
Chapter 8

VECTOR AUTOREGRESSION
TECHNIQUES

This chapter discusses econometric techniques for vector autoregressions (VAR). In

most cases, the variables in VAR are assumed to be stationary.1

Let yt be an n-dimensional vector stochastic process that is covariance station-

ary. Because yt is covariance stationary, it has a Wold representation:

yt = µ+ ϵt +Ψ1ϵt−1 +Ψ2ϵt−2 + · · · = µ+Ψ(L)ϵt,(8.1)

where Ψ(L) = In +
∑∞

s=1ΨsL
s and L is the lag operator. Assuming that Ψ(L) is

invertible, yt has a VAR representation. Assuming that the VAR representation is of

order p:

A(L)yt = δϵ + ϵt,(8.2)

1A VAR model may include nonstationary variables. Chapter 16 treats the case where some of
the variables in VAR are difference stationary and cointegrated, terms that will be introduced later.
When the difference stationary variables are not cointegrated, we can take the first difference to
make them stationary for VAR.
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where

δϵ = Ψ(1)−1µ = A(1)µ,(8.3)

A(L) = Ψ(L)−1 = In −
p∑

i=1

AiL
i,

ϵt = yt − Ê(yt|yt−1,yt−2,yt−3, · · · )

and

E(ϵtϵ
′
t) = Σϵ.(8.4)

Here Ê(·|yt−1,yt−2,yt−3, · · · ) is defined to be the linear projection operator onto the

linear space spanned by a constant (say, 1) and yt−1,yt−2,yt−3, · · · . In virtually

all applications, Σϵ is not diagonal. However, the Seemingly Unrelated Regression

Estimator (SUR) coincides with the OLS estimator for (8.2) because the regressors

are identical for all regressions when OLS is applied to each row of (8.2).

8.1 OLS Estimation

The VAR (8.2) gives a system of regression equations. It may appear that the SUR

estimator should be used to estimate these equations because the error terms are con-

temporaneously correlated. However, the OLS and SUR estimators coincide because

the regressors are the same for all equations. Hence, we can estimate each equation

by OLS.

It is often convenient to use a matrix expression to write the OLS estimators

for the VAR system. For this purpose, rewrite (8.2) by staking it from t = 1, · · · , T

after transpose:

Y = XB+U(8.5)
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where

Y =


y′
1
...
y′
t
...
y′
T

 ,X =


1 y′

1−1 · · ·y′
1−p

...
1 y′

t−1 · · ·y′
t−p

...
1 y′

T−p · · ·y′
T−p

 ,B =


δ′
ϵ

A′
1
...
A′

p

 , and U =


ϵ′1
...
ϵ′t
...
ϵ′T

 .

In order to apply OLS techniques, express (8.5) in its vector form:

y = (In ⊗X)b+ u,(8.6)

where y = vec(Y),b = vec(B), u = vec(U), and E(uu′) = Σϵ ⊗ IT . Applying OLS

techniques, we get

b̂ = (In ⊗ (X′X)−1X′)y(8.7)

and

var(b̂) = Σϵ ⊗ (X′X)−1.(8.8)

In many applications, we express the asymptotic variance in (8.8) using the notation

a = vec(δϵ A1 · · ·Ap). Let Krc be the rc× rc dimensional commutation matrix that

has the property of vec(M′) = Krcvec(M) for any r × c matrix M. Then, we can

show that

â = K(np+1)nb̂(8.9)

and

var(â) = (X′X)−1 ⊗Σϵ.(8.10)
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8.2 Granger Causality

Let yt = (xt, yt)
′ be a two dimensional covariance stationary process. We say that y

fails to Granger-cause x if for all s > 0,

Ê(xt+s|xt, xt−1, · · · , yt, yt−1, · · · ) = Ê(xt+s|xt, xt−1, · · · ).(8.11)

We also say that y is not linearly informative about future x, or x is exogenous in the

time series sense with respect to y.

