
Chapter 2

STOCHASTIC PROCESSES

In most macroeconomic models, expectations conditional on information sets are used

to model the forecasting conducted by economic agents. Economic agents typically

observe stochastic processes of random variables (collections of random variables in-

dexed by time) to form their information sets. This chapter defines the concepts

of conditional expectations and information sets for the case of a finite number of

elements in the probability space.1

2.1 Review of Probability Theory

Since the probability statements made in asymptotic theory involve infinitely many

random variables instead of just one random variable, it is important to understand

basic concepts in probability theory. Thus, we first review those basic concepts.

Imagine that we are interested in making probability statements about a set

of the states of the world (or a probability space), which we denote by S. For the

purpose of understanding concepts, nothing is lost by assuming that there is a finite

number of states of the world. Hence we adopt the simplifying assumption that S

1For the general probability space, these concepts are defined with measure theory (see Appendix
2.A). For our purpose, it is not necessary for the reader to understand measure theory.

5
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consists of N possible states: S = {s1, · · · , sN}. We assign a probability πi = Pr(si)

to si, depending on how likely si is to occur. It is assumed that
∑N

i=1 πi = 1 and

0 ≤ πi ≤ 1 for all i. Note that we can now assign a probability to all subsets of S.

For example, let Λ be {s1, s2}. Then the probability that the true s is in Λ is denoted

by Pr(s ∈ Λ), where Pr(s ∈ Λ) = π1 + π2.

Example 2.1 The state of the world consists of s1: it rains tomorrow, and s2: it

does not rain tomorrow. According to a weather forecast, π1 = 0.8 and π2 = 0.2.

A random variable assigns a real value to each element s in S (that is, it is

a real valued function on S). Let X(s) be a random variable (we will often omit

the arguments s). For a real value x, the distribution function, F (x), of the random

variable is defined by F (x) = Pr{s : X(s) ≤ x}. A random variable is assigned an

expected value or mean value

E(X) =
N∑
i=1

X(si)πi.(2.1)

Example 2.2 Continuing Example 2.1, let X(s) be the profit of an umbrella seller in

terms of dollars withX(s1) = 100 andX(s2) = 10. Then E(X) = 100×0.8+10×0.2 =

82. The distribution function F (x) is given by F (x) = 0 for x < 10, F (x) = 0.2 for

10 ≤ x < 100, and F (x) = 1 for x ≥ 100.

A random vector is a vector of random variables defined on the set of states.

For a k-dimensional random vector X(s) = (X1(s), · · · , Xk(s))
′, the joint distribution

function F is defined by

F (x1, · · · , xk) = Pr[X1 ≤ x1, · · · , Xk ≤ xk].(2.2)
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2.2 Stochastic Processes

A collection of random variables indexed by time is called a stochastic process or a time

series. LetXt(s) be a random variable, then a collection {Xt : X0(s), X1(s), X2(s), · · · }

is a univariate stochastic process. It is sometimes more convenient to consider a

stochastic process that starts from the infinite past, {· · · , X−2(s),X−1(s), X0(s), X1(s),

X2(s), · · · }. In general, {Xt(s) : t ∈ A} for any set A is a stochastic process. If A

is a set of integers, then time is discrete. It is also possible to consider a continuous

time stochastic process for which the time index takes any real value. For example,

{Xt(s) : t is a nonnegative real number}. Here, if we take Xt as a random vector

rather than a random variable, then it is a vector stochastic process. When we observe

a sample of size T of a random variable X or a random vector X : {X1, · · · , XT}, it

is considered a particular realization of a part of the stochastic process.

Note that once s is determined, the complete history of the stochastic pro-

cess becomes known. For asymptotic theory, it is usually easier to think about the

stochastic nature of economic variables this way rather than the alternative, which is

to consider a probability space for each period based on independent disturbances.

In a sense, the stochastic process modeled in this manner is deterministic be-

cause everything is determined at the beginning of the world when s is determined.

However, this does not mean that there is no uncertainty to economic agents because

they do not learn s until the end of the world. In order to illustrate this, let us

consider the following example:

Example 2.3 Imagine an economy with three periods and six states of the world.

The world begins in period 0. We observe two variables, aggregate output (Yt) and
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the interest rate (it), in period 1 and period 2. The world ends in period 2. In each

period, Yt can take two values, 150 and 300, and it can take two values, 5 and 10.

We assume that i2 is equal to i1 in all states of the world, and that the i1 = 5 in all

states in which Y1 = 150. The six states of the world can be described by the triplet,

[Y1, i1, Y2].

The six states of the world are, s1 = [300, 10, 300], s2 = [300, 10, 150], s3 =

[300, 5, 300], s4 = [300, 5, 150], s5 = [150, 5, 300], and s6 = [150, 5, 150]. To illustrate,

s1 means the economy is in a boom (higher output level) with a high interest rate

in period 1, and is in a boom in period 2. In period 0, the economic agents assign a

probability to each state: π1 = 0.20, π2 = 0.10, π3 = 0.15, π4 = 0.05, π5 = 0.15, and

π6 = 0.35. Unconditional expected values are taken with these probabilities.

In this example, let Xt(s) = [Yt(s), it(s)]. Then [X1(s),X2(s)] is a stochastic

process. The whole history of the process is determined at the beginning of the world

when s is chosen, and the agents learn which state of the world they are in at the

end of the world in period 2. In period 1, however, the agents only have partial

information as to which state of the world is true. For example, if Y1 = 300 and

i1 = 5, the agents learn that they are in either s3 or s4, but cannot tell which one

they are in until they observe Y2 in period 2.

