are still robust after this

modification.

This section explains how we can construct Â from the estimates of cointegrat-

ing vectors. Engle and Granger (1987) showed:

β′Ψ(1) = 0,(16.A.8)

which by the property of cointegration implies that β′xt is stationary. It follows from

Φ(1) = Ψ(1)Φ0 and (16.25) that

β′A = 0 or β′Â = 0.(16.A.9)

This property enables one to choose Â = β⊥ after re-ordering xt conformably with

β⊥, in which β⊥ is an n× k orthogonal matrix of cointegrating vectors, β, satisfying

β′β⊥ = 0. Johansen (1995) proposed a method to choose β⊥ by:

β⊥ = (In − S(β′S)−1β′)S⊥,(16.A.10)

17ϕ1 and ϕ2 are estimated as 0.0033(0.0022) −0.0028(0.0050), respectively, where values in paren-
theses are standard errors, implying coefficients are not significantly different from zero.
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where S is an n × r selection matrix, (Ir 0)′, and S⊥ is an n × k selection matrix,

(0 Ik)
′. Note that β is identified up to the space spanned by α and β. This con-

dition does not necessarily mean that each cointegrating vector is identified, because

αβ′ = αFF−1β′ = α̃β̃
′
, i.e., any linear combination of each cointegrating vector is

a cointegrating vector. The model does not require the identification of each cointe-

grating vector. Park (1990) argues that the identification condition is not required a

priori but is necessary for proper interpretation of the estimated results.

Since β⊥ is normalized so that the last k × k submatrix is an identity matrix,

one should re-arrange the variables xt conformably in order to maintain Blanchard

and Quah (1989)-type long-run restrictions. Alternatively, one may re-normalize β⊥

as shown below. Consider the six-variable model in KPSW, for instance. Let xt

be (yt, ct, it,mt − pt, Rt,∆pt)
′, in which mt − pt is the logarithm of the real balance,

Rt is the nominal interest rate, and pt is the logarithm of the price level. KPSW

noted that there are three permanent shocks: a real balanced growth shock, a neutral

inflation shock, and a real interest shock. We impose long-run restrictions that a

neutral inflation shock has no long-run effect on output, and that a real interest rate

shock has no long-run effect on either output or the inflation rate. These restrictions

imply a specific form of β̂⊥ as in:

A = β̂⊥Π =


1 0 0
× × ×
× × ×
× × ×
0 0 1
0 1 0


 1 0 0
π21 1 0
π31 π32 1

 ,(16.A.11)

where × denotes that those parameters are not restricted other than β′β̂⊥ = 0. From
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A = ÂΠ, we can choose Â using:18

Â = β̂⊥.(16.A.12)

16.B Monte Carlo Integration

The literature on confidence intervals for impulse response estimates is well explained

by Kilian (1998), which can be categorized by the following three traditional meth-

ods: the asymptotic interval method (see Lütkepohl, 1990), the parametric Monte

Carlo integration method (see Doan, 1992; Sims and Zha, 1999), and the nonpara-

metric bootstrap interval method (see Runkle, 1987). We provide the Monte Carlo

integration method used in KPSW.19

It is convenient to rewrite the reduce-form VECM in (16.17) as:

∆x′
t = δ′

ϵ + x′
t−1βα

′ +

p−1∑
i=1

∆x′
t−iA

∗′
i + ϵ′t(16.B.13)

= X′
tθ + ϵ′t

where X′
t = (1,x′

t−1β,∆x′
t−1, · · · ,∆x′

t−p+1), and θ′ = (δϵ,α,A
∗
1, · · · ,A∗

p−1). Stack-

ing (16.B.13) for t = 1, · · · , T , the model is represented by the following matrix form:

Y = Xθ +U(16.B.14)

Assuming that ut is i.i.d. and normally distributed, Zellner (1971) finds thatΣ follows

the Normal-inverse Wishart posterior distribution, with the prior, f(vec(θ),Σ) ∼

|Σ|−n+1
2 :

Σ−1 ∼ Wishart((TΣ0))
−1, T ) with given Σ0,(16.B.15)

18KPSW, instead, assume that Â is known a priori, which is estimated by dynamic OLS in each
cointegrating equation.

19Kilian (1998) examines the accuracy of these confidence intervals in the small samples, and
proposes the bootstrap-after-bootstrap method. He finds from Monte Carlo simulations that his
method is the best, the Monte Carlo integration method is the second best, the asymptotic interval
is the third, and the standard bootstrap interval method is the worst.
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and

θ ∼ N(θ0,Σ⊗ (X′X)−1),(16.B.16)

where θ0 and Σ0 are the estimates of θ and Σ, respectively, from OLS or MLE.

The algorithm for estimating confidence intervals of impulse responses is as

follows:

1. Estimate (16.17) and let β0, θ0 and Σ0 be these estimates.

2. Let A be a lower triangular matrix of Choleski decomposition of (X′X)−1.

3. Let S−1 be a lower triangular matrix of Choleski decomposition of Σ−1
0 .

4. Generate n× T random numbers, wb, from the normal distribution, N(0, 1
T
).

5. Generate (n(p− 1)+ r+1)×n random numbers, ub, from the standard normal

distribution, N(0, 1).

6. Let rb = w′
bS

−1, and get Σ−1
b = r′brb.

7. Let Sb be a lower triangular matrix of Choleski decomposition of Σb.

8. Let θ = θ0 + eb, in which eb = AubS
′
b. Then, θ ∼ N(θ0,Σb ⊗ (X′X)−1).20

9. Draw impulse responses, irb, as described in Section 16.3.3.

20Note that var(eb) = var(vec(eb)) = var((Sb ⊗ A)vec(ub)) = SbS
′
b ⊗ AA′ = Σb ⊗ (X′X)−1.

RATS uses vec(eb) = (Sb ⊗ In(p−1)+r+1)vec(Aub), which is the same as what this text uses. Note
that (Sb ⊗A)vec(ub) = vec(AubS

′
b) = (Sb ⊗ In)vec(Aub), in which vec(ABC) = (C′ ⊗A)vec(B)

is used for transformation.
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10. Repeat 4 ∼ 9, B times, and calculate 95% upper and lower bands of impulse

responses using21

Upper =
1

B

B∑
b=1

irb + 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2(16.B.17)

and

Lower =
1

B

B∑
b=1

irb − 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2 .(16.B.18)

16.C Johansen’s Maximum Likelihood Estimation

and Cointegration Rank Tests

To see Johansen’s method in detail, consider the VAR(p) model

yt = δϵ +A1yt−1 + · · ·+Apyt−p + ϵt,(16.C.19)

where yt is an n × 1 vector of variables assumed to be I(1). If yt is cointegrated,

then there exists the following VECM representation proposed by Engle and Granger

(1987):

∆yt = δϵ +αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.20)

where α and β have full column rank of r, the number of cointegrating vectors.

We can concentrate on α and β from a partial regression:

Regress ∆yt on 1,∆yt−1, · · · ,∆yt−p+1 → Get residuals : R0t(16.C.21)

Regress yt−1 on 1,∆yt−1, · · · ,∆yt−p+1 → Get residuals : Rkt(16.C.22)

Then, we have a concentrated regression:

R0t = αβ′Rkt + ϵt(16.C.23)

21Note that we fix cointegrating vectors, β, and generate parameters from a normal distribution,
N(θ0,Σb ⊗ (X′X)−1). Note also that we do not update S.



16.C. JOHANSEN’S ML ESTIMATION 443

For notational convenience, let

Sij =
1

T

T∑
t=1

RitR
′
jt, i, j = 0, k(16.C.24)

Note that α can be easily estimated from (16.C.23) provided that β is known:

α̂′ = (β′R′
kRkβ)

−1β′R′
kR0(16.C.25)

= (β′Skkβ)
−1β′Sk0.

Johansen (1988) estimates β using MLE. Consider MLE for

Y = XB +U, ut ∼ N(0,Σ).(16.C.26)

Then, the log likelihood of (16.C.26) is

logL = −T
2
log 2π − T

2
log |Σ| − 1

2
(Y −XB)′Σ−1(Y −XB)(16.C.27)

The FOC of (16.C.27) for Σ is:

Σ̂ =
1

T
(Y −XB)′(Y −XB)(16.C.28)

Plug (16.C.28) in (16.C.27), then we get a concentrated likelihood:

logL = constant− T

2
log |Σ̂|,(16.C.29)

which is proportional to

Lmax = |Σ̂|−
T
2 .(16.C.30)

Let L(β) = |Σ̂|−T
2 . Then,

|L(β)|−
2
T = |Σ̂|(16.C.31)

= | 1
T
(R0 −Rkβα

′)′(R0 −Rkβα
′)|

= | 1
T
(R0R0 −αβ′R′

kRkβα
′)|

= |S00 − S0kβ(β
′Skkβ)

−1β′Sk0|
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So,

max
β

L(β) ⇔ min
β

|S00 − S0kβ(β
′Skkβ)

−1β′Sk0|(16.C.32)

⇔ min
β

|β′Skkβ − β′Sk0S
−1
00 S0kβ|

|S00|
|β′Skkβ|

⇔ max
β

|β′Skkβ|
|β′(Skk − Sk0S

−1
00 S0k)β|

1

|S00|

At the second line, we use the following formula:∣∣∣∣ A B
C D

∣∣∣∣ = |A| |D−CA−1B| = |D| |A−BD−1C|(16.C.33)

Thus,

|A−BD−1C| = |D−CA−1B| |A|
|D|

,(16.C.34)

where A = S00,B = S0kβ,C = β′Sk0, and D = β′Skkβ. Note also that FOC for

max
x

x′Ax

x′Bx
(≡ λ)(16.C.35)

is

(A− λB)x = 0,(16.C.36)

where λ is an eigenvalue, and x is an eigenvector. Therefore, (16.C.32) becomes an

eigenvalue problem. Let

λ0 = max
β

|β′Skkβ|
|β′(Skk − Sk0S

−1
00 S0k)β|

.(16.C.37)

Then, the FOC is

(Skk − λ0(Skk − Sk0S
−1
00 S0k))β = 0(16.C.38)

⇔ ((1− λ0)Skk + λ0(Sk0S
−1
00 S0k))β = 0

⇔ (λ0(Sk0S
−1
00 S0k)− (λ0 − 1)Skk)β = 0

⇔ (Sk0S
−1
00 S0k − (1− 1

λ0
)Skk)β = 0

⇔ (Sk0S
−1
00 S0k − λSkk)β = 0,
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where λ = 1 − 1
λ0
. Note that λ and β are an eigenvalue and an eigenvector of

S−1
kk Sk0S

−1
00 S0k, respectively. Therefore, our maximization problem is reduced to find

an eigenvalue and eigenvector of S−1
kk Sk0S

−1
00 S0k.

Having estimated the model, we can construct the cointegration rank tests as

follows. From (16.C.30), (16.C.32) and (16.C.37), we get

|Lmax(β)|−
2
T = |S00|

r∏
i=1

1

λ0i
(16.C.39)

Lmax(β) = −T
2
|S00|

r∏
i=1

(1− λi)(16.C.40)

Therefore, we get the LR test (or Trace test) as:

LR = −2 log
Lmax(H0 = r)

Lmax(H1 = n)
(16.C.41)

= −T
n∑

i=r+1

log(1− λi)

and the maximum eigenvalue test (or λmax test) as:

λmax = −2 log
Lmax(H0 = r)

Lmax(H1 = r + 1)
(16.C.42)

= −T log(1− λr+1).

Note that the alternative hypothesis is different in each test. For large values of

test statistics, we reject the null hypothesis that there exist r cointegrating vectors,

H0 = r. Johansen (1995) gives the critical values, and Osterwald-Lenum (1992)

provides revised critical values.

Johansen (1995) considers five models with respect to data properties as well as

cointegrating relations as follows: i) a model with a quadratic trend in yt (hflag=1):

∆yt = δϵ + ρ0t+αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.43)
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ii) a model with a linear trend in yt (hflag=2), in which deterministic cointegration

is not satisfied:

∆yt = δϵ + ρ0t+αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.44)

iii) a model with a linear trend in yt (hflag=3), in which deterministic cointegration

is satisfied (cotrended):

∆yt = δϵ +α(β′yt−1 + ρ1t) +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.45)

iv) a model with no trend in yt (hflag=4):

∆yt = α(β′yt−1 + ρ0) +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt,(16.C.46)

and v) a model with no trend in yt (hflag=5):

∆yt = αβ′yt−1 +A∗
1∆yt−1 + · · ·+A∗

p−1∆yt−p+1 + ϵt.(16.C.47)

Johansen (1995) illustrates how to estimate restricted cointegrating vectors.

Consider a trivariate model with two cointegrating vectors. Let yt = (y1t,y2t,y3t)
′

and β = [β1|β2]. One may impose a restriction of β11 = β13 using H1φ1 = β1 and

H2φ2 = β2, where Hi is an n× (n− qi) matrix, φi is an (n− qi)× 1 matrix, and qi is

the number of restrictions on each cointegrating vector. In this particular example,

letting

H1 =

 1 0
0 1
−1 0

 , H2 = I3(16.C.48)

gives the following restrictions:

H1φ1 =

 1 0
0 1
−1 0

[ φ11

φ12

]
=

 φ11

φ12

−φ11

 =

 β11

β12

β13

 .(16.C.49)
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Chapter 17

PANEL AND
CROSS-SECTIONAL DATA

Many recent macroeconomic applications use panel and cross-sectional data. For

example, macroeconomic hypotheses are tested in micro data sets for households,

industries, and business firms and in aggregate data sets for many countries. This

chapter focuses on econometric issues that are particularly relevant for macroeconomic

applications.