One can test the null hypothesis that y fails to Granger-cause x by applying

the OLS to

xt = δϵ1 + a1,11xt−1 + · · ·+ ap,11xt−p + a1,12yt−1 + · · ·+ ap,12yt−p + ϵ1t.(8.12)

If y fails to Granger-cause x, then ai,12 = 0 for i = 1, · · · , p in (8.12). Conversely, if

ai,12 = 0 for i = 1, · · · , p in (8.12), then

Ê(xt+1|xt, xt−1, · · · , yt, yt−1, · · · ) = δϵ1 + a1,11xt + · · ·+ ap,11xt−p+1(8.13)

and

Ê(xt+2|xt, xt−1, · · · , yt, yt−1, · · · )(8.14)

= δϵ1 + a1,11Ê(xt+1|xt, xt−1, · · · , yt, yt−1, · · · ) + a2,11xt + · · ·+ ap,11xt−p+2.

Repeating this argument, we see that y fails to Granger-cause x. Hence we test the

null hypothesis

H0 : ai,12 = 0 for i = 1, · · · , p(8.15)

in (8.12) in order to test for Granger causality.
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The result that y fails to Granger-cause x if and only if (8.15) holds in (8.12)

can be used to find restrictions on the VAR representation for y = (x, y)′. Suppose

that y fails to Granger-cause x, and x Granger-causes y.2 Let the VAR representation

of y be given by (8.2). Then the restrictions (8.15) hold if and only if Ai is lower

triangular for each i:

Ai =

[
ai,11 0
ai,21 ai,22

]
.(8.16)

Hence y fails to Granger-cause x, and x Granger-causes y if and only if the VAR

representation for y = (x, y)′ given by (8.2) satisfies the restrictions that Ai is lower

triangular for each i as in (8.16).

Suppose that an econometrician finds evidence for the hypothesis that y fails

to Granger-cause x, but x Granger-causes y (i.e., the null hypothesis that y fails to

Granger-cause x cannot be rejected, but the null hypothesis that x fails to Granger-

cause y can be rejected). For example, researchers have found some evidence that real

GDP fails to Granger-cause the money supply, and the money supply Granger-causes

real GDP. This type of finding is consistent with some economic models which predict

that a decrease in the money supply causes real GDP to fall.

It should be noted, however, that Granger-causality relationships can be very

different from causal relationships when economic variables respond to future ex-

pected values of other variables as in the rational expectations models. Hence Granger-

causality test results must be interpreted with caution.

For example, consider the present value model of a stock price:

pt = E(
∞∑
i=1

bidt+i|It).(8.17)

2Having defined the meaning of “x fails to Ganger-cause y,” we define “x Granger-causes y,” to
mean “x does not fail to Granger-cause y.”
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where pt is the stock price and dt is the dividend. In order to illustrate the point in

a simple example, assume that

dt = ut + δut−1 + vt,(8.18)

where ut and vt are normal i.i.d. and are independent of each other. Here, the mean

of the log of the dividend is normalized to be zero. Then

Et(dt+i) =

{
δut for i = 1
0 for i > 1

,(8.19)

which implies pt = bδut. Therefore, δut−1 = b−1pt−1. Hence, the VAR representation

for yt = (pt, dt)
′ is[

pt
dt

]
=

[
0 0
b−1 0

] [
pt−1

dt−1

]
+

[
bδut
ut + vt

]
.(8.20)

Since the VAR coefficient matrix is lower triangular, the dividend fails to Granger-

cause the stock price, and the stock price Granger-causes the dividend in this example.

Since the changes in the future expected dividends cause the stock price to

change in the present value model, the causal relationship is the opposite of the

Granger-causality relationship. This result occurs because the stock price responds

to the future expected values of the dividends in the present value model. When future

dividends are expected to rise, the current stock price rises. Hence, the stock price

tends to move before the dividend moves. This result does not mean that the stock

price causes the dividend to move, but can mean that the stock price Granger-causes

the dividend as in the example. In this sense, Granger “causality” is a misnomer.3 It

is safer to interpret Granger causality test results in terms of linear informativeness.