2.3 Conditional Expectations

Economic agents use available information to learn the true state of the world and

make forecasts of future economic variables. This forecasting process can be modeled

using conditional expectations.

Information can be modeled as a partition of S into mutually exclusive subsets:
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F = {Λ1, · · · ,ΛM} where Λ1 ∪ · · · ∪ ΛM = S, and Λj ∩ Λk = ∅ if j ̸= k. For example,

information F consists of two subsets: F = {Λ1,Λ2}. Here Λ1 = {s1, · · · , sM}, and

Λ2 = {sM+1, · · · , sN}. The information represented by F tells us which Λ contains

the true s, but no further information is given by F.

In this situation, once agents obtain the information represented by F, then the

agents know which subset contains the true s, and they can assign a probability of

zero to all elements in the other subset. There is no reason to change the ratios of

probabilities assigned to the elements in the subset containing the true s. Nonetheless,

the absolute level of each probability should be increased, so that the probabilities

add up to one. The probability conditional on the information that the true s is in

Λj is denoted by Pr{si|s ∈ Λj}. The considerations given above lead to the following

definition of conditional probability:

Pr{si|s ∈ Λj} =
Pr{si}

Pr{s ∈ Λj}
,(2.3)

when si is in Λj. Here each probability is scaled by the probability of the subset

containing the true s, so that the probabilities add up to one.

We use conditional probability to define the conditional expectation. The ex-

pectation of a random variable Y conditional on the information that the true s is in

Λj is

E(Y |s ∈ Λj) =
∑
s∈Λj

Y (s)
Pr{si}

Pr{s ∈ Λj}
,(2.4)

where the summation is taken over all s in Λj.

It is convenient to view the conditional expectation as a random variable. For

this purpose, the conditional expectation needs to be defined over all s in S, not

just for s in a particular Λj. Given each s, we first find out which Λ contains s.
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When Λj contains s, the expected value of Y conditional on F for s is given by

E(Y |F)(s) = E(Y |s ∈ Λj).

Instead of a partition, we can use a random variable or a random vector to de-

scribe information. Consider information represented by a partition F = {Λ1, · · · ,ΛM}.

Consider the set I, which consists of all random variables that take the same value

for all elements in each Λj : I = {X(s) : X(si) = X(sk) if si ∈ Λj and sk ∈ Λj for

all i, j, k}. Then the information set I represents the same information as F does. A

random variable X is said to be in this information set, when X(si) = X(sk) if both

si and sk are in the same Λj.
2 A random vector X is said to be in this information

set when each element of X is in the information set.

If X is in the information set I, and if X takes on different values for all different

Λ (X(si) ̸= X(sk) when si and sk are not in the same Λ), then we say that the

random variable X generates the information set I. If a random vector X is in I,

and if at least one element of X takes on different values for different Λ, then the

random vector X is said to generate the information set I. When a random variable

X or a random vector X generates the information set I, which represents the same

information as a partition F, we define E(Y |I) as E(Y |F). If I is generated by X,

we define E(Y |X) = E(Y |I); and if I is generated by a random vector X, we define

E(Y |X) = E(Y |I). It should be noted that E(Y |I) is in the information set I.

Example 2.4 Continuing Example 2.3, let I be the information set generated by

X1 = (Y1, i1), and let F be the partition that represents the same information as

I. Then F = {Λ1,Λ2,Λ3}, where Λ1 = {s1, s2}, Λ2 = {s3, s4}, and Λ3 = {s5, s6}.
2In the terminology of probability theory, we consider a set of all possible unions of Λ’s in F plus

the null set. This set of subsets of S is called a σ-field, and used to describe information. When a
random variable X is in the information set I, we say that the random variable is measurable with
respect to this σ-field.
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Using (2.3), Pr(s1|s ∈ Λ1) = 0.20
0.20+0.10

= 2
3
and Pr(s2|s ∈ Λ1) = 0.10

0.20+0.10
= 1

3
.

Hence E(Y2|s ∈ Λ1) = 300 × 2
3
+ 150 × 1

3
= 250. Similarly, Pr(s3|s ∈ Λ2) = 3

4
,

Pr(s4|s ∈ Λ2) =
1
4
, Pr(s5|s ∈ Λ3) =

3
10
, Pr(s6|s ∈ Λ3) =

7
10
, E(Y2|s ∈ Λ2) = 262.5,

and E(Y2|s ∈ Λ3) = 195. Hence the random variable E(Y2|I) is given by

E(Y2|I)(s) =


250 if s ∈ Λ1

262.5 if s ∈ Λ2

195 if s ∈ Λ3

.(2.5)

Example 2.5 Continuing Example 2.4, consider the information set J which is gen-

erated by Y1. Then J is a smaller information set than I in the sense that J ⊂ I.

Similar computations as those in Example 2.4 yield

E(Y2|J)(s) =
{

255 if s ∈ {s1, s2, s3, s4}
195 if s ∈ {s5, s6}

.(2.6)

Two properties of conditional expectations are very important in macroeconomics.

Proposition 2.1 (Properties of Conditional Expectations)

(a) If a random variable Z is in the information set I, then

E(ZY |I) = ZE(Y |I)(2.7)

for any random variables Y with finite E(|Y |), assuming that E(|ZY |) is finite.