17.1 Generalized Method of Moments

This section discusses GMM from the cross-sectional average rather than from the

time series average as in Chapter 9. The method here can be applied to both cross-

sectional and panel data with many cross-sectional observations and to those with a

relatively small number of observations over time. Given cross-sectional data for xi,

let b0 be a p-dimensional vector of the parameters to be estimated, and f(xi,b) a

q-dimensional vector of functions. We refer to ui = f(xi,b0) as the disturbance of

GMM. We assume that xi is i.i.d. Consider the (unconditional) moment restrictions

E(f(xi,b0)) = 0.(17.1)
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Note that E(uiu
′
j) = 0 for i ̸= j. Suppose that a law of large numbers can be applied

to f(xi,b) for all admissible b, so that the sample mean of f(xi,b) converges to its

population mean:

lim
N→∞

1

N

N∑
i=1

f(xi,b) = E(f(xi,b))(17.2)

with probability one (or in other words, almost surely). The basic idea of GMM

estimation is to mimic the moment restrictions (17.2) by minimizing a quadratic

form of the sample means

JN(b) = { 1

N

N∑
i=1

f(xi,b)}′WN{
1

N

N∑
i=1

f(xi,b)}(17.3)

with respect to b; where WN is a positive definite matrix, which satisfies

lim
N→∞

WN = W0(17.4)

with probability one for a positive definite matrix W0. The matrices WN and W0

are both referred to as the distance or weighting matrix. The GMM estimator, bN ,

is the solution of the minimization problem (17.3). Under fairly general regularity

conditions, the GMM estimator bN is a consistent estimator for arbitrary distance

matrices. The optimal choice of the distance matrix is W0 = E(uiu
′
i)
−1.

The GMM for cross-sectional data can be applied to panel data with large N

and short T in order to allow for a general serial correlation structure. Let xit be

a random vector of economic variables for an individual i at period t and ft(xit,b)

be a q∗-dimensional vector of functions, and let uit = ft(xit,b0). Let q = Tq∗,

xi = (x′
i1, · · · ,x′

iT )
′ and f(xi,b) = (f1(xi1,b)

′, · · · , fT (xiT ,b)
′)′. In this framework,
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E(uiu
′
i) can be estimated by 1

N

∑N
i=1 uiu

′
i. Since

E(uiu
′
i) =


E(ui1u

′
i1) · · · E(ui1u

′
iT )

· ·
· ·
· ·

E(uiTu
′
i1) · · · E(uiTu

′
iT )

 ,(17.5)

where some entries of E(uiu
′
i) represent autocovariances of uit. Thus a general form

of serial correlation is allowed by stacking disturbance terms with different dates as

different disturbance terms rather than treating them as different observations of one

disturbance term. Unlike GMM for the time series average in Chapter 9, there is no

need to use kernel estimators to allow for a general form of serial correlation.

17.2 Tests of Risk Sharing

As in Chapter 7, consider an economy with a single good, in which the current and

past values of a random vector xt generate the information set It, which is available

to the economic agents. The random vector Ht = [x′
0,x

′
1, · · · ,x′

t]
′ summarizes It. Let

Prob(Ht) denote the probability of Ht. For simplicity, we assume that the economy

ends at date T , and that there exist N possible values of HT .

We assume that consumer h maximizes the lifetime utility function

Uh =
T∑
t=0

∑
Ht

Prob(Ht)β
tu(Ch

t (Ht)),(17.6)

where β is a discount factor, u(·) is the utility function, and Ch
t (Ht) is the consumption

at date t with history Ht. As a bench mark case, we assume that there exists a

complete set of contingent security markets at date 0. Assuming the existence of a

complete set of markets, we obtain

β1Prob(Ht+1)mu(C
h
t+1(Ht+1))

Prob(Ht)mu(Ch
t (Ht))

=
Pt+1(Ht+1)

Pt(Ht)
(17.7)
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which we call the state-by-state intertemporal first order condition.

The first order condition (17.7) implies that the ratio of the marginal utilities,

mu(Ch
t+1(Ht+1))

mu(Ch
t (Ht))

is identical for all consumers for all possible histories. When this con-

dition is satisfied, consumers are said to be completely risk sharing. The hypothesis

of complete risk sharing has been tested by Altug and Miller (1990), Deaton (1990),

Cochrane (1991), Mace (1991), Townsend (1994), and Hayashi, Altonji, and Kotlikoff

(1996) among others.

The implications of complete risk sharing on consumption depend on the func-

tional form of the utility function. With an isoelastic utility function, u(Ct) =
C1−α

t −1

1−α
,

mu(Ch
t ) = (Ch

t )
−α. Hence complete risk sharing implies that consumption growth,

Ch
t+1(Ht+1)

Ch
t (Ht)

, is identical for all consumers for all possible histories. With a constant

absolute risk aversion utility function, ut(Ct) = exp(αCt), mut = α exp(αCt). Hence

(17.7) implies that exp(α(Ch
t+1(Ht+1) − Ch

t (Ht))) is identical for all consumers in

all possible histories. Therefore, complete risk sharing implies that the change in

consumption is identical for all consumers.

These implications hold exactly without any errors. For tests of complete risk

sharing with household data, errors are introduced either as preference shocks or mea-

surement errors. Since measurement errors are likely to be important for household

data, we consider them.

With the isoelastic utility function, assume that consumption is measured with

multiplicative errors: Cmh
t = Ch

t e
h
t , where C

mh
t is the measured level of consumption.

Then let ϕt be the logarithm of the growth rate of consumption that is common to

all consumers: ln(Ch
t+1) − ln(Ch

t ) = ϕt. Substituting ln(Ch
t ) = ln(Cmh

t ) − ln(eht ) into
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this equation, we obtain

ln(Cmh
t+1)− ln(Cmh

t ) = ϕt + eht ,(17.8)

where eht = − ln(eht+1) + ln(eht ). Consider the regression

ln(Cmh
t+1)− ln(Cmh

t ) = bdt + xh′
t a+ eht ,(17.9)

where dt is a time dummy and xh
t contains variables that are uncorrelated with the

logarithm of the measurement error in consumption. Typically, income growth of

consumer h is used as xh
t . Wealth, unemployment, and sickness are other examples.

The null hypothesis of complete risk sharing can be tested by testing a = 0.

With the exponential utility function, assume that consumption is measured

with additive errors: Cmh
t = Ch

t +e
h
t , where C

mh
t is the measured level of consumption.

Then let ϕt be the common first difference of consumption. Then

Cmh
t+1 − Cmh

t = ϕt + eht ,(17.10)

where eht = −eht+1 + eht . Consider the regression

Cmh
t+1 − Cmh

t = bdt + xh′
t a+ eht ,(17.11)

where dt is a time dummy and xh
t contains variables that are uncorrelated with

the measurement errors in consumption. Then the null hypothesis of complete risk

sharing can be tested by testing a = 0.

17.3 Decreasing Relative Risk Aversion and Risk

Sharing

Ogaki and Zhang (2001) argue that decreasing relative risk aversion is more plausible

than constant relative risk aversion and increasing relative risk aversion. A parsimo-
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nious parameterization of the utility function which contains decreasing, constant,

and increasing relative risk aversion as special cases is

u(Ct) =
1

1− α
((Ct − γ)1−α − 1)(17.12)

which is called the Hyperbolic Absolute Risk Aversion (HARA) utility function.

Then the relative risk aversion coefficient is

−u
′′Ch

t

u′
α(1− γ

Ch
t

)−1.(17.13)

Thus relative risk aversion is decreasing (increasing) in consumption if γ is positive

(negative).

For the HARA utility function mu(Ch
t ) = (Ch

t − γ)−α. Hence the complete risk

sharing hypothesis implies that Ch
t − γ grows at the same rate for all consumers. Let

ϕt be the common growth rate:

Ch
t+1 − γ

Ch
t − γ

= ϕt.(17.14)

Assume that consumption is measured with additive errors: Cmh
t = Ch

t + eht where

Cmh
t is the measured level of consumption. Multiplying both sides of (17.14) by

Ch
t − γ, substituting Ch

t = Cmh
t − eht , and rearranging terms, we obtain

Cmh
t+1 − ϕtC

mh
t + (ϕt − 1)γ = νht ,(17.15)

where

νht = eht+1 − eht .(17.16)

Let zht be a vector of instrumental variables that are uncorrelated with the consump-

tion measurement errors. Then GMM can be applied to the moment conditions that

E(zht ν
h
t ) = 0.
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17.4 Euler Equation Approach

As in Chapter 7, the state-by-state intertemporal first order condition can be used to

derive the Euler equation

E(βmu(Ch
t+1)Rt+1|It)

mu(Ch
t )

= 1(17.17)

for any asset return, Rt+1.

Imagine that a panel data set of Ch
t and Rt is available for t = 1, · · · , T and

h = 1, · · · , N . In order to estimate and test the Euler equation with the panel data

set, it is important to distinguish the time average and the cross-sectional average.

In many panel data sets, N is large but T is small. Chamberlain (1984) criticized

the use of such a panel data set for the Euler equation approach by pointing out a

difficulty in such applications. This difficulty is often refereed to as Chamberlain’s

critique.

For example, assume that the intraperiod utility function is u(Ct) =
C1−α

t −1

1−α
, so

that mu(Ch
t ) = (Ch

t )
−α, and the Euler equation is

E[β(
Ch

t+1

Ch
t

)−αRt+1|It] = 1.(17.18)

Removing the conditional expectation yields

β(
Ch

t+1

Ch
t

)−αRt+1 − 1 = eht ,(17.19)

where E(eht |It) = 0. It should be noted that E(eht |It) = 0 does not imply that the

probability limit of the cross-sectional average of eht is zero even though it implies

that the probability limit of the time-series average of eht is zero. In order to see this,

recall that consumption growth is identical for all consumers under complete risk
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sharing. Hence (17.19) implies that eht is identical, and 1
N

∑∞
h=1 e

h
t = e1t for any N . In

a panel data set with large N and small T , an appropriate asymptotic theory fixes T

and drives N to infinity to derive asymptotic results. In this example, the estimators

based on E(eht |It) = 0 are inconsistent because 1
N

∑∞
h=1 e

h
t does not converge to zero

in probability when N is driven to infinity. This example illustrates Chamberlain’s

critique.

17.5 Panel Unit Root Tests

Panel data allows researchers to effectively increase the number of observations.

Levin, Lin, and Chu (2002) developed unit root tests for panel data. Their null

hypothesis is that all series in the panel data are difference stationary against all se-

ries are stationary. Their test is a panel version of the Augmented Dickey-Fuller test.

For a panel data set of a variable xi,t for i = 1, ..., N and t = 1, ..., T , they consider

N time series regressions of the form:

∆x̃i,t = θi + µit + ρx̃i,t−1 + βi,1∆x̃i,t−1 + · · ·+ βi,p∆x̃t−p + νt,(17.20)

where x̃i,t = xi,t−(1/N)
∑N

i=1 xi,t. Here the cross-sectional average is subtracted from

xi,t in each period in order to take into account the cross-sectional dependence or a

common time effect. It should be noted that they assumed that ρ is common to all i

under both null and alternative hypotheses. Their test statistic, which is basically the

t-statistic for ρ = 0, is called the adjusted t-statistic. When N and T go to infinity,

the test statistic has an asymptotic standard normal distribution. Im, Pesaran, and

Shin (2003) relaxed Levin and Lin’s assumption that ρ is common to all i. Their test
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is based on regressions

∆x̃i,t = θi + µit + ρix̃i,t−1 + βi,1∆x̃i,t−1 + · · ·+ βi,p∆x̃t−p + νt.(17.21)

For their test, the null hypothesis is that ρi = 0 for all i, and the alternative hypothesis

is that ρi < 0 at least one i. Their test statistic is based on the average of the t-

statistics for the hypothesis that ρi = 0. Its asymptotic distribution is the standard

normal distribution.

Maddala and Wu (1999) also relaxed Levin and Lin’s assumption that ρ is

common to all i. Their test statistic is based on the p-values and can be used for

an unbalanced panel in which T is different for different i. However, this test is

computationally more involved than the other two tests mentioned above because the

p-values need to be computed by simulations for each application.

The alternative hypothesis of both Im, Pesaran, and Shin’s and Maddala and

Wu’s tests is that at least one series is stationary. Therefore, rejection of the null

hypothesis should not be regarded as evidence that all series are stationary unless

there is a reason to believe that all series are either difference stationary or stationary.

Most panel unit root tests assume that the error terms are cross-sectionally

uncorrelated. If this assumption is violated, then the tests can show severe size dis-

tortions (see, e.g., O’Connell, 1998). A certain degree of cross-sectional dependence

can be removed by subtracting the cross-sectional mean for each time period. How-

ever, if the true cross-sectional dependence exhibits substantial heterogeneity, then

this method will not work very well. Moreover, if the series share a common stochas-

tic trend, then the subtraction of the cross-sectional mean can transform a difference

stationary series into a stationary series. A recent work by Chang (2000) has solved

this problem.
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The tests described so far take difference stationarity as the null hypothesis.

There are tests for the null hypothesis of stationarity for panel data. Nyblom and

Harvey (2000) extended Kwiatkowski, Phillips, Schmidt, and Shin (1992, KPSS for

short) test for stationarity to panel data. The null hypothesis is that all series in the

panel are stationary, and the alternative hypothesis is that at least one of them is

difference stationary. Choi (2000) extended Park and Choi’s (1988) G test to panel

data. Choi (2000) reports Monte Carlo results that the panel G test is more powerful

than the panel KPSS test for most data generation processes.

17.6 Cointegration and Panel Data

Pedroni (2001) developed residual based tests for the null hypothesis of no cointe-

gration for panel data while allowing for estimated slope coefficients to vary across

individual members of panel. Pedroni (2000) and Phillips and Moon (1999) extended

Phillips and Hansen’s (1990) fully modified OLS estimator to panel data. Mark and

Sul (2002) extended the dynamic OLS technique to panel data. The dynamic OLS

estimator is much computationally simpler to calculate in the panel data setting.

These estimators assume that the regression errors are cross-sectionally uncorrelated

after removing common time effects. Seemingly unrelated cointegration techniques

explained in Chapter 15 (see, e.g., Mark, Ogaki, and Sul, 2003) can be used to allow

for a general form of cross-sectional dependence in regression errors. However, these

techniques cannot be used when N is large because too many free parameters for

cross-sectional dependence need to be estimated.
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Exercises

17.1 Suppose that each consumer maximizes the identical lifetime utility function

U =
T∑
t=0

∑
et

Prob(et)β
tU(ct)(17.E.1)

at time 0 in an Arrow-Debreu complete market, where et = (s0, · · · , st) is the history

of the economy, st ∈ {1, · · · , S} is the state of the economy at t, and Prob(et) denotes

the probability of et conditioned on e0. The intra-period utility function is assumed

to be

U(ct) =
{ct − γ}1−α − 1

1− α
(17.E.2)

where ct is consumption at time t

(a) Write down a complete market budget constraint.