3Leamer (1985) suggests to use the word “precedence” instead of “causality”. He argues that
what is tested in “Granger Causality” is whether one variable regularly precedes another and that
“precedence” is not sufficient for causality.
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An example with this interpretation is Stock and Watson’s (1989) application to

search for economic variables that forecast business cycle movements.

8.3 The Impulse Response Function

Consider a moving average representation

yt = µ+Ψ∗
0ϵ

∗
t +Ψ∗

1ϵ
∗
t−1 +Ψ∗

2ϵ
∗
t−2 + · · · = µ+Ψ∗(L)ϵ∗t .

Let yit be the i-th element of yt, ϵ
∗
jt be the j-th element of ϵ∗t , and ψ

∗
s,ij be the (i, j)-th

element of Ψ∗
s. If ϵ∗jt is increased by one unit while holding all the other elements

of ϵ∗t+τ constant for all positive and negative τ , then yi,t+s will increase by ψ∗
s,ij for

s > 0. In this sense,

∂yi,t+s

∂ϵ∗jt
= ψ∗

s,ij,(8.21)

or, using matrix notation,

∂yt+s

∂ϵ∗
′

t

= Ψ∗
s,(8.22)

A plot of ψ∗
s,ij for s = 1, 2, · · · is the impulse response function of yi with respect to

ϵ∗jt.

One convenient way to estimate the impulse response function is to choose the

Wold representation (8.1):

yt = µ+ ϵt +Ψ1ϵt−1 +Ψ2ϵt−2 + · · · = µ+Ψ(L)ϵt,

estimate the VAR representation by applying OLS to each row of yt, and simulate

the estimated VAR representation to obtain an estimate of Ψs.

There exist two difficulties in interpreting the impulse response function. The

first difficulty is that Σϵ = E(ϵtϵ
′
t) is not diagonal. This property means that the
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other elements of ϵt tend to move with ϵjt when ϵjt changes. Hence, it is not very

meaningful to consider the effect of changes in ϵjt on yi,t+s while holding the other

elements of ϵt constant. Computing an orthogonalized impulse response function is

one method to avoid this difficulty. We assume that Σϵ is positive definite. Then,

given the ordering of variables in yt, there exists a unique lower triangular matrix Φ0

with 1’s along the principal diagonal and a unique diagonal matrix Λ with positive

entries along the principal diagonal such that

Σϵ = Φ0ΛΦ′
0.(8.23)

Let

et = Φ−1
0 ϵt.(8.24)

Then E(ete
′
t) = Φ−1

0 Σϵ(Φ
−1
0 )′ = Λ which is diagonal. Since

ϵt = Φ0et,(8.25)

yt has an MA representation in terms of et:

yt = µ+Φ0et +Ψ1Φ0et−1 +Ψ2Φ0et−2 + · · · = µ+Φ(L)et,(8.26)

where Φ(L) =
∑∞

s=0ΦsL
s and Φs = ΨsΦ0. Let ejt be the j-th element of et and ϕs,ij

be the (i, j)-th element of Φs. Then (8.26) implies that

∂yi,t+s

∂ejt
= ϕs,ij.(8.27)

A plot of (8.27) as a function of s ≥ 0 is an orthogonalized impulse response function.

The sample counterparts of Ψs and Φ0 can be used to estimate the orthogo-

nalized impulse response function. For example, the Cholesky factorization, which
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GAUSS can be used to compute, of the estimate of Σϵ can be used to estimate Φ0.

If P is the Cholesky factorization of Σϵ, then P = Φ0Λ
1
2 , and the principal diagonal

of P is the principal diagonal of Λ
1
2 . Hence, Φ0 = PΛ− 1

2 . This formula can be used

to construct a sample counterpart of Φ0.