(b) The Law of Iterated Expectations: If the information set J is smaller than the

information set I (J ⊂ I), then

E(Y |J) = E[E(Y |I)|J](2.8)

for any random variable Y with finite E(|Y |).
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Expectation can be viewed as a special case of conditional expectation in which

the information set consists of constants. Since a constant is a random variable

which takes the same value for all states of the world, any information set includes

all constants. Therefore, the Law of Iterated Expectations implies

E(Y ) = E[E(Y |I)].(2.9)

When we wish to emphasize the difference between expectations and conditional

expectations, expectations are called unconditional expectations. Relation (2.9) states

that an unconditional expected value of a random variable Y can be computed as an

unconditional expected value of the expectation of the random variable conditional

on any information set. For a proof of Proposition 2.1 in the general case, see, e.g.,

Billingsley (1986, Theorem 34.3 and Theorem 34.4).

2.4 Stationary Stochastic Processes

A stochastic process {· · · ,X−1,X0,X1, · · · } is strictly stationary if the joint distri-

bution function of (Xt,Xt+1, · · · ,Xt+h) is the same for all t = 0,±1,±2, · · · and all

h = 0, 1, 2, · · · . A stochastic process {· · · ,X−1,X0,X1, · · · } is covariance station-

ary (or weakly stationary) if Xt has finite second moments (E(XtX
′
t) < ∞) and if

E(Xt) and E(XtX
′
t−h) do not depend on the date t for all t = 0,±1,±2, · · · and all

h = 0, 1, 2, · · · .

Because all moments are computed from distribution functions, if Xt is strictly

stationary and has finite second moments, then it is also covariance stationary. If

Xt is covariance stationary, then its mean E(Xt) and its h-th autocovariance Φ(h) =

E[(Xt − E(Xt))(Xt−h − E(Xt−h)
′] = E(XtX

′
t−h) − E(Xt)E(X′

t−h) does not depend

on date t.
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Proposition 2.2 If a k-dimensional vector stochastic process Xt is strictly station-

ary, and if a continuous function f(·) : Rk 7−→ Rp does not depend on date t, then

f(Xt) is also strictly stationary.3

This follows from the fact that the distribution function of f(Xt), f(Xt+1), · · · ,

f(Xt+h) is determined by f and the joint distributions of Xt, Xt+1, · · · , Xt+h (see

Appendix 2.A). Proposition 2.2 will be used frequently to derive the cointegrating

properties of economic variables from economic models in Chapter 15.

The next proposition is for covariance stationary processes.

Proposition 2.3 If a k-dimensional vector stochastic process Xt is covariance sta-

tionary, and if a linear function f(·) : Rk 7−→ Rp does not depend on date t, then

f(Xt) is also covariance stationary.

This proposition is true because f(Xt) has finite second moments, and the first

and second moments of f(Xt) do not depend on date t. However, unlike Proposition

2.2 for strictly stationary processes, a nonlinear function of a covariance stationary

process may not be covariance stationary. For example, suppose that Xt is covariance

stationary. Imagine that Xt’s variance is finite but E(|Xt|4) = ∞. Consider Zt =

f(Xt) = (Xt)
2. Then Zt’s variance is not finite, and hence Zt is not covariance

stationary.

In order to model strictly stationary and covariance stationary processes, it is

convenient to consider white noise processes. A univariate stochastic process {et : t =
3This proposition holds for any measurable function f(·) : Rk 7−→ Rp (see Appendix 2.A). The

term “measurable” is avoided because this book does not require knowledge of measure theory. All
continuous functions are measurable but not vice versa. Thus the continuity condition in Proposition
2.2 is more stringent than necessary. This is not a problem for the purpose of this book because
continuous functions are used in all applications of this proposition.
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· · · ,−1, 0, 1, · · · } is white noise if E(et) = 0, and

E(etej) =

{
σ2 if t = j
0 if t ̸= j

,(2.10)

where σ is a constant. For a vector white noise, we require

E(ete
′
j) =

{
Σ if t = j
0 if t ̸= j

,(2.11)

where Σ is a matrix of constants. A white noise process is covariance stationary.

If a process is independent and identically distributed (i.i.d.), then it is strictly

stationary. The simplest example of an i.i.d. process is an i.i.d. white noise. A

Gaussian white noise process {et : −∞ < t < ∞} is an i.i.d. white noise process

for which et is normally distributed with zero mean. In these definitions, et can be a

vector white noise process.

All linear functions of white noise random variables are covariance stationary

because of Proposition 2.3. In addition, by Proposition 2.2, all functions of i.i.d.

white noise random variables are strictly stationary. A simple example of this case

is:

Example 2.6 Let Xt = δ+ et, where et is a white noise process, and δ is a constant.

Then E(Xt) = δ, and Xt is covariance stationary. If et is an i.i.d. white noise process,

then Xt is strictly stationary.

If Xt is strictly stationary with finite second moments, Xt is covariance station-

ary. Therefore, Xt’s first and second moments cannot depend on date t. In empirical

work, the easiest case to see that an observed variable is not strictly stationary is

when a variable’s mean shifts upward or downward over time. A simple example of

this case is:
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Example 2.7 Let Xt = δ+ θt+ et, where et is an i.i.d. white noise random variable

and δ and θ ̸= 0 are constants. Then Xt is not stationary because E(Xt) = δ + θt

depends on time.4

Strictly stationary and covariance stationary processes can be serially correlated,

that is, their h-th order autocovariances can be nonzero for h ̸= 0 as in the next two

examples.

Example 2.8 (The first order Moving Average Process) Let Xt = δ + et + Bet−1,

where et is a white noise which satisfies (2.10), and δ and B are constant. This is a

moving average process of order 1 (see Chapter 4). Then Xt is covariance stationary

for any B because of Proposition 2.3.5 E(Xt) = δ, and its h-th autocovariance is

ϕh = E[(Xt − δ)(Xt−h − δ)] =


σ2(1 +B2) if h = 0
σ2 if |h| = 1
0 if |h| > 1

.(2.12)

In this example, if et is an i.i.d. white noise, then Xt is strictly stationary.