(b) Derive a parameterized formula for a state-by-state intertemporal first order

condition for ct and ct+1. Discuss the complete risk sharing implication of the

first order condition. Then use the first order condition to derive an asset pricing

formula for an asset that pays off dt+1 at t+ 1 (dt+1 varies depending on et+1).

(c) Imagine that you have panel data set for {cht : t = 1, · · · , T, h = 1, · · · , N}

and real bond returns {Rt : t = 1, · · · , T} (without measurement error) in this

village. Suppose that these variables are stationary. Discuss how you set up the

GMM estimation to estimate β, α, and γ in this case, assuming T = 200 and

N = 300. If T = 2 and N = 300, do you think that you can use the GMM to

estimate these parameters for this model? Explain your answer.
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(d) Now assume that there exist multiplicative measurement errors with unknown

serial correlation in the consumption data {cht : t = 1, · · · , T, h = 1, · · · , N} in

this panel data set of the following form:

cht − γ = (ch∗t − γ)ϵht(17.E.3)

where ch∗t is the true consumption and ln(ϵht ) has mean zero and is uncorrelated

across the consumers and with any income variables. Also assume that there

are no asset return data and that T = 6 and N = 300. Discuss how you set

up GMM estimation to estimate γ (parameterized disturbance and weighting

matrix). In particular, discuss why the expected value of the parameterized

GMM disturbance is zero.

(e) Now assume that there exist additive measurement errors with unknown serial

correlation in the consumption data {cht : t = 1, · · · , T, h = 1, · · · , N} in this

panel data set of the following form:

cht = ch∗t + ϵht(17.E.4)

where ch∗t is the true consumption and ϵht has mean zero and is uncorrelated

across consumers and with any income variables. Also assume that there are no

asset return data and that T = 6 and N = 300. Discuss how you set up GMM

estimation to estimate γ in terms of the parameterized disturbance. In partic-

ular, discuss why the expected value of the parameterized GMM disturbance is

zero. You do not have to explain the weighting matrix for this question.
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Appendix A

INTRODUCTION TO GAUSS

The purpose of this appendix is to give a quick introduction to GAUSS. For more

complete information on GAUSS, see the GAUSS manual.

A.1 Starting and Exiting GAUSS

A.1.1 The Windows Version

For the Windows version of GAUSS, click the icon for GAUSS and you will be

in the COMMAND mode of GAUSS. In the COMMAND mode, you can execute

screen-resident programs.

To exit GAUSS, click at the right upper corner.

A.1.2 The DOS Version

For the DOS version of GAUSS, from the DOS prompt, type GAUSS to start

GAUSS (for some versions of GAUSS, you may have to type GAUSSI or GAUSS386

instead of GAUSS). You will be in the COMMAND mode of GAUSS. You will see

the GAUSS prompt, >>. In the COMMAND mode, you can execute screen-resident

programs.

To exit the DOS version of GAUSS, press , then type at the prompt.
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A.2 Running a Program Stored in a File from the

COMMAND Mode

From the command mode type RUN FILENAME.EXP and hit to run a file named

FILENAME.EXP, for example.

A.3 Editing a File

From the COMMAND mode, type EDIT FILENAME.EXP and hit to edit a file

named FILENAME.EXP, for example. You will be in the EDIT mode of GAUSS.

You can edit the file with a full screen editor.

You can move around the file using arrow keys and keys that are

usually at the right of the keyboard. You can edit the file by deleting letters using

key and typing in letters.

A.4 Rules of Syntax

This section lists some of the general rules of syntax for GAUSS programs.

A.4.1 Statements

A GAUSS program consists of a series of statements. A statement is a complete

expression or command. Statements in GAUSS end with a semicolon.

A.4.2 Case

GAUSS does not distinguish between upper and lower case except inside double

quotes.
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A.4.3 Comments

Comments can be placed inside /* and */, which can nest other comments or inside

@ and @, which cannot nest other comments.

A.4.4 Symbol Names

The names of matrices, strings, procedures, and functions can be up to eight char-

acters long. The characters must be alphanumerical or the underscore. The first

character must be alphabetic or an underscore. Note that you cannot use some

names that are already used by GAUSS. It is often a good idea to use unusual names

in your programs to avoid potential problems.

A.5 Reading and Storing Data

LOAD X[n,m]=FILENAME.DAT;

reads in data stored in a ASCII file named FILENAME.DAT, for example. This data

file should contain data separated by spaces in the form of an n×m matrix.

If X is a matrix of numbers in GAUSS,

SAVE XFILE=X;

stores X into a file named XFILE.FMT. Then you can read in the data again by

LOAD X=XFILE;

A.6 Operators

A.6.1 Operators for Matrix Manipulations

Assignment operator:
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Y=3;

assigns the value 3 the to 1× 1 matrix Y .

Indexing operator:

Brackets [ ] are used to index matrices. It is very important to note that parentheses

( ) are used for different purposes in GAUSS such as indicating the dimensions of a

matrix or to take arguments for commands or functions.

Y=X[3,3];

assigns the 3-3 element of X to Y . Commas are used to separate row indices from

column indices. A vector can take one argument.

Period:

Dots are used in brackets to signify “all rows” or “all columns”.

Y=X[.,3];

assigns the third column of X to Y .

Colon:

A colon is used within brackets to create a continuous range of indices.

Y=X[1:5,.];

Transpose operator:

’ transposes matrices.

Vertical Concatenation:

| is used to concatenate two matrices vertically.

Z=X|Y;
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Horizontal Concatenation:

~ is used to concatenate two matrices horizontally.

Z=X~Y;

A.6.2 Numeric Operators

Usual Operators:

Usual operators in GAUSS work according to standard rules of matrix algebra. For

example, * is the operator for matrix multiplication, and

Y=X*Z;

performs matrix multiplication when X and Z are conformable in the sense of matrix

algebra.

Usual operators include *, +, -, and Kronecker product (.*.). y=x.*.z results

in a matrix in which every element in x has been multiplied by the matrix z. For

example,

x =

[
1 2
3 4

]
, z =

[
1 0
0 1

]
, then x. ∗ .z =


1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4

 .
Element by Element Operators:

In some applications, X is an m × n matrix, and Y is an m × 1 vector, and it is

convenient to multiply each row of Y with each of the n elements in each row of

X. The Element by Element Operators allow you to perform such operations. For

example, .* is the element by element multiplication operator, and

Z=X.*Y

performs the operation described above.
Other element by element operators are the following:
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• ./ Element by element division:
Y=X./Z;

• ˆ Element by element exponentiation:
Y=X^Z;

• + Element by element addition.
Y=X+Z;

• - Element by element subtraction.
Y=X-Y;

A.7 Commands

A.7.1 Functions

The following is a short list of useful functions. See the GAUSS manual for other

useful functions.

• cols(x): with a matrix x returns the number of columns of x.

• diag(x): with an M ×M matrix x returns a column vector of the diagonal of

x.

• eye(N): returns an N ×N identity matrix.

• ln(x): with an M × N matrix x returns an M × N matrix of the natural

logarithm of all elements in x.

• meanc(x): with an M × N matrix x returns an N × 1 vector of the means of

the columns of x.

• int(x): with an M × N matrix x returns the M × N matrix of the largest

integer which is smaller than or equal to each element of x.
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• invpd(x): with a symmetric, positive definite N × N matrix x returns the

inverse of x.

• inv(x): with an N ×N matrix x returns the inverse of x.

• ones(M,N): returns an M ×N matrix of ones. For example, x=ones(3,2); will

create x =

 1 1
1 1
1 1

 .
• sqrt(x): with an M × N matrix x returns an M × N matrix of the square

roots of all elements of x.

• reshape(x,r,c): with an N × K matrix x, and two scalars r and c, re-

turns an r × c matrix created from the elements of x. The elements in x

are first stored in row major order, and then the first c elements are put

into the first row of the created matrix, the second in the second row, and so

on. For example, y=reshape(x,4,3) for x =

[
1 2 3 4 5 6
7 8 9 10 11 12

]
creates

y =


1 2 3
4 5 6
7 8 9
10 11 12

 .
• rows(x): with a matrix x returns the number of rows of x.

• zeros(M,N): returns an M ×N matrix of zeros.

A.7.2 Printing

PRINT X Y;

will print matrices X and Y to the screen. Instead of matrices, you can print words

inside double quotes:
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PRINT "This will be printed";

You can use ? instead of PRINT:

? X Y;

A.7.3 Preparing an Output File

OUTPUT FILE = FILENAME.OUT RESET;

allows you to write the output of PRINT statements to a file named FILENAME.OUT,

for example. To print out or edit the output file, you have to close the output file by

the

OUTPUT OFF;

command. Most of the programs in the GMM package contain this statement near

their end. However, if your program does not reach its end because of errors, you

have to issue this command from the COMMAND mode to close the file to check the

output file.

A.8 Procedure

A.9 Examples



Appendix B

COMPLEX VARIABLES, THE
SPECTRUM, AND LAG
OPERATOR

In this Appendix, we review some basic results of complex variables, and their ap-

plications to the lag operator and spectral analysis. Section B.1 collects standard

results of complex variables without proofs. Since most results in textbooks of com-

plex variables are not relevant for our purpose, it is useful to collect the results used in

macroeconometrics. Section B.2 gives examples of Hilbert spaces on C. We will use a

Hilbert space in this section in order to define the spectrum and give a foundation for

using lag operator methods. Section B.3 uses these results to prove important results

involving the lag operator such as convergence conditions for infinite order AR and

MA representations and invertibility conditions of AR and MA representations. The

results relating to a removable singular point in Section B.1 are used to derive the

Beveridge-Nelson decomposition (Section 13.2) and the nonlinear restrictions by the

linear rational expectations models presented in Chapter 16. Section B.3 presents

some results for the spectrum, using the tools developed in Sections B.1 and B.2.1

1Some of the results in Sections B.2 and B.3 can be found in Sargent (1987). The main difference
between Sargent’s presentation and the presentation here lies in the difference in the convergence
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B.1 Complex Variables

B.1.1 Complex Numbers

A complex number z = x+ iy can be defined as ordered pairs (x, y) of real numbers,

where i is a pure imaginary number that satisfies i2 = −1. The real numbers x and y

are known as the real and imaginary parts of z, respectively. It is natural to associate

the complex number with a point in the plane whose Cartesian coordinates are x and

y. In other words, each complex number corresponds to just one point. When used

for the purpose of displaying the numbers z = x + iy geometrically, the xy plane is

called the complex plane C. We denote the complex number which corresponds to the

origin of the complex plane by 0.

The absolute value, or modulus, of a complex number z = x + iy is defined as√
x2 + y2 and is denoted by |z|. The complex conjugate of a complex number z = x+iy

is defined as the complex number x− iy and is denoted by z. An important identity

relating the conjugate of a complex number z to its absolute value is zz = |z|2.

A circle with center at z0 and radius ϵ is {z : z is complex number such that

|z− z0| = ϵ}. The interior points of the circle are called the ϵ neighborhood of z0. For

any real number θ, it is convenient to define eiθ, or exp(iθ), by

eiθ = cos θ + i sin θ.(B.1)

Then eiθ = cos θ − i sin θ = e−iθ, and |eiθ| =
√
eiθe−iθ = 1. Hence eiθ represents the

circle with the center at the origin and radius of one. This circle is called the unit

concept for the z transform. Our definition allows us to use the results in Section B.1 for the z
transform, which can be used to prove various results such as the condition for invertibility of a lag
polynomial in terms of the zeros of the z transform.
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circle. We can express any complex number in exponential form:

z = reiθ.(B.2)

B.1.2 Analytic Functions

For a sequence of complex numbers {zi}∞i=1 and an infinite series of complex numbers∑∞
i=1 zi, convergence and divergence are defined in the same way as those of real

numbers except that the distance for complex numbers is used for the definitions. The

series
∑∞

i=1 zi is absolutely convergent if the series
∑∞

i=1 |zi| of real numbers converges.

Absolute convergence of a series of complex numbers implies the convergence of that

series.

A complex-valued function f , defined on a set of complex numbers D, assigns

a complex number f(z) to each z in D. The set D is the domain of definition of f .

A specific value of z for which f(z) = 0 is called a zero of a function f .

If n is a nonnegative integer, and if a0, a1, a2, · · · , an are complex constants,

where an ̸= 0, the function P (z) = a0 + a1z + a2z
2 + · · · + anz

n is a polynomial

of degree n. Any polynomial of degree n has precisely n zeros as in the following

proposition:

Proposition B.1.1 (The Fundamental Theorem of Algebra) For any polynomial of

degree n, P (z) = a0 + a1z + a2z
2 + · · · + anz

n where n ≥ 1, there exist n complex

numbers z1, z2, · · · , zn, such that

P (z) = an(z − z1)(z − z2) · · · (z − zn).
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Here zi is a zero of P (z), and a root of P (z) = 0. Note that zi may be equal to zj for

some j.

The limits, continuity, derivatives, and differentiability of functions are defined

in the same way as those of real-valued functions of a real variable except that the

distance for complex numbers is used for the definitions. For example, for a function

f with domain S

lim
z→z0

f(z) = w0(B.3)

means that for each positive number ϵ there is a positive number δ such that |f(z)−

w0| < ϵ whenever 0 < |z − z0| < δ and z ∈ S. Similarly, the derivative of f at z0 is

defined by

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
,(B.4)

provided this limit exists. The function f is said to be differentiable at z0 if its

derivative at z0 exists. Since it is possible to approach z0 from many directions on

the complex plane, the differentiability of functions of complex numbers is in a sense

stricter than the differentiability of functions of real numbers as in the next example:

Example B.1.1 Let f(z) = |z|2. Churchill and Brown (1984, p.40) show that f(z)

is differentiable only at the origin. For z = x + iy, let the real and imaginary parts

of f(z) be u(x, y) and v(x, y): f(z) = u(x, y) + iv(x, y). Then u(x, y) = x2 + y2,

and v(x, y) = 0. Hence even when the real and imaginary components of a function

of a complex variable have continuous derivatives at z0, the function may not be

differentiable there.

Since the definition of a derivative in (B.4) is identical to that of the derivative

of a real-valued function of a real variable, most of the basic differentiation formulas



B.1. COMPLEX VARIABLES 477

remain valid for functions of complex variables. For example, if n is a positive integer,

dzn

dz
= nzn−1. This formula remains valid when n is a negative integer as long as z ̸= 0.