The second difficulty in interpreting the impulse response function is that it

is not possible to interpret ϵt or et as shocks to the economy without imposing any

economic structure to the VAR representation. For example, if the first element in

yt is the money supply, it is tempting to interpret the first element of ϵt as the

money supply shock which represents random changes in the money supply. With

this interpretation, one can learn about how endogenous variables respond to the

money supply shock by examining the impulse response functions. However, without

any economic model, ϵt is simply the forecast error when the linear forecasting rule

is used with the past values of yt as the information set. In some linear rational

expectations models, ϵt is simply the difference between the economic agents’ forecast

and the linear forecast based on the past values of yt. When the economic agents use

a nonlinear forecasting rule with a larger information set, their forecast can be very

different from Ê(yt|yt−1,yt−2, · · · ). In these models, it is not clear what we learn

from the impulse response functions. Section 8.5 will discuss structural models that

provide economically meaningful shocks with various restrictions. Under the recursive

assumptions introduced in Section 8.5, the orthogonalized impulse response function

discussed above can be used to compute impulse response functions of the structural

shocks. In the majority of the VAR applications, the recursive assumptions are used.

Under other assumptions, alternative methods are used to compute impulse response

functions for the structural shocks as explained below.
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We provide three traditional methods of computing confidence intervals of im-

pulse responses: asymptotic normal approximation (see, e.g., Lütkepohl, 1990), boot-

strap (see, e.g., Runkle, 1987; Kilian, 1998), and Monte Carlo integration (see, e.g.,

Doan, 1992; Sims and Zha, 1999). All three methods are asymptotically valid in

stationary models but not the same in small samples. Kilian (1998) shows from his

Monte Carlo simulation that bootstrap-after-bootstrap method performs better than

others in small samples, while Sims and Zha (1999) argue that the Bayesian intervals

have a firmer theoretical foundation and show how to obtain correct intervals for

over-identified models.

8.4 Forecast error decomposition

Denoting the h-step forecast error by

yt+h − Êtyt+h =
∞∑
s=0

Ψs(ϵt+h−s − Êtϵt+h−s)(8.28)

=
h−1∑
s=0

Ψsϵt+h−s,

the forecast error variance is computed from the diagonal components of

E(yt+h − Êtyt+h)
2 =

h−1∑
s=0

ΨsΣϵΨ
′
s.(8.29)

In particular, the forecast error variance of the i-th variable, yi,t+h, is defined by

h−1∑
s=0

Ψs,i·ΣϵΨ
′
s,i·(8.30)

where Ψs,i· denotes the i-th row of Ψs.

The same two difficulties concerning the interpretation of the impulse response

function exist for the forecast variance decomposition. As with the impulse response
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function, the recursive assumptions have been employed in many VAR applications

so that the orthogonalized shocks et in (8.24) are structural shocks.

The contribution of orthogonalized shocks to forecast error variance of the h-

step forecast is defined by the diagonal components of

h−1∑
s=0

ΦsΛΦ′
s.(8.31)

In particular, the contribution of the j-th orthogonalized shock, ej, to the forecast

error variance of the i-th variable, yi,t+h, is
4

h−1∑
s=0

(ϕs,ij)
2djj,(8.32)

where djj is the variance of the j-th orthogonalized shock. The sample counterparts

of Φ and djj can be used to estimate this contribution.

Finally, dividing (8.32) by (8.30) yields the fraction of the h-step forecast error

variance of the i-th variable attributed to the j-th orthogonalized shock.