Example 2.9 (The first order Autoregressive Process) Consider a process Xt which

is generated from an initial random variable X0, where

Xt = AXt−1 + et for t ≥ 1,(2.13)

where et is a Gaussian white noise random variable, and A is a constant. This is an

autoregressive process of order 1 (see Chapter 4). If |A| < 1 and X0 is a normally

distributed random variable with mean zero and variance of V ar(et)
1−A2 , then Xt is strictly

4Because Xt is stationary after removing a deterministic trend in this example, we say that
Xt is trend stationary as we will discuss in Chapter 13. Trend stationarity is a way to model
nonstationarity.

5Even though Xt is stationary for any B, it is often convenient to impose a restriction |B| ≤ 1
as explained in Chapter 4.
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stationary (see Exercise 2.3). The methods explained in Chapter 4 can be used to

show that Xt is not strictly stationary when X0’s distribution is different from the

one given above.

2.5 Conditional Heteroskedasticity

Using conditional expectations, we can define variance and covariance conditional on

an information set just as we use unconditional expectations to define (unconditional)

variance and covariance. The variance of Y conditional on an information set I is

V ar(Y |I) = E[(Y − E(Y |I))2|I],(2.14)

and the covariance of X and Y conditional on an information set I is

Cov(X, Y |I) = E[(X − E(X|I))(Y − E(Y |I))|I].(2.15)

Consider a stochastic process [Yt : t ≥ 1]. If the unconditional variance of Yt,

V ar(Yt), depends on date t, then the Yt is said to be heteroskedastic; if not, it is

homoskedastic. If Yt’s variance conditional on an information set It, V ar(Yt|It)), is

constant and does not depend on the information set, then Yt is said to be condition-

ally homoskedastic; if not, it is conditionally heteroskedastic.

Example 2.10 Let Yt = δ+ htet, where et is an i.i.d. white noise with unit variance

(E(e2t ) = 1), and {ht : −∞ < t < ∞} is a sequence of real numbers. Then the

(unconditional) variance of Yt is ht, and Yt is heteroskedastic as long as ht ̸= hj for

some t and j.

A heteroskedastic process is not strictly stationary because its variance depends

on date t. It should be noted, however, that a strictly stationary random variable can
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be conditionally heteroskedastic. This fact is important because many of the financial

time series have been found to be conditionally heteroskedastic. For example, the

growth rates of asset prices and foreign exchange rates can be reasonably modeled

as strictly stationary processes. However, the volatility of such a growth rate at a

point in time tends to be high if it has been high in the recent past. Therefore, such

a growth rate is often modeled as a conditionally heteroskedastic process. A popular

method to model conditional heteroskedasticity, introduced by Engle (1982), is an

autoregressive conditional heteroskedastic (ARCH) process. The following is a simple

example of an ARCH process.

Example 2.11 (An ARCH Process) Let It be an information set, and et be a uni-

variate stochastic process such that et is in It, and E(et|It−1) = 0. Assume that

e2t = η + αe2t−1 + wt,(2.16)

where η > 0, wt is another white noise process in It with E(wt|It−1) = 0 and

E(wkwj|It) =
{

λ2 if k = j
0 if k ̸= j

,(2.17)

where λ is a constant. Relation (2.16) implies that et’s conditional variance depends

on It:

E(e2t |It−1) = η + αe2t−1,(2.18)

and thus et is conditionally heteroskedastic.

In order to see whether or not et’s unconditional variance is constant over time, take

expectations of both sides of (2.18) to obtain

E(e2t ) = η + αE(e2t−1).(2.19)
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Hence if the variance of et is a constant σ2, then σ2 = η+ασ2, and σ2 = η
1−α

. Because

σ2 is positive, this equation implies that α < 1. When α < 1, an ARCH process can

be covariance stationary and strictly stationary.

2.6 Martingales and Random Walks

Consider a stochastic process [Yt : −∞ < t < ∞], and a sequence of information sets

[It : −∞ < t < ∞] that is increasing (It ⊂ It+1). If Yt is in It and if

E(Yt+1|It) = Yt,(2.20)

then Yt is a martingale adapted to It. Rational expectations often imply that an

economic variable is a martingale (see Section 3.2). If Yt is a martingale adapted

to It and if its conditional variance, E((Yt+1 − Yt)
2|It), is constant (that is, Yt is

conditionally homoskedastic), then Yt is a random walk.

As we will discuss later in this book, most of the rational expectations models

imply that certain variables are martingales. The models typically do not imply that

the variables are conditionally homoskedastic, and hence do not imply that they are

random walks. However, if the data for the variable does not show signs of conditional

heteroskedasticity, then we may test whether or not a variable is a random walk. It is

often easier to test whether or not the variable is a random walk than to test whether

or not it is a martingale.

Consider a stochastic process [et : −∞ < t < ∞], and a sequence of information

sets [It : −∞ < t < ∞] which is increasing (It ⊂ It+1). If et is in It and if

E(et+1|It) = 0,(2.21)

then et is a martingale difference sequence adapted to It. If Yt is a martingale adapted
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to It, then et = Yt − Yt−1 is a martingale difference sequence (see Exercise 2.4). A

covariance stationary martingale difference sequence is a white noise process (see

Exercise 2.5). However, a white noise process may not be a martingale difference

sequence for any sequence of information sets. An i.i.d. white noise process is a

martingale difference sequence (see Exercise 2.6).