A function f of the complex number z is analytic at a point z0 if its derivative

exists not only at z0 but also at each point z in some neighborhood of z0. An entire

function is a function that is analytic at each point in the entire complex plane. Every

polynomial is an entire function.

If two functions f(z) and g(z) are analytic in a domain D, then their sum and

their product are both analytic in D. The quotient f(z)
g(z)

is also analytic in D provided

that g(z) ̸= 0 for any z in D. Hence the quotient P (z)
Q(z)

of two polynomials is analytic

in any domain throughout which Q(z) ̸= 0.

The following three propositions are important for our purposes. See Churchill

and Brown (1984, p.113, p.126, and p.153) for proofs.

Proposition B.1.2 Let a function f be analytic at a point z0 of f . There is a

neighborhood of z0 throughout which f has no other zeros, unless f is identically

zero. That is, the zeros of an analytic function which is not identically zero are

isolated.

Proposition B.1.3 If a function f is analytic at a point, then its derivatives of all

orders exist and are themselves analytic there.

Proposition B.1.4 (Taylor’s Theorem) Let f be analytic everywhere inside a circle

C with center at z and radius R. Then at each point z inside C,

f(z) = f(z0) +
f ′(z0)

1!
(z − z0) +

f ′′(z0)

2!
(z − z0)

2 + · · ·(B.5)

+
f (n)(z0)

n!
(z − z0)

n + · · · .
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The special case of series (B.5) when z0 = 0 is called the Maclaurin series.

Example B.1.2 This example provides a Maclaurin series representation. Let f(z) =

1
1−az

for a nonzero real number a. Then f(z) is analytic on the complex plane except

for z = a−1.

f (n)(z) =
n!an

(1− az)n+1
(B.6)

At each point z such that |z| < |a−1|,

1

1− az
= 1 + az + a2z2 + · · ·+ anzn + · · · .

Let S(z) be a power series:

S(z) =
∞∑
n=0

anz
n.

See Churchill and Brown (1984, p.137 and p.143) for proofs of the following two

propositions.

Proposition B.1.5 If the power series converges when z = z1 (z1 ̸= 0), it is abso-

lutely convergent for every value of z such that |z| < |z1|.

The greatest circle about the origin such that the series converges at each point inside

is called the circle of convergence of the power series.

Proposition B.1.6 The power series S(z) represents a function that is analytic at

every point in the interior of its circle of convergence.
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If S(z) converges for z such that |z| < R, then S(z − z0) is analytic for z such that

|z − z0| < R because it is a composite function of two analytic functions.

When f(z) is analytic for all z such that |z − z0| < R but fails to be analytic

at z0, then we cannot apply Taylor’s theorem at that point. However, we can find a

series representation for f(z) involving both positive and negative powers of z − z0.

If f(z) is analytic in the domain of all points z such that R1 ≤ |z − z0| ≤ R2, then

f(z) =
∞∑
n=0

a0(z − z0)
n +

∞∑
n=0

bn(z − z0)
−n(B.7)

in the domain. The series here is called a Laurent series. A series representation of

this type is unique (see Churchill and Brown, 1984, pp. 132-134 and p.148).

When all the coefficients bn in (B.7) are zero, the point z0 is called a removable

singular point of f . In this case, the Laurent series (B.7) contains only nonnegative

powers of z − z0. If we define f(z) as a0 at z0, the function becomes analytic at z0.

Suppose that a function can be written in the form

f(z) =
g(z)

z − z0
,(B.8)

where g(z) is analytic everywhere inside a circle C with center at z0 and radius R.

Then at each point z inside C, f(z) is analytic for all z except for z = z0. From the

Taylor series

g(z) = g(z0) +
g′(z0)

1!
(z − z0) +

g′′(z0)

2!
(z − z0)

2 + · · ·(B.9)

+
g(n)(z0)

n!
(z − z0)

n + · · · .

It follows that

f(z) =
g(z0)

z − z0
+
g′(z0)

1!
+
g′′(z0)

2!
(z − z0) + · · ·(B.10)

+
g(n)(z0)

n!
(z − z0)

n−1 + · · · .
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Then a is a nonzero real number, and S(z) is a polynomial or a power series which

converges for all z such that |z| < R for some R. Hence if g(z0) = 0, then z0 is a

removable singular point of f(z).

B.2 Hilbert Spaces on C

In Appendix 3.A, it was noted that the complex plane, C, can be used as the set of

scalars K for a vector space, and therefore for a Hilbert space. This section gives

examples of Hilbert spaces for which K = C. The space of complex-valued random

variables explained in Example B.2.4 and L2(Prob) of real-valued random variables

explained in Appendix 3.A are the two Hilbert spaces we use in this book.

Example B.2.1 The complex plane, C, is a vector space on K = C with addition

and scalar multiplication defined in the usual way. When the norm of a complex

number is defined as its absolute value, C is a Banach space. When the inner product

is defined as (x|y) = xȳ, C is a Hilbert space.

Example B.2.2 Vectors in the space consist of sequences of n complex numbers, Cn,

is a vector space on C when x+y for x = (x1, x2, · · · , xn)′ and y = (y1, y2, · · · , yn)′ is

defined by (x1+y1, x2+y2, · · · , xn+yn)′ and αx for α in C is defined by (αx1, αx2, · · · , αxn)′.

When we define a norm of x as ∥x∥ =
√∑n

i=1 |xi|2, Cn is a Banach space. When we

define (x|y) =
∑n

i=1 xiȳi, C
n is a Hilbert space on C.

Example B.2.3 The space l2 consists of all sequences of complex numbers {x1, x2, · · · }

for which
∑∞

i=1 |xi|2 < ∞. The inner product of elements x = {x1, x2, · · · } and

y = {y1, y2, · · · } in l2 is defined as (x|y) =
∑∞

i=1 xiȳi. With this inner product, l2 is

a Hilbert space on C.
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Example B.2.4 On the interval [−π, π], use the uniform distribution to define the

probability of the σ-field of the Borel sets in the interval. On this probability space,

consider a complex-valued random variable z = x+ iy where x and y are real-valued

random variables on [−π, π]. Define

E(z) = E(x) + iE(y) =
1

2π

∫ π

−π

x(λ)dλ+ i
1

2π

∫ π

−π

x(λ)dλ

Let L2[−π, π] = {h: h is a complex valued random variable on [−π, π] and E(|h|2) <

∞}. Then with an inner product defined by (h1|h2) = E(h1h̄2), L
2[−π, π] is a Hilbert

space. As in L2(Prob), if two different random variables h1 and h2 satisfy E[|h1 −

h2|2] = 0, then we view h1 and h2 as the same element in this space.2

B.3 Spectrum

This section defines the spectral density for a linearly regular covariance stationary

process. We will first consider stochastic processes of random variables. Then we will

consider stochastic processes of random vectors.

Imagine that we are given a white noise process {v}∞t=−∞ on a probability space

(S,F , P rob) that satisfies E(v2t ) = σ2
v and E(vtvs) = 0 for t ̸= s. It is conve-

nient to normalize this white noise process by defining et =
vt
σv
. Then {et}∞t=−∞ is

an orthonormal sequence in L2(Prob) because it satisfies ∥et∥ =
√
E(e2t ) = 1 and

(et|es) = E(etes) = 0 for t ̸= s. Let b(L) = b0+ b1L+ b2L
2+ · · · be a series in the lag

operator. Then from Proposition 3.A.5, b(L)et converges to an element in L2(Prob)

if and only if {bj}∞j=1 is square summable, that is,
∑∞

j=1 |bj|2 <∞.

2For our purpose, it is convenient to view an element of L2[−π, π] as a complex-valued random
variable when the uniform distribution is given on [−π, π]. In many books, this interpretation is not
given, and elements in L2[−π, π] are considered complex-valued functions, f , which are measurable
on [−π, π].
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Given an orthonormal sequence {et}∞t=−∞ in L2(Prob), imagine that we are

interested in certain properties of b(L)et for various series in the lag operator b(L) =

b0 + b1L+ b2L
2 + · · · such as convergence of b(L)et and the autocovariance of b(L)et.

As long as these properties do not depend on the probability space, we can choose a

probability space that makes studying these properties convenient. As we will see, it

is convenient to consider a random variable and an orthonormal sequence in L2[−π, π]

in which the probability is given by the uniform distribution on [−π, π].

For this purpose, we consider a sequence {ut}∞t=−∞ in L2[−π, π] where ut(λ) =

exp(−iλt) = cos(λt) − i sin(λt). Then |ut(λ)| = 1 for all λ in [−π, π], so that ∥u∥ =√
E(|ut|2) = 1. If t ̸= s,

(ut|us) =
1

2π

∫ π

−π

exp(−iλt)exp(−iλs)dλ(B.11)

=
1

2π

∫ π

−π

exp(−iλt) exp(iλs)dλ

=
1

2π

∫ π

−π

exp(iλ(s− t))dλ

=
1

2π

∫ π

−π

[cos(λ(s− t)) + i sin(λ(s− t))]dλ

= 0.

Thus {ut}∞t=−∞ is an orthonormal sequence.

Given b(L)et =
∑∞

j=0 bjet−j, consider a process b(L)ut =
∑∞

j=0 bjut−j in L
2[−π, π].

From Proposition 3.A.5, b(L)et and b(L)ut converge if and only if {bj} is square

summable. Hence b(L)et converges if and only if b(L)ut converges.

LetM be the closed subspace in L2[−π, π] generated by {ut}∞t=−∞. From Propo-
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sition 3.A.6, for any element y in M ,

y =
∞∑
j=0

cj exp(iλj)(B.12)

cj =
1

2π

∫ π

−π

y(λ) exp(−iλj)dλ(B.13)

where cj is the Fourier coefficient for u(−j) = exp(iλj) and {cj} is square summable.

When {bj}∞j=0 is square summable, let xt = b(L)et. Then the autocovariance

Φ(k) = E(xtxt−k) is given by Φ(k) = limn→∞E
[
(
∑n

j=0 bjet−j)(
∑n

j=0 bjet−k−j)
]
=∑∞

j=k bjbj−k, where the last equality can be proved by the continuity of the inner

product (Proposition 3.A.2).

Define the autocovariance of order k, Φ(k) for ht =
∑∞

j=0 bj exp(−iλ(t − j)) =∑∞
j=0 bj exp(iλj) exp(−iλt) = h0 exp(−iλt) as

Φ(k) = E(hth̄t−k).(B.14)

Then Φ(k) =
∑∞

j=k bjbj−k. Thus the autocovariance of ht coincides with that of xt.

A simple expression for Φ(k) can be obtained in L2[−π, π]:

Φ(k) = E(h0h̄0−k)

=
1

2π

∫ π

−π

h0(λ)h0(λ) exp(−iλk)dλ

=
1

2π

∫ π

−π

h0(λ)h0(λ) exp(iλk)dλ

Hence

Φ(k) =
1

2π

∫ π

−π

f(λ) exp(iλk)dλ(B.15)

where

f(λ) = h0(λ)h0(λ)(B.16)

=

[
∞∑
j=0

bj exp(iλj)][
∞∑
j=0

bj exp(−iλj)

]
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is the spectral density.

For a vector process xt = B(L)vt =
∑∞

j=0Bjvt−j where xt and vt are p × 1

vectors and Bj is a p×pmatrix, we consider a matrix process ht =
∑∞

j=0Bj exp(iλ(t−

j)). Then define Φ(k) = E(xtx
′
t−k) for xt and Φ(k) = E(hth̄

′
t−k) for ht. Then for

both xt and ht, Φ(k) =
∑∞

j=k BjB
′
j−k, and

Φ(k) =
1

2π

∫ π

−π

f(λ) exp(iλk)dλ(B.17)

where

f(λ) =
1

2π
h0(λ)h0(λ)

′
(B.18)

=
∞∑
j=0

Bj exp(iλ(t− j)).

B.4 Lag Operators

In this section, we will apply the results of the previous sections to polynomials

and series of the lag operator. We will first consider stochastic processes of random

variables. Then we will consider stochastic processes of random vectors.

Given xt = b(L)et =
∑∞

j=0 bjet−j with an orthonormal et in L
2(Prob), we con-

sider ht(λ) =
∑∞

j=0 bj exp(−iλ(t−j)) =
∑∞

j=0 bj exp(iλj) exp(−iλt) = h0(λ) exp(−iλt)

in L2[−π, π] as in the previous section. As we will see, there is a one-to-one mapping

that preserves the distance between the closed linear space generated by {ut}∞t=−∞

and that by {et}∞t=−∞. Moreover, Lnht(λ) = ht−n(λ) = ht exp(iλn). Hence applying

the lag operator n times to the stochastic process ht corresponds with multiplying

a complex number ht by exp(iλ) n times. For these reasons, we can study various

properties of b(L)et by studying the power series b(z) =
∑∞

j=0 bjz
j of a complex vari-

able z. For example, if b(z) converges on the unit circle, then b(exp(iλ)) converges
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for each λ in [−π, π]. This point-wise convergence in turn implies the convergence of

h0(λ) = bj exp(iλj) in L
2[−π, π] by the Bounded Convergence Theorem.

Let {et}∞t=−∞ be an orthonormal sequence in L2(Prob), and let a sequence

{ut}∞t=−∞ in L2[−π, π] be defined by ut(λ) = exp(−iλt) = cos(λt) − i sin(λt) as

in the previous section. Given b(L)et =
∑∞

j=0 bjet−j, consider a process b(L)ut =∑∞
j=0 bjut−j in L

2[−π, π]. From Proposition 3.A.5, b(L)et and b(L)ut converge if and

only if {bj} is square summable. Hence b(L)et converges if and only if b(L)ut con-

verges.

From these results, we obtain the following proposition which gives a convenient

sufficient condition for b(L)et to be defined.

Proposition B.4.1 Let {et}∞t=−∞ be a white noise stochastic process with E(e2t ) = 1.

Suppose that b(z) =
∑∞

j=0 bjz
j converges for z = z1 such that |z1| > 1. Then∑N

j=0 bjet−j converges in mean square to a random variable with a finite second mo-

ment yt as N → ∞ and yt = b(L)et is a covariance stationary process.