8.5 Structural VAR Models

This section discusses structural economic models in which the orthogonalized impulse

response functions are meaningful. A class of structural models can be written in the

following form of a structural dynamic model:

B0yt = δ +B1yt−1 +B2yt−2 + · · ·+Bpyt−p + et(8.33)

where Bi is a n×n matrix, and δ is a n×1 vector. Here B0 is a nonsingular matrix of

real numbers with 1’s along its principal diagonal, and et is a stationary n-dimensional

4By virtue of the assumption that orthogonalized shocks are mutually uncorrelated, we can
separate the contribution of each orthogonalized shock.
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vector of random variables with E(et|yt−1,yt−2, · · · ) = 0. This structural model is

related to its reduced form with et = B0ϵt, δ = B0δϵ, Bi = B0Ai for i = 1, · · · , p. In

many applications, it is assumed that the shocks are mutually uncorrelated so that

the covariance matrix of et is diagonal.

Example 8.1 Consider a model of money demand. Let mt be the real money bal-

ance, md
t be the desired real money balance, and it be the nominal interest rate:

md
t = β0 + β1it.(8.34)

Suppose that the actual money holdings are slowly adjusted toward the desired level

so that

mt −md
t = α(mt−1 −md

t−1) + edt ,(8.35)

where 0 < α < 1, and edt is a money demand shock. Substituting (8.34) into (8.35)

yields

mt = β0(1− α) + αmt−1 + β1it − αβ1it−1 + edt .(8.36)

Imagine that the central bank determines the money supply at date t so that it is at

a desired level given by the right hand side of the following equation:

it = γ0 + γ1mt−1 + γ2it−1 + est ,(8.37)

where est is a money supply shock. Then, when we choose (it,mt)
′ as yt, this money

demand model is of the form (8.33):[
1 0

−β1 1

] [
it
mt

]
=

[
γ0

β0(1− α)

]
+

[
γ2 γ1

−αβ1 α

] [
it−1

mt−1

]
+

[
est
edt

]
.(8.38)
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In general, B0 in (8.33) is not diagonal because some variables in yt are affected by

other variables in yt as well as lagged values of the variables in yt. In Example 8.1,

mt is affected by it as well as lagged values of it−1 and mt−1.

In many structural models, it is reasonable to assume that the covariance matrix

of et is diagonal. In Example 8.1, edt is the money demand shock and est is the money

supply shock, and these shocks should be uncorrelated. In this case, the impulse

response functions with respect to the elements of et can be interpreted without any

problem and are of interest. We will assume that Λ = E(ete
′
t) is diagonal for the rest

of this chapter.

When the reduced form VAR (8.2) is estimated, various restrictions can be

imposed onB0 to compute the impulse response functions of et. For example, suppose

that B0 is known. Let Φ0 = B−1
0 ,Ψs = ∂yt+s/∂ϵ

′
t be the impulse response function

with respect to ϵt, and Φ0,·j be the j-th column of Φ0. By the same argument used

for the orthogonalized impulse response function, ΨsΦ0,·j gives the impulse response

function with respect to ejt.

In most models, B0 is unknown. A restriction on B0 often used in applications

is that it is a lower triangular matrix. Example 8.1 satisfies this restriction. In the

example, it is determined by it−1 and mt−1 and is not affected by mt. Note that B0

would not be lower triangular if yt were defined to be (mt, it)
′ rather than (it,mt)

′.

Thus the order of the variables in yt is important. In general, B0 is lower triangular

when the model has a recursive structure: y1t is determined when the past values of

yt are given, y2t is determined by y1t and the past values of yt, y3t is determined by

y1t, y2t, and the past values of yt.
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When B0 is lower triangular, B
−1
0 is a lower triangular matrix and has 1’s along

the principal diagonal. It is known that when a positive matrixΣϵ is given, there exists

a unique lower triangular matrix Φ0 which has ones along the principal diagonal such

that Σϵ = Φ0ΛΦ′
0. Hence B0 can be computed by the Cholesky factorization using

B0 = Φ−1
0 . Thus, the standard method of computing the orthogonalized impulse

response function yields the impulse response function with respect to et when B0 is

lower triangular. On the other hand, when B0 is not lower triangular the Choleski

decomposition cannot be used, and ML or GMM estimation is often used as discussed

in Section 8.6.3.