In these definitions, a martingale or a martingale difference sequence can be a

vector stochastic process.

Appendix

2.A A Review of Measure Theory

Let S be an arbitrary nonempty set of points s. An event is a subset of S. A set of

subsets is called a class. A class F of subsets of S is called a field if

(i) S ∈ F;

(ii) A ∈ F implies Ac ∈ F, where Ac is the complement of A;

(iii) A,B ∈ F implies A ∪ B ∈ F.

A class F is a σ-field if it is a field and if

(iv) A1,A2, · · · ∈ F implies A1 ∪ A2 ∪ · · · ∈ F.

A set function is a real-valued function defined on some class of subsets of S. A

set function Pr on a field F is a probability measure if it satisfies these conditions:

(i) 0 ≤ Pr(A) ≤ 1 for A ∈ F;

(ii) Pr(0) = 0, P r(S) = 1;
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(iii) if A1,A2, · · · is a disjoint sequence of F-sets and if
∪∞

k=1Ak ∈ F, then

Pr(
∪∞

k=1Ak) =
∑∞

k=1 Pr(Ak).

If F is a σ-field in S and Pr is a probability measure on F, the triple (S,F, P r) is

called a probability space. Given a class A, consider the class which is the intersection

of all σ-fields containing A. This class is the smallest σ-field which contains A, and

is called the σ-field generated by A and is denoted by σ(A).

Proposition 2.A.1 A probability measure on a field has a unique extension to the

generated σ-field.

In Euclidean k-space Rk, consider the class of the bounded rectangles

[x = (x1, · · · , xk) : ai ≤ x ≤ bi, i = 1, · · · , k].

The σ-field generated from this class is called the k-dimensional Borel sets, and

denoted by Rk.

Let F be a σ-field of subsets of S and F′ be a σ-field of subsets of S′. For a

mapping T : S 7−→ S′, consider the inverse images T−1(A′) = [s ∈ S : T (s) ∈ A′].

The mapping T is measurable F/F′ if T−1(A′) ∈ F for each A′ ∈ F′.

For a real-valued function f , the image space S′ is the line R1, and in this

case R1 is always tacitly understood to play the role of F′. A real-valued function

on S is measurable F (or simply measurable when it is clear from the context what

F is involved) if it is measurable F/R1. If (S,F, P r) is a probability space, then a

real-valued measurable function is called a random variable. For a random variable

X, we can assign a probability to the event that X(s) belongs to a Borel set B by

Pr(X−1(B)).
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For a mapping f : S 7−→ Rk, Rk is always understood to be the σ-field in

the image space. If (S,F, P r) is a probability space, then a measurable mapping

X : S 7−→ Rk is called a random vector. It is known that X is a random vector if and

only if each component of X is a random variable.

A mapping f : Ri 7−→ Rk is defined to be measurable if it is measurable Ri/Rk.

Such functions are called Borel functions.

Proposition 2.A.2 If f : Ri 7−→ Rk is continuous, then it is measurable.

If X is a j-dimensional random vector, and g : Rj 7−→ Ri is measurable, then g(X)

is an i-dimensional random vector. If the distribution of X is µ, the distribution of

g(X) is µg−1. Proposition 2.2 can be proven by taking X = [Y ′
t , · · · , Y ′

t+k]
′.

We now introduce two definitions of conditional expectation. One definition is

standard in measure theory. The other definition is given because it is convenient for

the purpose of stating a version of the conditional Gauss-Markov theorem used in this

book. Intuitively, the conditional Gauss-Markov theorem is obtained by stating all

assumptions and results of the Gauss-Markov theorem conditional on the stochastic

regressors. Formally, it is necessary to make sure that the conditional expectations

of the relevant variables are well defined.

Let S be a probability space, F be a σ-field of S, and Pr be a probability measure

defined on F. The random variables we will consider in this section are defined on

this probability space. Let X = (X1, X2, ..., XT )
′ be a T × K matrix of random

variables, which will be the regressor matrix of the regression to be considered. Let

y = (y1, y2, ..., yT ) and e = (e1, e2, ..., eT ) be T × 1 vectors of random variables. We

are concerned with a linear model of the form: y = Xb0 + e, where b0 is a K × 1

vector of real numbers.
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For s such that X(s)′X(s) is nonsingular, the OLS estimator is

(2.A.1) bT = (X′X)−1X′y.

In order to apply a conditional version of the Gauss-Markov Theorem, it is necessary

to define the expectation and variance of bT conditional on X.

Let Z be an integrable random variable (namely, E(|Z|) < ∞), and σ(X) be the

smallest σ-field with respect to which of the random variables in X are measurable.

The standard definition of the expectation of Z given X is obtained by applying the

Radon-Nikodym theorem (see, e.g., Billingsley, 1986). Throughout this paper, we use

the notation E[Z|σ(X)] to denote the usual conditional expectation of Z conditional

on X as defined by Billingsley (1986) for a random variable Z.6 E[Z|σ(X)] is a

random variable, and E[Z|σ(X)]s denotes the value of the random variable at s in S.

It satisfies the following two properties:

(i) E(Z|σ(X)) is measurable and integrable given σ(X).

(ii) E(Z|σ(X)) satisfies the functional equation:

(2.A.2)

∫
G

E(Z|σ(X))dPr =

∫
G

ZdPr, G ∈ σ(X).

There will in general be many such random variables which satisfy these two prop-

erties; any one of them is called a version of E(Z|σ(X)). Any two versions are equal

with probability 1.