Proof From Proposition B.1.5, b(z) =
∑∞

j=0 bjz
j is converges for |z| = 1, and hence b(exp(iλ))

converges for each λ in [−π, π] in C. Let sN (λ) =
∑N

j=0 bj exp(iλj), and let h0(λ) = b(exp(iλ)) be
the limit of sN (λ) in C. For each λ, limN→∞ |sN (λ)− h0(λ)| = 0. Hence by Lebesgue’s dominated
convergence theorem,

lim
N→∞

∫ π

−π

|sN (λ)− h0(λ)| =
∫ π

−π

lim
N→∞

|sN (λ)− h0(λ)| = 0,

which implies that
∑N

j=0 bj exp(−iλj) converges in L2[−π, π] to h0(λ). Hence {bj}∞j=0 is square
summable. To see that yt is covariance stationary, note that E(yt) = b0E(et) does not depend on t.

Since the inner product in L2 is continuous, E(ytyt−τ ) = limN→∞ E((
∑N

j=0 bjet−j)(
∑N

j=0 bjet−j−τ )).

Since et is covariance stationary, E((
∑N

j=0 bjet−j)(
∑N

j=0 bjet−j−τ ))E((
∑N

j=0 bjet−j)
2) does not de-

pend on t.

In this book, b(L)et is taken to mean the limit of
∑N

j=0 bjet−j in L2(Prob) as

N → ∞.
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Example B.4.1 Let b(L) = 1 + aL+ a2L2 + · · ·+ anLn + · · · . If |a| < 1, then b(z)

converges for z = z1 where z1 is a real number such that 1 < z1 < a−1. Hence b(L)et

can be defined in L2(Prob).

Proposition B.4.1 gives a sufficient condition for b(L)et to be covariance stationary.

The next proposition gives a sufficient condition for b(L)et to be strictly stationary.

Proposition B.4.2 Let {et}∞t=−∞ be a strictly stationary white noise process with

finite second moments. Suppose that b(z) =
∑∞

j=0 bjz
j converges for z = z1 such that

|z1| > 1. Then yt = b(L)et is a strictly stationary process.

Proof Let sNt =
∑N

j=0 bjet−j . Then sNt converges in mean square to yt as N → ∞. Therefore,
sNt converges in probability to yt, and hence it converges in distribution to yt. Let FNt(ζ) be
the distribution function of sNt, and Ft(ζ) be the distribution function of yt. Then Ft+τ (ζ) =
limN→∞ FNt(ζ) = Ft(ζ) except for the discontinuity points of Ft+τ (ζ) and Ft(ζ) because et is strictly
stationary. There are only countably many discontinuity points, and the distribution function is right
continuous. Therefore, Ft−τ (ζ) = Ft(ζ) for all ζ. Similar arguments can be made to show that the
joint distribution function of (yt, yt+1, · · · , yt+k) does not depend on t.
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Appendix C

ANSWERS TO SELECTED
QUESTIONS

Answers to Chapter 2

2.1 The six states of the world are, s1 = [300, 10, 300], s2 = [300, 10, 150], s3 = [300, 5, 300],
s4 = [300, 5, 150], s5 = [150, 5, 300], and s6 = [150, 5, 150]. Let I be the information set generated
by X1 = (Y1, i1), and let F be the partition that represents the same information as I. Then,
F = {Λ1,Λ2,Λ3}, where Λ1 = {s1, s2}, Λ2 = {s3, s4}, and Λ3 = {s5, s6}. Similarly, Let J be the
information set generated by Y1, and let G be the partition that represents the same information as
J. Then, G = {Λ4,Λ5}, where Λ4 = {s1, s2, s3, s4} and Λ5 = {s5, s6}. Using (2.3), Pr(s1|s ∈ Λ1) =

0.15
0.15+0.05 = 3

4 and Pr(s2|s ∈ Λ1) =
0.05

0.15+0.05 = 1
4 . Hence E(Y2|s ∈ Λ1) = 300× 3

4 +150× 1
4 = 262.5.

Similarly, Pr(s3|s ∈ Λ2) =
2
5 , P r(s4|s ∈ Λ2) =

3
5 , P r(s5|s ∈ Λ3) =

1
3 , P r(s6|s ∈ Λ3) =

2
3 , E(Y2|s ∈

Λ2) = 210, and E(Y2|s ∈ Λ3) = 200. Hence the random variable E(Y2|I) is given by

E(Y2|I)(s) =

 262.5 if s ∈ Λ1

210 if s ∈ Λ2

200 if s ∈ Λ3

Similar computations yield

E(Y2|J)(s) =
{

225 if s ∈ Λ4

200 if s ∈ Λ5

Now, we need to verify that E(Y2|J)(s) = E(E(Y2|I)|J)(s) for all s ∈ S. E(Y2|I)(s) is given above,
while E(E(Y2|I)|J)(s) can be computed as following: Pr(s ∈ Λ1|s ∈ Λ4) =

0.15+0.05
0.15+0.05+0.20+0.30 = 2

7

and Pr(s ∈ Λ2|s ∈ Λ4) =
0.20+0.30

0.15+0.05+0.20+0.30 = 5
7 . Therefore, E(E(Y2|I)|s ∈ Λ4) = 262.5× 2

7 +210×
5
7 = 225, while Pr(s ∈ Λ3|s ∈ Λ5) = 1 so that E(E(Y2|I)|s ∈ Λ5) = 200 as above. In summary,

E(E(Y2|I)|J)(s) =
{

225 if s ∈ Λ4

200 if s ∈ Λ5

which is equivalent to E(Y2|J)(s).

2.2 Let Yt = AYt−1 + et, E(et) = 0, and Y0 = 0. Then, E(Y1) = E(AY0 + e1) = 0, E(Y2) =
E(AY1 + e2) = 0, V ar(Y1) = V ar(AY0 + e1) = σ2, and V ar(Y2) = V ar(AY1 + e2) = (A2 + 1)σ2.
Therefore, Yt is not strictly stationary if A ̸= 0.

487
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2.3 Let Yt = AYt−1 + et, E(et) = 0, and Y0 ∼ N(0, σ2

1−A2 ). Then, E(Y1) = E(AY0 + e1) = 0,

E(Y2) = E(AY1 + e2) = 0, V ar(Y1) = V ar(AY0 + e1) = A2 σ2

1−A2 + σ2 = σ2

1−A2 , and V ar(Y2) =

V ar(AY1+e2) = V ar(A2Y0+Ae1+e2) = A4 σ2

1−A2 +A2σ2+σ2 = σ2

1−A2 . Similarly, we can show that

V ar(Yt) =
σ2

1−A2 for any t. Finally, Cov(Yt, Yt+k) = Cov(Yt, A
kYt+Ak−1et+1+· · ·+et+k) = Ak σ2

1−A2

for any t. Therefore Yt is covariance stationary. Furthermore, Yt is strictly stationary, because Yt

follows the normal distribution, in which the first and second moments completely determine the
distribution.

2.4 E(et+1|It) = E(Yt+1 − Yt|It) = E(Yt+1|It)− Yt. Since Yt is a martingale adapted to It, It is a
sequence of increasing information sets, E(Yt+1|It) = Yt, and et is in It. Therefore, E(et+1|It) = 0
so that et is a martingale difference sequence.

2.5 Let et be a covariance stationary martingale difference sequence. By definition of covariance
stationarity, the mean and variance of et are finite and constant over time. Since et is a martingale
difference sequence, E(et+1|It) = 0. Using the law of iterated expectations, we also have E(et+k|It) =
E(E(et+k|It+k−1|It) = 0 for any k > 0. Therefore,E(et) = E(et+1) = E(E(et+1|It)) = 0. Second,
E(etet+k) = E(E(etet+k|It)) = E(etE(et+k|It)) = 0 for any k > 0. Therefore, et is white noise.

2.6 Let et be an i.i.d. white noise process and It be the information set generated from {et, et−1, · · · }.
Then et is in It, and It is an increasing sequence of information sets. Since et+1 is independent of
{et, et−1, · · · } by the definition of i.i.d., E(et+1|It) = E(et+1) = E(et) = 0. Therefore, et is a
martingale difference sequence.

Answers to Chapter 3

3.1 Let St+1 = Ft + ϵt+1, where Ft is in It and ϵt+1 is in It+1. Since Ft is orthogonal to ϵt+1,
E(Ftϵt+1) = 0. Thus, E(S2

t+1) = E(F 2
t ) +E(ϵ2t+1), which implies E(S2

t+1) ≥ E(F 2
t ) as E(ϵ2t+1) ≥ 0.

It follows from E(St+1) = E(Ft) that V ar(St+1) ≥ V ar(Ft).

3.2 Yes. Let At = in,t + ϵt, where in,t is in It and ϵt is in It+1. Since in,t is orthogonal to ϵt,
E(in,tϵt) = 0. Thus, E(A2

t ) = E(i2n,t) + E(ϵ2t ), which implies E(A2
t ) ≥ E(i2n,t) as E(ϵ2t ) ≥ 0. It

follows from E(At) = E(in,t) that V ar(At) ≥ V ar(in,t).

3.3 Let νt = Nt−Ê(Nt|Ht). From the identityNt = Ê(Nt|Ht)+νt, we get E(N2
t ) = E((Ê(Nt|Ht))

2)+
E(ν2t ) as Ê(Nt|Ht) is orthogonal to νt. Thus, E(N2

t ) ≥ E((Ê(Nt|Ht))
2). Note that V ar(Nt) =

E(N2
t ) − (E(Nt))

2, and that E(Nt) = E(Ê(Nt|Ht)) by the law of iterated projections because un-
conditional expectation is the projection onto the set of constants. Since E(N2

t ) ≥ E((Ê(Nt|Ht))
2),

V ar(Nt) ≥ E((Ê(Nt|Ht))
2)− (E(Ê(Nt|Ht)))

2 = V ar(Ê(Nt|Ht)). Thus, V ar(Nt) ≥ η.

Answers to Chapter 4

4.1 (i) Let E(u2
t ) = σ2. E(xt) = E(ut) + 0.8E(ut−1) = 0 for any t because ut is a white noise

process. Similarly, E(xtxt+k) is 1.64σ2 if k = 0, is 0.8σ2 if |k| = 1, and is 0 if |k| > 1. They
are invariant over time so that xt is covariance stationary. (ii) Let Ht be the linear information
set generated by the current and past values of xt, and Hu

t be the linear information set generated
by the current and past values of ut. Since |B| ≤ 1, ut is fundamental so that Ht = Hu

t . (iii)
Ê(xt|ut−1, ut−2, · · · ) = Ê(ut + 0.8ut−1|ut−1, ut−2, · · · ) = 0.8ut−1. (iv) Yes. Ê(xt|xt−1, xt−2, · · · ) =
Ê(xt|ut−1, ut−2, · · · ) = 0.8ut−1 because Ht = Hu

t .
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4.2 (i) Let E(u2
t ) = σ2. E(xt) = E(ut) + 1.2E(ut−1) = 0 for any t because ut is a white noise

process. Similarly, E(xtxt+k) is 2.44σ2 if k = 0, is 1.2σ2 if |k| = 1, and is 0 if |k| > 1. They are
invariant over time so that xt is covariance stationary. (ii) Let Ht be the linear information set
generated by the current and past values of xt, and Hu

t be the linear information set generated by
the current and past values of ut. Since |B| > 1, ut is not fundamental so that Ht ̸= Hu

t . (iii)
Ê(xt|ut−1, ut−2, · · · ) = Ê(ut + 1.2ut−1|ut−1, ut−2, · · · ) = 1.2ut−1. (iv) No. Ê(xt|xt−1, xt−2, · · · ) ̸=
Ê(xt|ut−1, ut−2, · · · ) = 1.2ut−1 because Ht ̸= Hu

t .

4.3 (i) Let E(u2
t ) = σ2. E(xt) = E(ut)+E(ut−1) = 0 for any t because ut is a white noise process.

Similarly, E(xtxt+k) is 2σ2 if k = 0, is σ2 if |k| = 1, and is 0 if |k| > 1. They are invariant over
time so that xt is covariance stationary. (ii) Let Ht be the linear information set generated by the
current and past values of xt, and Hu

t be the linear information set generated by the current and
past values of ut. Since |B| ≤ 1, ut is fundamental so that Ht = Hu

t . (iii) Ê(xt|ut−1, ut−2, · · · ) =
Ê(ut + ut−1|ut−1, ut−2, · · · ) = ut−1. (iv) Yes. Ê(xt|xt−1, xt−2, · · · ) = Ê(xt|ut−1, ut−2, · · · ) = ut−1

because Ht = Hu
t .

Answers to Chapter 5

5.1 We consider an s-period ahead forecast of Xt, E(Xt+s|It), and the forecast error, et =
Xt+s − E(Xt+s|It). (i) Since Xt is strictly stationary and ergodic, et is strictly stationary and
ergodic. Now, we need to show that et has mean zero and E(|e|2) < ∞. Note that E(et|It) =
0, and et is in the information set It+s. First, E(et) = E(E(et|It)) = 0. Second, E(|e|2) <
∞ since E(|Xt|2) < ∞. (ii) E(et|et−j , et−j−1, · · · ) = E(E(et|It)|et−j , et−j−1, · · · )) = 0 for any
j ≥ s. Thus, E(et|et−j , et−j−1, · · · ) converges in mean square to 0 as j → ∞. (iii) Let rtj =
E(et|et−j , et−j−1, · · · )−E(et|et−j−1, et−j−2, · · · ) where et is in It+s. Note that rtj = 0 for any j ≥ s

based on (ii). Thus,
∑∞

j=0[E(r2tj)]
1
2 =

∑s−1
j=0[E(r2tj)]

1
2 < ∞ because s is finite and et has a finite

second moment.