8.6 Identification

In order to identify B0, we need at least n2 restrictions. In most cases, we assume

that structural shocks are mutually uncorrelated. This orthogonality condition im-

plies the variance-covariance matrix of structural disturbances is diagonal and gives

n(n−1)
2

restrictions. Second, we impose a normalization condition that the diagonal

components of B0 are 1’s, which yields n restrictions.5 Structural VAR varies de-

pending on how the additional n(n−1)
2

conditions are imposed for identification.

8.6.1 Short-Run Restrictions for Structural VAR

The simplest model originating with Sims (1980) assumes that B0 is lower triangular.

This structure is called recursive assumptions. This gives n(n−1)
2

necessary conditions

so that the model is just identified as shown below. Letting Φ0 = B−1
0 , it follows

5Instead, we can consider an alternative normalization condition that the variance-covariance
matrix of structural disturbances is an identity matrix. This change does not affect the main results.
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from et = B0ϵt that

Φ0ΛΦ′
0 = Σϵ,(8.39)

where Φ0 is also a lower triangular matrix. Let P be a lower triangular matrix of the

Cholesky decomposition of Σϵ so that PP′ = Σϵ. From Φ0Λ
1
2 = P, it follows that

Φ0 = PΛ− 1
2 ,(8.40)

where Λ = [diag(P)]2.

Typically, researchers decide the order of variables to use from the type of restric-

tions, but do not use a tightly specified economic model to derive these restrictions

in applications. Instead, impulse responses estimated from recursive assumptions

are compared with implications of economic models. Some researchers make a more

explicit connection between estimated impulse responses and an economic model.

Rotemberg and Woodford (1999) minimize a distance measure between impulse re-

sponses estimated from recursive assumptions and impulse responses implied by a

monetary model by choosing parameters of the model. Their monetary model in-

corporates an optimum monetary policy rule that is similar to the rule proposed by

Taylor (1993).

Blanchard andWatson (1986) consider the case whereB0 is not lower triangular.

As their four-variable model includes eight unknown parameters in B0, they use a

priori theoretical and empirical information about the private sector behavior and

policy reaction functions on two of the parameters, and impose four zero restrictions

to achieve identification on the remaining six (=n(n−1)
2

) unknown parameters. Given

these restrictions, their model is just identified. From et = B0ϵt it follows that

Λ = B0ΣϵB
′
0,(8.41)
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which yields unique solutions for B0 and Λ. Gordon and Leeper (1994) use full

information maximum likelihood estimation to study liquidity effects in their over-

identified model. To identify their model, they impose conventional exclusion restric-

tions and plausible informational assumptions from a traditional view of monetary

policy and private sector behavior, such as which variables enter demand and supply

for the reserve market.

Bernanke (1986) considers a model that allows more than one structural shock

in an equation. The structural form is

B(L)yt = Fet.(8.42)

Assume that B0 is not lower triangular but that there are
n(n−1)

2
unknown parameters

in B0 and F. From Fet = B0ϵt it follows that

Λ = F−1B0ΣϵB
′
0F

−1′,(8.43)

which yields the unique solutions for B0, F and Λ.

8.6.2 Identification of block recursive systems

Christiano, Eichenbaum, and Evans (1999) provide a theoretical background and

illustrate identification of block recursive systems. Partitioning yt into three blocks

is convenient to illustrate the block recursive structure:

yt =

 y1t

st
y2t

 ,(8.44)

where yt is a vector of n(= n1 + 1 + n2) variables of interest, st is a monetary policy

variable, y1t includes n1 variables which are in the information set when the Fed

implements a monetary policy, and y2t contains n2 variables which are excluded from



172 CHAPTER 8. VECTOR AUTOREGRESSION TECHNIQUES

the information set. Alternatively, y1t does not respond to a monetary policy shock

contemporaneously, while y2t does. The block recursive assumption imposes zero

restrictions on the following partitioned B0:

B0 =


b11 0 0

(n1 × n1) (n1 × 1) (n1 × n2)
b21 b22 0

(1× n1) (1× 1) (1× n2)
b31 b32 b33

(n2 × n1) (n2 × 1) (n2 × n2)

(8.45)

Two zero restrictions, b12 = b13 = 0, are required for the monetary policy shock to

be orthogonal to other structural shocks, while the restriction b23 = 0 implies the

assumption that the Fed does not have information about variables in y2t when it

makes a monetary policy decision.