It should be noted that this definition is given under the condition that Z is

integrable, namely E(|Z|) < ∞. This condition is too restrictive when we define

6If z is a vector, the conditional expectation is taken for each element in z.
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the conditional expectation and variance of the OLS estimator in many applications7

because the moments of (X′X)−1 may not be finite even when X has many finite

moments. For this reason, it is difficult to confirm that E(bT |σ(X)) can be defined

in each application even if X is normally distributed. Thus, Judge et al. (1985)

conclude that the Gauss-Markov theorem based on E(·|σ(X)) is not very useful.

We avoid this problem by adopting a different definition of conditional expec-

tation based on conditional distribution. For this purpose, we first define conditional

probabilities following Billingsley (1986). Given A in F, define a finite measure v on

σ(X) by v(G) = Pr(A ∩ G) for G in σ(X). Then Pr(G) = 0 implies that v(G) = 0.

The Radon-Nikodym theorem can be applied to the measures v and Pr, and there

exists a random variable f that is measurable and integrable with respect to Pr,

such that Pr(A ∩ G) =
∫
G
fdPr for all G in σ(X). Denote this random variable by

Pr(A|σ(G)). This random variable satisfies these two properties:

(i) Pr(A|σ(X)) is measurable and integrable given σ(X).

(ii) Pr(A|σ(X)) satisfies the functional equation

(2.A.3)

∫
G

Pr(A|σ(X))dPr = Pr(A ∩G), G ∈ σ(X).

There will in general be many such random variables, but any two of them are equal

with probability 1. A specific such random variable is called a version of the condi-

tional probability.

Given a random variable Z, which may not be integrable, we define a conditional

distribution µ(·, s) given X for each s in S. Let R1 be the σ-field of the Borel sets

7Loeve (1978) slightly relaxes this restriction by defining the conditional expectation for any
random variable whose expectation exists (but may not be finite) with an extension of the Radon-
Nikodym theorem. This definition can be used for E(·|σ(X)), but this slight relaxation does not
solve our problem.
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in R1. By Theorem 33.3 in Billingsley (1986, p.460), there exists a function µ(H, s),

defined for H in R1 and s in S, with these two properties:

(i) For each s in S, µ(H, s) is, as a function of H, a probability measure on R1.

(ii) For each H in R1, µ(H, s) is, as a function of s, a version of Pr(Z ∈ H|σ(X))s.

For each s in S, we define E(Z|X)s to be
∫
R1 zµ(dz, s). It should be noted that

E(Z|X)s does not necessarily satisfy the usual properties of conditional expectation

such as the law of iterated expectations. In general, E(Z|X)s may not even exist for

some s. If
∫
R1 |z|µ(dz, s) is finite, then, E(Z|X)s is said to exist and be finite.

Given a T×K matrix of real numbers x,E(Z|X)s is identical for all s inX−1(x).

Therefore, we define E(Z|X = x) as E(Z|X)s for s in X−1(x). This is the definition

of the conditional expectation of Z given X = x in this paper.

We are concerned with a linear model of the form:

Assumption 2.A.1 y = Xb0 + e

where b0 is a K × 1 vector of real numbers. Given a T ×K matrix of real numbers

x, we assume that the conditional expectation of e given X = x is zero:

Assumption 2.A.2 E[e|X = x] = 0.

Next, we assume that e is homoskedastic and et is not serially correlated given X = x:

Assumption 2.A.3 E[ee′|X = x)] = σ2IT .

The OLS estimator can be expressed by (2.A.1) for all s in X−1(x) when the next

assumption is satisfied:

Assumption 2.A.4 x′x is nonsingular.
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Under Assumptions 2.A.1–2.A.4, E[bT |X = x] = b0 and E[(bT − b0)
′(bT −

b0)|X = x] = σ2(x′x)−1. The conditional version of the Best Linear Unbiased Esti-

mator (BLUE) givenX = x can be defined as follows: An estimator bT for b0 is BLUE

conditional on X = x if (1) bT is linear conditional on X = x, namely, bT can be writ-

ten as bT = Ay for all s inX−1(x) whereA is aK×T matrix of real numbers; (2) bT is

unbiased conditional onX = x, namely, E(bT |X = x) = b; (3) for any linear unbiased

estimator b∗ conditional on X = x, E[(bT −b0)(bT −b0)
′|X = x] ≤ E[(b∗−b0)(b

∗−

b0)
′|X = x], namely, E[(b∗−b0)(b

∗−b0)
′|X(s) = x]−E[(bT−b0)(bT−b0)

′|X(s) = x]

is a positive semidefinite matrix.

With these preparations, the following theorem can be stated:

Theorem 2.A.1 (The Conditional Gauss-Markov Theorem) Under Assumptions 2.A.1–

2.A.4, the OLS estimator is BLUE conditional on X = x.

Applying any of the standard proofs of the (unconditional) Gauss-Markov theo-

rem can prove this theorem by replacing the unconditional expectation with E(·|X =

x).

Modifying some assumptions and adding another yields the textbook version of

the conditional Gauss-Markov theorem based on E(·|σ(X)).

Assumption 2.A.2′ E[e|σ(X)] = 0.

Since E[e|σ(X)] is defined only when each element of e is integrable, Assumption

2.A.2′ implicitly assumes that E(e) exists and is finite. It also implies E(e) = 0

because of the law of iterated expectations. Given E(e) = 0, a sufficient condition

for Assumption 2.A.2′ is that X is statistically independent of e. Since Assumption

2.A.2′ does not imply that X is statistically independent of e, Assumption 2.A.2′
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is weaker than the assumption of independent stochastic regressors. With the next

assumption, we assume that e is conditionally homoskedastic and et is not serially

correlated:

Assumption 2.A.3′ E[ee′|σ(X)] = σ2IT .