5.2 We consider an s-period ahead forecast of Xt, E(Xt+s|It), and the forecast error, et = Xt+s −
E(Xt+s|It). Let Zt be a random vector with finite second moments in the information set It. Define
ft = Ztet = g(et). (i) Because Xt and Zt are stationary and ergodic, ft is strictly stationary and
ergodic. Now, we need to show that ft is with mean zero and finite second moments. Note that
E(et|It) = 0 and et is in the information set It+s so that ft is in the information set It+s. Thus,
E(ft|It) = E(Ztet|It) = E(ZtE(et|It)) = 0. First, E(ft) = E(E(ft|It)) = 0. Second,E(|f |2) < ∞
since E(|Xt|2) < ∞, E(|Zt|2) < ∞. (ii) E(ft|ft−j , ft−j−1, · · · ) = E(E(ft|It)|ft−j , ft−j−1, · · · ) = 0
for any j ≥ s. Thus, E(ft|ft−j , ft−j−1, · · · ) converges in mean square to 0 as j → ∞. (iii) Let
rtj = E(ft|ft−j , ft−j−1, · · · )− E(ft|ft−j−1, ft−j−2, · · · ) where ft is in It+s. Note that rtj = 0 for any

j ≥ s based on (ii). Thus,
∑∞

j=0[E(r′tjrtj)]
1
2 =

∑s−1
j=0[E(r′tjrtj)]

1
2 < ∞ because s is finite and ft has

a finite second moment.

5.3 Let ft = (1 − L)et = et − et−1 where et = Ψ(L)ut. Then ft has an MA representation that
ft = Ψ∗(L)ut where Ψ∗(L) = (1 − L)Ψ(L). By similar calculation as (5.12) in the text, we have
Ψ = [Ψ∗(1)]2E(u2

t ) = [0×Ψ(1)]2E(u2
t ) = 0.

5.4 A test is said to under-reject in small samples when the probability of rejecting the null
hypothesis when it is true is smaller than the nominal size when the nominal critical value is used in
small samples. In this case, the true critical value is smaller than the nominal critical value (provided
that the test procedure is to reject when the test statistic or the absolute value of it is greater than
the nominal critical value).
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5.5 (a) The IV estimator is

bIV = (

T∑
t=1

ztx
′
t)

−1
T∑

t=1

ztyt

(b) Let It be the information set generated by {gt−1,gt−2, . . .}. Since zt is in It, E(gt|It) =
E(ztet|It) = ztE(et|It) = 0. By the law of iterated expectations, we have E(gt|It−1) =
E(E(gt|It)|It−1) = 0. Hence gt is a martingale difference sequence.

(c) Applying the strong law of Ergodic theorem to ztxt and ztet, we have

1

T

T∑
t=1

ztx
′
t

a.s.−→ E(ztx
′
t)

1

T

T∑
t=1

ztet
a.s.−→ E(ztet)

By Assumption (A5), 1
T

∑T
t=1 ztx

′
t is nonsingular for large enough T with probability one,

and therefore,

bIV − β = (
1

T

T∑
t=1

ztx
′
t)

−1 1

T

T∑
t=1

ztyt − β

= (
1

T

T∑
t=1

ztx
′
t)

−1 1

T

T∑
t=1

zt(xtβ + et)− β

= (
1

T

T∑
t=1

ztx
′
t)

−1 1

T

T∑
t=1

ztet
a.s.−→ E(ztx

′
t)

−1E(ztet) = 0.

(d) Applying the Ergodic stationary martingale differences central limit theorem to ztet, we
obtain

1√
T

T∑
t=1

ztet
d−→ N(0, E(e2tztz

′
t)).

By Assumption (A3), E(e2tztz
′
t) = E(E(e2tztz

′
t|zt)) = σ2E(ztz

′
t). Hence

√
T (bIV − β) = ( 1

T

∑T
t=1 ztx

′
t)

−1 1√
T

∑T
t=1 zte

′
t

d−→ E(ztx
′
t)

−1N(0, σ2E(ztz
′
t)).

Hence
√
T (bIV − β)

d−→ N(0, σ2E(ztx
′
t)

−1E(ztz
′
t)E(xtz

′
t)

−1).

(e) (i) Prove that gt satisfies Gordin’s conditions. First Gordin’s condition is to show E(g2
t ) < ∞.

By Assumption (A2), it is satisfied.

Second Gordin’s condition is to show that E(gt | gt−j ,gt−j−1, · · · )
m.s.−→ 0 as j → ∞. Because

yt is in It+2, so are both et and gt in It+2. Therefore, for j ≥ 2,
E(gt | gt−j ,gt−j−1, · · · )
= E(E(gt | It) | gt−j ,gt−j−1, · · · ) (by law of iterated expectation)
= 0 (since E(gt | It) = E(ztet | It) = ztE(et | It) = 0). Therefore, it is satisfied.
Third Gordin’s condition is to show that telescoping sum is finite. Since rtj = E(gt|gt−j ,gt−j−1, . . .)−
E(gt|gt−j−1,gt−j−2, . . .) = 0 for j ≥ 2, the telescoping sum is finite. Hence it is satisfied.

(ii) We can apply the same logic to show that the IV estimator is consistent under (A1)−(A5).
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(iii) To prove that IV estimator is asymptotically normally distributed, apply the Gordin and
Hansen’s central limit theorem to ztet. Then we obtain

1√
T

T∑
t=1

ztet
d−→ N(0,S)

where S = Γ−1 + Γ0 + Γ1 and Γj = E(ete
′
t−jztz

′
t−j). Hence

√
T (bIV − β) = ( 1

T

∑T
t=1 ztx

′
t)

−1 1√
T

∑T
t=1 zte

′
t

d−→ E(ztx
′
t)

−1N(0,S).

Hence
√
T (bIV − β)

d−→ N(0, E(ztx
′
t)

−1SE(xtz
′
t)

−1).

5.6 (a)

tk =

√
n(bk − βk)√

s2[ 1n (X
′X)−1]kk

The denominator converges in probability to the square root of σ2[E(xtx
′
t)]

−1
kk , and the nu-

merator converges almost surely to a normal random variable with mean zero and variance
σ2[E(xtx

′
t)]

−1
kk . Hence tk converges in distribution to a standard normal random variable.

(b) The tk statistic has the exact t distribution with n −K degrees of freedom. Since the crit-
ical value based on the t distribution is always greater than 1.96 in finite samples, the test
overrejects. The actual size can be obtained from a t distribution table. The actual size is
larger than 10 percent if the cutoff point for Student’s t distribution for the 0.05 right-hand
tail probability is greater than 1.96. This property is true for df = 1, 2, 3, 4, 5, and not true
if df is greater than 5. When n = 4, df = 1, and therefore the actual size is larger than 10
percent. If n = 8, df = 5, so this is still true. For n = 9, 10, 11, the df is greater than 5.
Therefore, the actual size is smaller than 10 percent for n = 9, 10, 11.

5.7 (i) The Program

new;

cls;

outfile = "741c-hw2.out";

output file = ^outfile reset;

$outfile;

"By Kyungho Jang and Masao Ogaki";

datestr(0);

timestr(0);

seedno = 36481111;

rndseed seedno;

format /rdn 8,0;

"Seed Number Used: rndseed = ";; seedno;

format /rdn 12,4;

n = 26; @ sample size @

n_mc = 500; @ # of replication for Monte Carlo study @

df_e = 4; @ degree of fredom of e_t @

@ Critical value with 5% significance level with df = 25 @

nc = 1.96; @ Normal Distribution @

tc = 2.060; @ Student’s t distribution @

@ Monte Carlo Study @
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tnm1 = zeros(n_mc,1); @ vector of t values under H0 using t1 @

tam1 = zeros(n_mc,1); @ vector of t values under H1 using t1 @

tnm2 = zeros(n_mc,1); @ vector of t values under H0 using t2 @

tam2 = zeros(n_mc,1); @ vector of t values under H1 using t2 @

i = 1;

do while i <= n_mc;

@ Generate independent series @

dat = rndn(n,2+df_e);

x = dat[.,1];

z = dat[.,2];

q = sumc((dat[.,3:2+df_e]^2)’);

e = z ./ sqrt(q/df_e);

@ Under H0: beta = 0, Construct y @

yn = e;

@ Under H1: beta = 0.15, Construct y @

ya = x*0.15 + e;

@ Estimation @

k = cols(x);

df1 = n - k; @ for t1 @

df2 = n; @ for t2 @

bn = invpd(x’x)*x’yn; @ b under H0 @

ba = invpd(x’x)*x’ya; @ b under H1 @

un = yn - x*bn; @ Residuals under H0 @

ua = ya - x*ba; @ Residuals under H1 @

sign2_1 = un’un/df1; @ Variance of e_t under H0 for t1 @

siga2_1 = ua’ua/df1; @ Variance of e_t under H1 for t1 @

sign2_2 = un’un/df2; @ Variance of e_t under H0 for t2 @

siga2_2 = ua’ua/df2; @ Variance of e_t under H1 for t2 @

sbn1 = sqrt(sign2_1*invpd(x’x)); @ Standard error of b under H0 for t1 @

sba1 = sqrt(siga2_1*invpd(x’x)); @ Standard error of b under H1 for t1 @

sbn2 = sqrt(sign2_2*invpd(x’x)); @ Standard error of b under H0 for t2 @

sba2 = sqrt(siga2_2*invpd(x’x)); @ Standard error of b under H1 for t2 @

tnm1[i] = bn ./ sbn1; @ t values under H0 using t1 @

tam1[i] = ba ./ sba1; @ t values under H1 using t1 @

tnm2[i] = bn ./ sbn2; @ t values under H0 using t2 @

tam2[i] = ba ./ sba2; @ t values under H1 using t2 @

i = i + 1;

endo;
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@ Sort the results with abolute value @

tnm1 = sortc(abs(tnm1),1);

tam1 = sortc(abs(tam1),1);

tnm2 = sortc(abs(tnm2),1);

tam2 = sortc(abs(tam2),1);

"";

"***** Under H0: b = 0 *****";

"";

"Ex. 1-(a): Based on Normal Distribution";

"Estimated true size with 5% critical value ";

meanc(tnm1 .> nc);

"";

"Ex. 1-(b): Based on t Distribution with df = 25";

"Estimated true size with 5% critical value ";

meanc(tnm1 .> tc);

"";

"Ex. 1-(c): True Critical Value of the t test for the 5% significance level";

"Estimated true 5% critical value ";

etcv1 = tnm1[int(n_mc*0.95)];

etcv1;

"";

"***** Under H1: b = 0.15 *****";

"";

"Ex. 1-(d): Based on t Distribution with df = 25";

" Estimated power with the nominal critical value ";

meanc(tam1 .> tc);

"";

"Ex. 1-(e): Based on t Distribution with df = 25";

" Estimated size corrected power";

meanc(tam1 .> etcv1);

"";

"***** Under H0: b = 0 *****";

"";

"Ex. 2-(a): Based on Normal Distribution";

"Estimated true size with 5% critical value ";

meanc(tnm2 .> nc);

"";

"Ex. 2-(b): Based on t Distribution with df = 25";

"Estimated true size with 5% critical value ";

meanc(tnm2 .> tc);

"";
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"Ex. 2-(c): True Critical Value of the t test for the 5% significance level";

"Estimated true 5% critical value ";

etcv2 = tnm2[int(n_mc*0.95)];

etcv2;

"";

"***** Under H1: b = 0.15 *****";

"";

"Ex. 2-(d): Based on t Distribution with df = 25";

" Estimated power with the nominal critical value ";

meanc(tam2 .> tc);

"";

"Ex. 2-(e): Based on t Distribution with df = 25";

" Estimated size corrected power";

meanc(tam2 .> etcv2);

end;

(ii) The Output

741c-hw2.out

By Kyungho Jang and Masao Ogaki

5/28/02

1:23:09

Seed Number Used: rndseed = 36481111

***** Under H0: b = 0 *****

Ex. 1-(a): Based on Normal Distribution

Estimated true size with 5% critical value

0.0600

Ex. 1-(b): Based on t Distribution with df = 25

Estimated true size with 5% critical value

0.0580

Ex. 1-(c): True Critical Value of the t test for the 5% significance level

Estimated true 5% critical value

2.1213

***** Under H1: b = 0.15 *****

Ex. 1-(d): Based on t Distribution with df = 25

Estimated power with the nominal critical value

0.0960

Ex. 1-(e): Based on t Distribution with df = 25

Estimated size corrected power

0.0880

***** Under H0: b = 0 *****
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Ex. 2-(a): Based on Normal Distribution

Estimated true size with 5% critical value

0.0680

Ex. 2-(b): Based on t Distribution with df = 25

Estimated true size with 5% critical value

0.0600

Ex. 2-(c): True Critical Value of the t test for the 5% significance level

Estimated true 5% critical value

2.1634

***** Under H1: b = 0.15 *****

Ex. 2-(d): Based on t Distribution with df = 25

Estimated power with the nominal critical value

0.1040

Ex. 2-(e): Based on t Distribution with df = 25

Estimated size corrected power

0.0880

(iii) Explanation

(a) It is better to use the t distribution than normal distribution, because the sample size (n = 26)
is not large enough.

(b) There is no difference between t1 and t2, because the size corrected power of t1 (0.0880) is
the same as that of t2 (0.0880).

Answers to Chapter 6

6.1 (a) Let et = Xt+3 − E(Xt+3|It) and It be an information set generated by the current and
past Yt which contains Xt. Then et is in It+3 and E(et|It) = 0. Note that E(etet−j) =
E[E(etet−j | It)] = E[et−jE(et|It)] = 0 for any j ≥ 3. Thus, this case is of known order

of serial correlation, which is 2. (i) The long run variance of et is Ω =
∑2

τ=−2 Φ(τ), where
Φ(τ) = E(etet−τ ). (ii) Since the order of serial correlation is known, we should use the
truncated kernel estimator with ST = 3. If the estimate of long run variance is not posi-
tive definite, then we can use Modified Durbin’s method or kernel HAC for the estimation of
the long run variance of et. Note that zero restrictions should not be used in the latter method.

(b) Zt is in It and ft = Ztet. Then ft is in It+3 and E(ft|It) = E(Ztet|It) = ZtE(et|It) = 0.
Note that E(ftf

′
t−j) = E[E(ftf

′
t−j | It)] = E[E(ft|It)f ′t−j ] = 0 for any j ≥ 3. Thus, this

is the case of known order of serial correlation, which is 2. (i) The long run variance of ft
is Ω =

∑2
τ=−2 Φ(τ), where Φ(τ) = E(ftf

′
t−τ ). (ii) Since the order of serial correlation is

known, we should use the truncated kernel estimator with ST = 3. If the estimate of long run
variance is not positive definite, then we can use Modified Durbin’s method or kenel HAC for
the estimation of long run variance of ft. Note that the former method is not reliable when
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the number of elements in ft is large compared with the sample size. Note also that zero
restrictions should not be used in the latter method.