The following property may help explain the block recursive system:

(8.46)

[
B11 0
B21 B22

]−1

=

[
B−1

11 0
−B−1

22 B21B
−1
11 B−1

22

]
The block recursive structure gives sufficient conditions to identify a monetary policy

shock, and the ordering within y1t and y2t does not affect the results if one is interested

in the effects of a monetary policy shock. Instead, the ordering across two groups

might affect the results substantially.

8.6.3 Two-step ML estimation

When B0 is not lower triangular, maximum likelihood estimation or GMM estimation

can be used once the structural model is identified as discussed in the following section.

As VAR models involve a large number of parameters, two-step estimation is often

used. The reduced form VAR model is estimated in the first step, and ML or GMM

estimation is used in the second step focusing on the relation of B0Σ̂ϵB
′
0 = Λ to
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estimate B0 and Λ from the first step estimate of Σϵ. The two-step ML estimation

is discussed by Giannini (1992) in detail, while two-step GMM estimation is used by

Bernanke and Mihov (1998).

Suppose that the model is identified with short-run economic restrictions:

vec(B0) = Sbbs + sb,(8.47)

where bs be a ns (≤ n(n+1)
2

) dimensional vector of free parameters in B0, and the

restrictions are expressed by an n2 × ns matrix of S and n2 × 1 vector of sb.

Then the following are used in the second step for ML estimation:

(a) Likelihood function:

L(B0) = T log |B0| −
T

2
trace(B′

0B0Σ̂)(8.48)

(b) Gradient:

g(B0) = T [vec(B′−1
0 )− (Σ̂⊗ In2)vec(B0)](8.49)

(c) Information matrix:

IT (B0) = 2T (B−1
0 ⊗ In2)Nn2(B

′−1
0 ⊗ In2)(8.50)

(d) Score algorithm:

bs,i+1 = bs,i + [IT (bs,i)]
−1g(bs,i),(8.51)

where g(bs) = S′
bg(B0), IT (bs) = S′

bIT (B0)Sb, and i denotes the iteration step.

In addition, ifB0 is over-identified, the over-identifying restrictions can be tested

using

LRT = 2(L(Σ̂)− L(B̂0,ML)),(8.52)

where L(Σ̂) = −T
2
log |Σ̂| − nT

2
, and LRT is asymptotically χ2

(q)-distributed, where q

is the number of over-identification.
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Appendix

This appendix provides three traditional methods of computing confidence intervals

of impulse responses, which are widely used as standard tools for economic analysis

in the applied VAR literature (see, e.g., Baillie, 1987; Runkle, 1987).

8.A Asymptotic Interval Method

Let θ = (a′,σ′)′, where a = vec(A1,A2, · · · ,Ap) and σ = vech(Σ).6 It is well known

that θ is asymptotically normally distributed

√
T (θ̂ − θ)

d−→ N(0,Σθ),

where

Σθ =

[
Σa 0
0 Σσ

]
=

[
[E(xtx

′
t)]

−1 ⊗Σ 0
0 2D+

n (Σ⊗Σ)D+′
n

]
,

xt =
[
y′
t−1,y

′
t−2, · · · ,y′

t−p

]′
, and D+

n is the Moore-Penrose inverse of Dn. Refer to

Hamilton (1994) for its derivation and extended discussion.