The next assumption replaces Assumption 2.A.4.

Assumption 2.A.4′ X′X is nonsingular with probability one.

From Assumption 2.A.1, bT = b0 + (X′X)−1X′e. Hence we can prove a version of

the conditional Gauss-Markov theorem based on E(·|σ(X)) when the expectations of

(X′X)−1X′e and (X′X)−1X′ee′X(X′X)−1 exist and are finite. For this purpose, we

consider the following assumption:

Assumption 2.A.5 E[trace((X′X)−1X′ee′X(X′X)−1)] exists and is finite.

The problem with Assumption 2.A.5 is that it is not easy to verify the assumption for

many distributions of X and e that are often used in applications and Monte Carlo

studies. However, a sufficient condition for Assumption 2.A.5 is that the distributions

of X and e have finite supports.

Under Assumptions 2.A.1, 2.A.2′–2.A.4′, and 2.A.5,

E(bT |σ(X)) = b0 + E[(X′X)−1X′e|σ(X)] = b0.

Moreover, E[(bT − b0)
′(bT − b0)|σ(X)] can be defined, and E[(bT − b0)

′(bT −

b0)|σ(X)] = E[(X′X)−1X′ee′X(X′X)−1|σ(X)] = (X′X)−1X′E[ee′|σ(X)]X(X′X)−1 =

σ2(X′X)−1.

We now consider a different definition of the conditional version of the Best

Linear Unbiased Estimator (BLUE). The Best Linear Unbiased Estimator (BLUE)
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conditional on σ(X) is defined as follows. An estimator bT for b0 is BLUE conditional

on σ(X) in H if (1) bT is linear conditional on σ(X), namely, bT can be written as

bT = Ay whereA is aK×T matrix, and each element ofA is measurable given σ(X);

(2) bT is unbiased conditional on σ(X) in G, equivalently, E(bT |σ(X)) = b0, (3) for

any linear unbiased estimator b∗ conditional on σ(X) for which E(b∗b∗′) exists and

is finite, E[(bT −b0)(bT −b0)
′|σ(X)] ≤ E[(b∗−b0)(b

∗−b0)
′|σ(X)] with probability

1, namely, E[(b∗ − b0)(b
∗ − b0)

′|σ(X)] − E[(bT − b0)(bT − b0)
′|σ(X)] is a positive

semidefinite matrix with probability 1.

Proposition 2.A.3 Under Assumptions 2.A.1, 2.A.2′–2.A.4′, and 2.A.5, the OLS

estimator is BLUE conditional on σ(X). Moreover, it is unconditionally unbiased

and has the minimum unconditional covariance matrix among all linear unbiased

estimators conditional on σ(X).

Proof The proof of this proposition is given in Greene (1997, Section 6.7).

In this proposition, the covariance matrix of bT is σ2E[(X′X)−1], which is differ-

ent from σ2[E(X′X)]−1. This property may seem to contradict the standard asymp-

totic theory, but it does not. Asymptotically, (1/T )X′X converges almost surely to

E[X′
tXt] if Xt is stationary and ergodic. Hence the limit of the covariance matrix of

√
T (bT − b0), σ

2E[{(1/T )(X′X)}−1], is equal to the asymptotic covariance matrix,

σ2[E(X′
tXt)]

−1.

In order to study the distributions of the t ratios and F test statistics we need

an additional assumption:

Assumption 2.A.6 Conditional on X, e follows a multivariate normal distribution.
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Given a 1×K vector of real numbers R, consider a random variable

(2.A.4) NR =
R(bT − b0)

σ[R(X′X)−1R]1/2

and the usual t ratio for Rb0

(2.A.5) tR =
R(bT − b0)

σ̂[R(X′X)−1R]1/2
.

Here σ̂ is the positive square root of σ̂2 = (y−XbT )
′(y−XbT )/(T −K). With the

standard argument, NR and tR can be shown to follow the standard normal distri-

bution and Student’s t distribution with T − K degrees of freedom with appropri-

ate conditioning, respectively, under either Assumptions 2.A.1–2.A.6 or Assumptions

2.A.1, 2.A.2′, 2.A.3′, and 2.A.5–2.A.6. The following proposition is useful in order to

derive the unconditional distributions of these statistics.

Proposition 2.A.4 If the probability density function of a random variable Z condi-

tional on a random vector Q does not depend on the values of Q, then the marginal

probability density function of Z is equal to the probability density function of Z

conditional on Q.

This proposition is obtained by integrating the probability density function

conditional on Q over all possible values of the random variables in Q. Since NR

and tR follow a standard normal distribution and a t distribution conditional on X,

respectively, Proposition 2.A.4 implies the following proposition:

Proposition 2.A.5 Suppose that Assumptions 2.A.1, 2.A.5, and 2.A.6 are satisfied

and that Assumptions 2.A.2 and 2.A.3 are satisfied for all x in a set H such that

Pr(X−1(H)) = 1. Then NR is a standard normal random variable and tR is a t

random variable with T −K degrees of freedom.
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Alternatively, the assumptions for Proposition 2.A.3 with Assumption 2.A.6 can

be used to obtain a similar result:

Proposition 2.A.5′ Suppose that Assumptions 2.A.1, 2.A.2′–2.A.3′, 2.A.5, and 2.A.6

are satisfied for s and that Assumptions 2.A.2 and 2.A.3 are satisfied for all x in a set

H such that Pr(X−1(H)) = 1. Then NR is a standard normal random variable and

tR is a t random variable with T −K degrees of freedom.