Answers to Chapter 8

8.1 (a) Let zt = (mt, yt)
′ be a two dimensional covariance stationary process. We say that y

fails to Granger-cause m if for all s > 0,

Ê(mt+s|mt,mt−1, · · · , yt, yt−1, · · · ) = Ê(mt+s|mt,mt−1, · · · ).(8.E.2)

We also say that yt is not linearly informative about future m, or m is exogenous in the time
series sense with respect to y.

(b) One can test the null hypothesis that y fails to Granger-cause m by applying OLS to

mt+1 = δϵ2 + a1mt + a2mt−1 + · · ·+ apmt−p+1 + b1yt + b2yt−1 + · · ·+ bpyt−p+1 + ϵ2t(8.E.3)

with the null hypothesis

H0 : bi = 0 for i = 1, · · · , p.(8.E.4)

(c) Consider a model in which consumers and firms increase their demand for money when they
expect future real GDP to increase. In such a model money can Granger-cause real GDP
because money supply responds to the future expected values of real GDP.

(d) First, define the orthogonalized impulse response function. Consider the Wold representation
for zt:

zt = µ+ ϵt +Ψ1ϵt−1 +Ψ2ϵt−2 + · · ·
= µ+Ψ(L)ϵt.

Define Σϵ = E(ϵtϵ
′
t). Assume that Σϵ is positive definite. Then there exists a unique lower

triangular matrix Φ0 with 1’s along the principal diagonal and a unique diagonal matrix Λ
with positive entries along the principal diagonal such that

Σϵ = Φ0ΛΦ′
0.(8.E.5)

Let

et = Φ−1
0 ϵt.(8.E.6)

Then E(ete
′
t) = Φ−1

0 Σϵ(Φ
−1
0 )′ = Λ, which is diagonal. Because

ϵt = Φ0et,(8.E.7)

zt has a MA representation in terms of et:

zt = µ+Φ0et +Φ1et−1 +Φ2et−2 + · · ·
= µ+Φ(L)et.

where Φs = ΨsΦ0. Let ej,t be the the j-th element of et, and ϕs,ij be the (i, j)-th element
of Φs, then

∂yi,t+s

∂ej,t
= ϕs,ij .(8.E.8)
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A plot of (8.E.8) as a function of s > 0 is the orthogonalized impulse response function.
Second, discuss conditions for B0 under which the orthogonalized impulse response function
represents the effects of each element of et on zt+s. Let et = B0ϵt. We need to identify B0

so that n2 restrictions are necessary (not sufficient) for identification. The first assumption
is that structural shocks are assumed to be orthogonal to each other so that the covariance

matrix of et is a diagonal matrix. This assumption gives n(n−1)
2 conditions. Additional n

conditions are given by the second normalization conditions that diagonal components are

set to be one. Therefore, we need n(n−1)
2 conditions for identification as follows:

(i) Following Sims (1980), assume that B0 is lower triangular. This assumption gives
n(n−1)

2 necessary conditions. From et = B0ϵt, Λ = B0ΣϵB
′
0. Therefore,

Φ0ΛΦ′
0 = Σϵ.(8.E.9)

Let P be a lower triangular matrix of Cholesky decomposition of Σϵ so that PP′ = Σϵ.

From Φ0Λ
1
2 = P, it follows that

Φ0 = PΛ− 1
2 .(8.E.10)

In this case, B0 = Φ−1
0 .

(ii) Assume that B0 is not lower triangular but has only
n(n−1)

2 unknown parameters. From
et = B0ϵt

Λ = B0ΣϵB
′
0.(8.E.11)

Blachard and Watson (1986) directly solve (8.E.11) and get C0.

(iii) When zt is I(1), Blanchard and Quah (1989) considers a model with long run restric-
tions. Consider the structural form of

∆zt = Φ(L)et(8.E.12)

and the reduced form of

∆zt = Ψ(L)ϵt.(8.E.13)

where zt is I(1). Assumption that Φ(1) is lower triangular gives n(n−1)
2 necessary

conditions. From Φ(1)et = Ψ(1)ϵt

Φ(1)ΛΦ(1)′ = Ψ(1)ΣϵΨ(1)′.(8.E.14)

Let P be a lower triangular matrix of Cholesky decomposition of Ψ(1)ΣϵΨ(1)′ so that

PP′ = Ψ(1)ΣϵΨ(1)′. From Φ(1)Λ
1
2 = P, it follows that

Φ(1) = PΛ− 1
2(8.E.15)

and from Φ(1) = Ψ(1)Φ0

Φ0 = Ψ(1)−1Φ(1).(8.E.16)

8.2 (a) True. (b) False. (c) True. (d) False. (e) False. (f) True.
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Table C.1: GMM Results

θ lnA ρA σϵ Ay ln γ δ α σi
parameters 5.1199 0.1936 0.9663 0.0119 8.5722 0.0041 0.0209 0.6553 0.0427

standard errors 0.0590 0.1441 0.0250 0.0009 0.0201 0.0003 0.0003 0.0059 0.0044

Table C.2: Data moments and model moments

Model Moments Std. Error Data Moments Std. Error Wald Test P-value

σi 0.0880 0.0197 0.0427 0.0044 5.3699 0.0205

Answers to Chapter 9

9.3 (a) The GMM estimates are given by the following Table C.1.

(b) The data moments and model moments are given by Table C.2. The Wald test shows that
we can reject the null hypothesis that these two moments are the same.

(c) (The program) The program we need to modify is as follows:

nf=1 ; @<<<<<<@

fc = ((-cyratio/iyratio)~(alpha/iyratio)); @<<<<<<@ fx = ((1-alpha)/iyratio);

@<<<<<<@ fe = (1/iyratio); @<<<<<<@

mm = sd[6,1];@<<<<@

dm=b[9,1]; @<<<<<@

bgm=1|1|0.9|0.01|1|.01|.02|0.6|.01 ; @<<<<@

nw=9; @<<<<@ @ # of disturbance terms in w(t); scalar @

w9=hi[2:114,1]^2-b[9,1]^2 ; @<<<<@ retp(w1~w2~w3~w4~w5~w6~w7~w8~w9) ; @<<<<<@

Answers to Chapter 10

10.1 (i) mas = 0 for HS, BG, and EZ since there is no serial correlation, while mas = 1 for FC
since there is one-lag serial correlation.
(ii) (HS) Strength: Theoretically, β and γ have economic meanings of the discount rate and CRRA,

respectively. Empirically, Ct+1

Ct
tends to be stationary, which is necessary for GMM. Weakness:

Theoretically, the utility function is time separable. It is easy to handle but might not be true.
Empirically, the estimate of γ is so low that we can not explain such a high degree of risk aversion.
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Since the model uses consumption data, it has a measurement error problem and a time aggregation
problem.
(BG) Strength: Theoretically, γ has an economic meaning of CRRA. Empirically, it is free of a
measurement error problem and a time aggregation problem. Weakness: Theoretically, the model
has to assume that consumption is martingale to obtain constant E(Ct+1

Ct
|It). It is also hard to

interpret β∗. Empirically, there occurs an identification problem when Rt+1 = Rm
t+1 in that we have

a trivial solution of β∗ = 1 and α = 1. It is also subject to Roll’s critique since Rm
t+1 is a value

weighted return.
(EZ) Strength: Theoretically, it is a general expression. Empirically, we do not have to concern
ourselves with stationarity. Weakness: Empirically, it has a measurement error problem and a time
aggregation problem since it uses consumption data. It is also subject to Roll’s critique since Rm

t+1

is a value weighted return. There occurs an identification problem when Rt+1 = Rm
t+1 in that we

have a trivial solution of β+ = 1, η = −1 and θ = 0.
(FC) Strength: Theoretically, it can account for habit formation, which is plausible. Empirically,
habit formation may help solve the equity premium puzzle. Weakness: Theoretically, St+1 can be
negative if a1 > 1. Empirically, we need to modify the formula to be stationary since it may have
an identification problem.

10.2 (a) (i) Let wt = E(
∑∞

i=1 β
idt+i|It)−Ê(

∑∞
i=0 β

idt+i|Ht), then the present value formula
is rewritten by

pt = Ê(
∞∑
i=0

βidt+i|Ht) + wt.(10.E.1)

where Ê(wt|Ht) = 0. From Ê(dt|Ht−1) = ϕdt−1,, we get Ê(dt+i) = ϕidt, and (10.E.1)
becomes

pt =

∞∑
i=1

βiÊ(dt+i|Ht) + wt(10.E.2)

=

∞∑
i=1

(βϕ)idt + wt

=
βϕ

1− βϕ
dt + wt.

Thus, δ = βϕ
1−βϕ . Note that Ê(wt|Ht) = Ê(

∑∞
i=1 β

idt+i|Ht)−Ê(
∑∞

i=1 β
idt+i|Ht) = 0 by

the law of iterated expectations, while E(wt|It) = E(
∑∞

i=1 β
idt+i|It)−Ê(

∑∞
i=0 β

idt+i|Ht) ̸=
0. Because It is bigger than Ht and agents generally use a non-linear forecasting rule
whereas econometrician use a linear forecasting rule, it is impossible to prove that
E(wt | It) = 0.

(ii) Since wt is not necessarily in Ht+1, generally E(wtwt+1) ̸= 0. To see this, suppose
that pt is in Ht+1. Then, from (10.E.4), wt is in Ht+1. Since Ê(wt+i|Ht+1) = 0 for
i ≥ 1 due to the law of iterated projection, it follows from the orthogonality condition
that E(wtwt+i|Ht+1) = 0 for i ≥ 1. Therefore, wt is serially uncorrelated with the
additional assumption that pt is in Ht+1. However, this additional assumption is not
realistic, because pt is the expectation of future dt conditional on the information set
that is generated by a nonlinear function of {dt, dt−1, dt−2, · · · }.

(iii) We can exploit the three equations to estimate β and ϕ in the framework of Generalized
Method of Moments, imposing the restriction on δ we derived.

pt = βE(pt+1 + dt+1|It)(10.E.3)
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Ê(dt|Ht−1) = ϕdt−1(10.E.4)

pt = δdt + wt(10.E.5)

From the equation (10.E.3),

pt = β(pt+1 + dt+1) + ut+1,(10.E.6)

where E(ut+1 | It) = 0. Let z2t be a random variable in It, then we obtain a orthogo-
nality condition

E(z2tut+1) = 0(10.E.7)

From the equation (10.E.4),

dt+1 = ϕdt + vt+1,(10.E.8)

where Ê(vt+1 | Ht+1) = 0. Note that Ê(vt+1 | Ht) = 0 due to the law of iterated projec-
tion. Let z1t be a random variable in Ht, then we can obtain the second orthogonality
condition

E(z1tvt+1) = 0(10.E.9)

From the equation (10.E.5), Ê(wt | Ht) = 0 and we can get third orthogonality condition

E(z1twt) = 0(10.E.10)

Based on equations (10.E.7),(10.E.9), and (10.E.10), we have the following moment
conditions with a restriction δ = βϕ

1−βϕ :

E(f(xt, β, ϕ)) = 0,(10.E.11)

where, parameterized disturbances are

f(xt, β, ϕ) =

 z2t(pt − β(pt+1 + dt+1))
z1t(dt+1 − ϕdt)

z1t(pt − βϕ
1−βϕdt)


where xt = (dt, pt)

′ and valid instrument variables are z1t which is in Ht and z2t which
is in It. In order to compute the long-run covariance matrix, one should use either
pre-whitened QS kernel or VARHAC estimator since wt has an unknown order of serial
correlation.

(iv) One can use the Wald test, LM test, or LR test to test the restriction. Under a set
of regularity conditions, these tests have the same asymptotic χ2 (q) distribution, in
which q is the number of restrictions, in particular q = 1 in this example. The LM test
and LR test are better than the Wald test because the latter not only has poor small
sample properties but also depends on parameterization of nonlinear restrictions.

(b) Adding and subtracting
∑∞

i=1 β
idt in the right-hand side of the present value formula, pt =∑∞

i=1 β
iE(dt+i|It) yields,

pt −
β

1− β
dt =

∞∑
i=1

βiE(dt+i − dt|It)

As dt is a difference stationary process, dt+i−dt is stationary for i > 0. Thus, the right hand
side is stationary. Hence we obtain a stationarity restriction that pt − β

1−βdt is stationary.

This restriction implies that pt and dt are cointegrated with a cointegrating vector (1,− β
1−β ).
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10.3 (a) (i) Let wt =
1

1−αE(
∑∞

i=0(
α

α−1 )
imt+i|It)− 1

1−α Ê(
∑∞

i=0(
α

α−1 )
imt+i|Ht), then (10.E.8)

is rewritten by

pt =
1

1− α
Ê(

∞∑
i=0

(
α

α− 1
)imt+i|Ht) + wt.(10.E.12)

where Ê(wt|Ht) = 0. From (10.E.9), we get Ê(mt+i) = ϕimt, and (10.E.12) becomes

pt =
1

1− α
Ê(

∞∑
i=0

(
αϕ

α− 1
)imt|Ht) + wt(10.E.13)

=
1

1− α

∞∑
i=0

(
αϕ

α− 1
)imt + wt

=
1

1− α+ αϕ
mt + wt.

Thus, δ = 1
1−α+αϕ .

(ii) wt is serially correlated in general. To see why, suppose that pt is in Ht+1. Then,
from (10.E.10), wt is in Ht+1. Since Ê(wt+i|Ht+1) = 0 for i ≥ 1, it follows from
the orthogonality condition that E(wtwt+i|Ht+1) = 0 for i ≥ 1.Therefore, wt is serially
uncorrelated with the additional assumption that pt is in Ht+1. However, this additional
assumption is not realistic, because pt is the expectation of future mt conditional on
the information set that is generated by a nonlinear function of {mt,mt−1,mt−2, · · · }.

(iii) Let ut = pt − E(pt|It−1). From (10.E.7) we get

pt − pt−1 =
1

α
(mt−1 − pt−1) + ut.(10.E.14)

Since E(ut|It−1) = 0 and mt−1−pt−1 is in It−1, E(ut(mt−1−pt−1)) = 0 by the orthog-
onality condition so that we get an unbiased estimator of α by taking the reciprocal of
the OLS estimate of (10.E.14).

(iv) From Ê(wt|Ht) = 0, Ê(vt+1|Ht) = 0, and E(ut+1|It) = 0, we get the following moment
conditions with a restriction, δ = 1

1−α+αϕ :

f(xt, α, ϕ) =

 z1t(pt − 1
1−α+αϕmt)

z1t(mt+1 − ϕmt)
z2t(pt − pt−1 − 1

α (mt−1 − pt−1))

(10.E.15)

E(f(xt, α, ϕ)) = 0,

where xt = (mt, pt)
′, z1t is in Ht, and z2t is in It. One can use GMM to estimate

parameters using the above moment conditions. In order to compute the long-run
covariance matrix, one should use either a prewhitened QS kernel or VARHAC estimator
since wt has an unknown order of serial correlation.

(v) One can use the Wald test, LM test, or LR test to test the restriction. Under a set
of regularity conditions, these tests have the same asymptotic χ2 (q) distribution, in
which q is the number of restrictions, in particular q = 1 in this example. The LM test
and LR test are better than the Wald test because the latter not only has poor small
sample properties but also depends on parameterization of nonlinear restrictions.

(b) Since mt is a DSP, pt is also a DSP from (10.E.8). Note that pt+i − pt is stationary for i > 0.
Thus, E(pt+1 − pt|It) is stationary. Therefore, mt − pt is stationary from (10.E.7) so that mt

and pt are cointegrated with a known vector (1,−1)′.
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Answers to Chapter 15

15.1 (a) The first order condition implies that the relative price is equal to the marginal rate of
substitution. So, P2t =

MU2

MU1
, where MU2 = βtσ2e

θt(S−α2
2t +βeθδS−α2

2,t+1) and MU1 = βtC−α1
1t .

Thus,

P2t = σ2e
θtEt[

(eθt(C2t + δC2,t−1))
−α2 + βeθδ(eθ(t+1)(C2,t+1 + δC2t))

−α2

C−α1
1t

]

= σ2e
(1−α2)θt

(C2t + δC2,t−1)
−α2 + βe(1−α2)θδEt(C2,t+1 + δC2t)

−α2

C−α1
1t

.

Therefore,
P2tC

−α1
1t

C
−α2
2t e(1−α2)θt

= σ2(1 + δ
C2,t−1

C2t
)−α2 + βe(1−α2)θδEt(

C2,t+1

C2t
+ δ)−α2).

(b) Note that S2t

C2t
=

eθt(C2t+δC2,t−1)
C2t

= eθt(1 + δ
C2,t−1

C2t
). So, ln S2t

C2t
= θt+ ln(1 + δ

C2,t−1

C2t
), where

the second component is stationary since C2t

C2,t−1
is assumed to be stationary. Therefore, ln S2t

C2t

is trend stationary.

(c) Definitions: A set of variables is stochastically cointegrated if stochastic trends are elimi-
nated by a linear combination of difference stationary variables. If the linear combination
eliminates both stochastic and deterministic trends, the deterministic cointegration restric-
tion is satisfied. To consider the following cases, take a log of the last equation in (a) and
denote p2t = lnP2t, c1t = lnC1t, and c2t = lnC2t. Then, p2t − α1c1t + α2c2t − (1 − α2)θt =

lnσ2 + ln(1 + δ
C2,t−1

C2t
)−α2 + βe(1−α2)θδEt(

C2,t+1

C2t
+ δ)−α2), where the right hand side is sta-

tionary since
C2,t−1

C2t
and

C2,t+1

C2t
are stationary. Therefore, the left hand side is also stationary.

We also assume that c1t and c2t are not cointegrated, which implies p2t is nonstationary.

(i) Case 1: If θ = 0 and cit is difference stationary for i = 1, 2, then p2t − α1c1t + α2c2t
is stationary. Therefore, p2t, c1t, and c2t are cointegrated with a cointegrating vector
(1,−α1, α2)

′, and the deterministic cointegration restriction is satisfied. By the property
of cointegration, α1 and α2 are identified.

(ii) Case 2: If θ ̸= 0 and cit is difference stationary for i = 1, 2, then p2t − α1c1t + α2c2t
is trend stationary. Therefore, p2t, c1t, and c2t are cointegrated with a cointegrating
vector (1,−α1, α2)

′, and the deterministic cointegration restriction is not satisfied. By
the property of cointegration, α1, α2 and θ are identified.

(iii) Case 3: If θ = 0 and c1t is difference stationary and c2t is stationary, then p2t −
α1c1t is stationary. Therefore, p2t, and c1t are cointegrated with a cointegrating vector
(1,−α1)

′, and the deterministic cointegration restriction is satisfied. By the property
of cointegration, α1 is identified.

(iv) Case 4: If θ ̸= 0 and c1t is difference stationary and c2t is stationary, then p2t − α1c1t
is trend stationary. Therefore, p2t, and c1t are cointegrated with a cointegrating vector
(1,−α1)

′ and the deterministic cointegration restriction is not satisfied. By the prop-
erty of cointegration, α1 is identified.

(v) Case 5: If θ = 0 and c1t is difference stationary and c2t is trend stationary with a
nonzero linear trend, then p2t − α1c1t is trend stationary. Therefore, p2t, and c1t are
cointegrated with a cointegrating vector (1,−α1)

′, and the deterministic cointegration
restriction is not satisfied. On the other hand, p2t, c1t, and c2t are cotrended with a
cotrending vector (1,−α1, α2)

′, and the deterministic cointegration restriction is not
satisfied. By the property of cointegration, α1 and α2 are identified.
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(vi) Case 6: If θ ̸= 0 and c1t is difference stationary and c2t is trend stationary with a
nonzero linear trend, then p2t − α1c1t is trend stationary. Therefore, p2t, and c1t are
cointegrated with a cointegrating vector (1,−α1)

′, and the deterministic cointegration
restriction is not satisfied. By the property of cointegration, α1 is identified.

15.2 (a) GPQ tests do not reject the null of trend stationary at 5% significance level. This
implies that nondurables and durables are trend stationary.

Table C.3: GPQ tests
lnC1t lnC2t

G(1,2) 3.7606 (0.0525) 0.6232 (0.4298)
G(1,3) 3.7647 (0.1522) 0.6256 (0.7314)

Note: The numbers in the parenthesis denote p-values.

(b) The ADF test for nondurables does not reject the null of difference stationary at 5% sig-
nificance level, while the test for durables rejects the null of difference stationary at 5%
significance level. This implies that nondurables are difference stationary and durables are
trend stationary.

Table C.4: ADF tests
lnC1t lnC2t

Coefficient 0.9391 (-2.3967) 0.8670 (-3.4090)
lag-length 11 11

Note: The ADF test statistics are computed by a regression equation with a constant and a time

trend. The lag-length is chosen following Campbell and Perron (1991) with maximum lag length 20.

The numbers in the parenthesis denote t-statistics.

(c) CCR estimation shows that α1 = 1.9474 and α2 = 0.9629, while the Wald test rejects the
null hypothesis that the coefficients are equal to one. H(p, q) tests results are mixed. The
deterministic cointegration restriction is rejected at 5% significance level. H(1, 2) does not
reject the null of cointegration, while H(1, 3) rejects the null at 5% significance level.

.11

Answers to Chapter 10.11

Answers to Chapter 17

17.1 (a) Denote Ht = et|e0. Then, the budget constraint is given by

T∑
t=0

∑
Ht

p(Ht)c(Ht) ≤
T∑

t=0

∑
Ht

p(Ht)c
∗(Ht),(17.E.5)

where ct is consumption, c∗t is endowments, and pt is the price of consumption goods.
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Table C.5: CCR estimation and H(p,q) tests
Estimation

lnP2t lnC2t

Coefficients 1
α1

= 0.5135(0.1219) α2

α1
= 0.4945(0.0398)

Inferred Coefficients α1 = 1.9474 α2 = 0.9629
H0 : coefficients are the same as 1 Wald test p-value

532.8906 0.0000
Cointegration Tests Test statistics p-value

H(0,1) 5.2972 0.0214
H(1,2) 0.2711 0.6026
H(1,3) 15.4890 0.0004

Note: The numbers in the parenthesis denote standard errors.

(b) Let L =
∑T

t=0

∑
Ht

Prob(Ht)β
tut−λ(

∑T
t=0

∑
Ht

p(Ht)c(Ht)−
∑T

t=0

∑
Ht

p(Ht)c
∗(Ht)), then

the FOCs are given by

ct : Prob(Ht)β
t(ct − γ)−α = λP (Ht)(17.E.6)

ct+1 : Prob(Ht+1)β
t+1(ct+1 − γ)−α = λP (Ht+1).

It follows from (17.E.5) that

p(Ht+1)

p(Ht)
= β

Prob(Ht+1)

Prob(Ht)
(
ct+1 − γ

ct − γ
)−α.(17.E.7)

Therefore, ct+1−γ
ct−γ is identical for all consumers and for all history, which implies complete

risk sharing. This in turn implies that consumption grows at the same rate for all consumers.
From the arbitrage condition

v(Ht) =

∑
Ht+1|Ht

p(Ht+1)d(Ht+1)

p(Ht)
(17.E.8)

=
∑

Ht+1|Ht

β
Prob(Ht+1)

Prob(Ht)
(
ct+1 − γ

ct − γ
)−αd(Ht+1)

the asset pricing formula is given by

vt = E(β(
ct+1 − γ

ct − γ
)−αdt+1|It)(17.E.9)

or

1 = Et(β(
ct+1 − γ

ct − γ
)−αRt+1|It),(17.E.10)

where Rt+1 = dt+1

vt
.

(c) Let ϵht = β( ct+1−γ
ct−γ )−αRt+1 − 1, where h denotes each household. Then, E(ϵht |It) = 0. From

complete risk sharing, each household is identical so that ϵht = ϵ1t for all h. Therefore,
limT→∞

1
T

∑
t ϵ

h
t = limT→∞

1
T

∑
t ϵ

1
t = 0, while limN→∞

1
N

∑
h ϵ

h
t = limN→∞

1
N

∑
h ϵ

1
t =

ϵ1t ̸= 0. Therefore the GMM estimator is not consistent unless T is large enough. Let
ft = ztϵt, where zt is in It. For example, one can choose zt = (1, ct

ct−1
, ct−1

ct−2
, Rt, Rt−1)

′. Note
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also that ϵt is serially uncorrelated because ϵt is in It+1. Thus, ft is also serially uncorrelated.
One can use the GMM to estimate the parameters using

Min{ 1
T

T∑
t=1

f(xt,b)}′WT {
1

T

T∑
t=1

f(xt,b)}.(17.E.11)

The optimal choice of the weighting matrix is WT = Ω−1, where the long-run covariance
matrix is given by 1

T

∑T
t=1 ftf

′
t since ft is serially uncorrelated.

(d) Note that one can not use the disturbances in (c) since Rt is not available. Instead, one can
use the property of complete risk sharing. Let ϕt+1 denote

ϕt+1 =
ch∗t+1 − γ

ch∗t − γ
(17.E.12)

=
cht+1 − γ

cht − γ

ϵht
ϵht+1

.

By taking log of (17.E.12), we get

log ϵht+1 − log ϵht = log(cht+1 − γ)− log(cht − γ)− log ϕt+1.(17.E.13)

Let ϵ̃ht+1 = log(cht+1 − γ)− log(cht − γ)− log ϕt+1. Then, limN→∞
1
N

∑
h ϵ̃

h
t+1 = 0 since log ϵht

and log ϵht+1 have mean zero. Thus, we have E(zt+1ϵ̃
h
t+1) = 0, where zt+1 = (1, yp,∆yt+1)

′,
yp is a proxi variable of permanent income, and yt is an income variable. In particular,
yt+1 is taken difference to use stationary instruments. Since T = 6, we have the following 5
parameterized disturbances:

f(xh,b) =


zh2 ϵ̃

h
2

zh3 ϵ̃
h
3

zh4 ϵ̃
h
4

zh5 ϵ̃
h
5

zh6 ϵ̃
h
6

(17.E.14)

E(f(xh,b)) = 0,

where b = (ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, γ)
′. We have 15 moment restrictions and 6 unknown parameters,

One can use the GMM to estimate parameters using

Min{ 1

N

N∑
h=1

f(xh,b)}′WN{ 1

N

T∑
h=1

f(xh,b)}.(17.E.15)

The optimal choice of the weighting matrix is WN = Ω−1, where the long-run covariance
matrix is given by 1

N

∑N
h=1 f

hfh′ since fh is uncorrelated across consumers.

(e) Let ϕt+1 denote

ϕt+1 =
ch∗t+1 − γ

ch∗t − γ
.(17.E.16)

From (17.E.16) we have

(cht+1 − ϵht+1 − γ) = ϕt+1(c
h
t − ϵht − γ)(17.E.17)

or

ϵht+1 − ϕt+1ϵ
h
t = cht+1 − ϕt+1c

h
t − γ + ϕt+1γ.(17.E.18)
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Let ϵ̃ht+1 = cht+1 − ϕt+1c
h
t − γ + ϕt+1γ. Then, limN→∞

1
N

∑
h ϵ̃

h
t+1 = 0 since ϵht and ϵht+1

have mean zero. Thus, we have E(zt+1ϵ̃
h
t+1) = 0, where zt+1 = (1, yp,∆yt+1)

′, yp is a
proxy variable of permanent income, and yt is an income variable. In particular, we take the
first difference of yt+1 to use stationary instruments. Since T = 6, we have the following 5
parameterized disturbances:

f(xh,b) =


zh2 ϵ̃

h
2

zh3 ϵ̃
h
3

zh4 ϵ̃
h
4

zh5 ϵ̃
h
5

zh6 ϵ̃
h
6

(17.E.19)

E(f(xh,b)) = 0,

where b = (ϕ2, ϕ3, ϕ4, ϕ5, ϕ6, γ)
′. We have 15 moment restrictions and 6 unknown parameters.

One can use the GMM to estimate parameters using

Min{ 1

N

N∑
h=1

f(xh,b)}′WN{ 1

N

T∑
h=1

f(xh,b)}.(17.E.20)

The optimal choice of the weighting matrix is WN = Ω−1, where the long-run covariance
matrix is given by 1

N

∑N
h=1 f

hfh′ since fh is uncorrelated across consumers.