Similarly, the usual F test statistics also follow (unconditional) F distributions.

These results are sometimes not well understood by econometricians. For example,

a standard textbook, Judge et al. (1985, p.164), states that “our usual test statistics

do not hold in finite samples” on the ground that the (unconditional) distribution of

b′
T s is not normal. It is true that bT is a nonlinear function of X and e, so it does not

follow a normal distribution even if X and e are both normally distributed. However,

the usual t and F test statistics have the usual (unconditional) distributions as a

result of Proposition 2.A.4.

2.B Convergence in Probability

Let c1, c2, · · · , cT , · · · be a sequence of real numbers and c be a real number. The

sequence is said to converge to c if for any ε, there exists an N such that |cT − c| < ε

for all T ≥ N . We write cT → c or limT→∞ cT = c. This definition is extended to a

sequence of vectors of real numbers {c1, c2, · · · , cT , · · · } by interpreting |cT − c| as

the Euclidean distance (cT − c)′(cT − c).

Consider a univariate stochastic process [XT : T ≥ 1], and a random variable

X. Fix s, and then [XT (s) : T ≥ 1] is a sequence of real numbers and X(s) is a real
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number. For each s, verify whether or not XT (s) → X(s). Then collect s such that

XT (s) → X(s), and calculate the probability that XT (s) → X(s). If the probability

is one, we say the sequence of random variables, [XT : T ≥ 1], converges to X almost

surely or with probability one. We write XT → X almost surely. This definition is

extended to a sequence of random vectors by using convergence for a sequence of

vectors for each s. In general, if a property holds for all s except for a set of s with

probability zero, we say that the property holds almost surely or with probability one.

If Ω has finite elements, almost sure convergence is the same thing as conver-

gence of XT (s) to X(s) in all states of the world. In general, however, almost sure

convergence does not imply convergence in all states.

The sequence of random variables [XT : T ≥ 1] converges in probability to the

random variable XT if, for all ε > 0, limT→∞ Prob(|XT − X| > ε) = 0. This is

expressed by writing XT
P→ c or plimT→∞XT = X. This extension to the vector case

is done by using the Euclidean distance. Almost sure convergence implies convergence

in probability.

Slutsky’s Theorem is important for working with probability limits. It states

that, if plimXT = X and if f(·) is a continuous function, then plim(f(XT )) =

f(plim(XT )).

2.B.1 Convergence in Distribution

Consider a univariate stochastic process [XT : T ≥ 1], and a random variable X with

respective distribution functions FT and F . If FT (x) → F (x) for every continuity

point x of F , then XT is said to converge in distribution to X; this is expressed by

writing XT
D→ X. The distribution F is called the asymptotic distribution or the
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limiting distribution of XT .

2.B.2 Propositions 2.2 and 2.3 for Infinite Numbers of R.V.’s
(Incomplete)

In Propositions 2.2 and 2.3, we only allow for a finite number of random variables.

In many applications, we are often interested in infinite sums of covariance or strictly

stationary random variables. We need the convergence concepts explained in Ap-

pendix 2.B. A sequence of real numbers {aj}∞j=0 is square summable if
∑∞

j=0 a
2
j is

finite. A sufficient condition for {aj}∞j=0 is that it is absolutely summable, that is,∑∞
j=0 |aj| is finite. In the following propositions, the infinite sum

∑∞
j=0 ajXt−j means

the convergence in mean square of
∑T

j=0 ajXt−j as T goes to infinity.

Proposition 2.B.1 If Xt is a scalar covariance stationary process, and if {aj}∞j=0 is

square summable, then X =
∑∞

j=0 ajXt−j is covariance stationary.

The vector version of this proposition is:

Proposition 2.B.2 If Xt is a k-dimensional vector covariance stationary process,

and if the absolute value of the i-th row of a sequence of a k × k matrix of real

numbers {Aj}∞j=0 is square summable for i = 1, · · · , k, then Xt =
∑∞

j=0AjXt−j is

covariance stationary.

Exercises

2.1 In Example 2.3, assume that π1 = 0.15, π2 = 0.05, π3 = 0.20, π4 = 0.30,

π5 = 0.10, and π6 = 0.20. As in Example 2.4, compute E(Y2|I)(s) and E(Y2|J)(s).

Then compute E(E(Y2|I)|J)(s). Verify that E(Y2|J)(s) = E(E(Y2|I)|J)(s) for all

s ∈ S.



32 CHAPTER 2. STOCHASTIC PROCESSES

2.2 In example 2.9, assume that |A| < 1. This condition does not ensure that Yt

is strictly stationary. In order to see this, suppose that Y0 =0. Then compute the

expected values of Y1 and Y2 and the variance of Y1 and Y2, and show that Yt is not

strictly stationary if A ̸= 0.

2.3 In example 2.9, assume that |A| < 1 and that Y0 is N(0, σ2

1−A2 ). Then compute

the expected values of Y1 and Y2, the variance of Y1 and Y2, and the k-th autoco-

variance of Y . Prove that Yt is strictly stationary in this case. (Hint: Remember

that first and second moments completely determine the joint distribution of jointly

normally distributed random variables.)

2.4 Let Yt be a martingale adapted to It. Then prove that et = Yt − Yt−1 is a

martingale difference sequence.

2.5 Prove that a covariance stationary martingale difference sequence is a white

noise process.

2.6 Prove that an i.i.d. white noise process is a martingale difference sequence.
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