In addition to impulse responses derived in the text, it is often of interest to

trace the accumulated responses

Ψci =
i∑

j=0

Ψj, Φci = ΨciΦ0

and the total accumulated responses

Ψ(1) =
∞∑
j=0

Ψj = A(1)−1, Φ(1) = Ψ(1)Φ0.

6Note that we define a slightly differently from Section 8.1 which includes the constant term δϵ.
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Let ℓp be the p-dimensional vector with ones and denote

A =


A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0
0 In · · · 0 0
...

. . .
...

...
0 0 · · · In 0

 and Jnp =

[
In

... 0n×n(p−1)

]
.

Consider a VAR model with short-run restrictions of the form vec(B0) = Sbbs + sb

and define Gϕσ = GϕbG
+
ϕϕb where Gϕb =

[
−B′−1

0 ⊗B−1
0

... In ⊗B−1
0

]
Sb and Gϕϕb =

2D+
n

[
−B−1

0 B′−1
0 ⊗B−1

0

... B−1
0 ⊗B−1

0

]
Sb. With this notation, we obtain the asymp-

totic distributions of the impulse responses in the next proposition. See Lütkepohl

(1990) for just-identified recursive VARs and Jang (2004) for more generalized VARs

including non-recursive and over-identified models.

Proposition 8.A.1 Suppose
√
T (θ̂ − θ)

d−→ N(0,Σθ) and vec(B0) = Sbbs + sb.

Then

(a)
√
Tvec(Ψ̂i −Ψi)

d−→ N(0,GΨaiΣaG
′
Ψai), i = 1, 2, · · · ,

where

GΨai =
∂vec(Ψi)

∂a′ =
i−1∑
j=0

Jnp(A
′)i−1−j ⊗Ψj;

(b)
√
Tvec(Ψ̂ci −Ψci)

d−→ N(0,GΨcaiΣaG
′
Ψcai), i = 1, 2, · · · ,

where

GΨcai =
∂vec(Ψci)

∂a′ =
i∑

j=0

GΨaj;

(c)
√
Tvec(Ψ̂(1)−Ψ(1))

d−→ N(0,GΨ1aΣaG
′
Ψ1a)

where

GΨ1a =
∂vec(Ψ(1))

∂a′ = ℓp
′ ⊗Ψ(1)′ ⊗Ψ(1);
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(d)
√
Tvec(Φ̂i −Φi)

d−→ N(0,GΦaiΣaG
′
Φai +GΦσiΣσG

′
Φσi), i = 0, 1, 2, · · · ,

where

GΦai =
∂vec(Φi)

∂a′ =

{
0, i = 0
(Φ′

0 ⊗ In)GΨai, i = 1, 2, · · · and

GΦσi =
∂vec(Φi)

∂σ′ = (In2 ⊗Ψi)Gϕσ;

(e)
√
Tvec(Φ̂ci −Φci)

d−→ N(0,GΦcaiΣaG
′
Φcai +GΦcσiΣσG

′
Φcσi), i = 0, 1, 2, · · · ,

where

GΦcai =
∂vec(Φci)

∂a′ =
i∑

j=0

GΦaj and

GΦcσi =
∂vec(Φci)

∂σ′ =
i∑

j=0

GΦσj;

(f)
√
Tvec(Φ̂(1)−Φ(1))

d−→ N(0,GΦ1aΣaG
′
Φ1a +GΦ1σΣσG

′
Φ1σ),

where

GΦ1a =
∂vec(Φi)

∂a′ = (Φ′
0 ⊗ In)GΨ1a and

GΦ1σ =
∂vec(Φi)

∂σ′ = (In2 ⊗Ψ(1))Gϕσ.

Proof (a)–(c) See Lütkepohl (1990) Proposition 1.
(d)–(f) See Jang (2004) Theorem 3.2.

8.B Bias-Corrected Bootstrap Method

Kilian (1998) suggests the following algorithm for the bias-corrected bootstrap (boot-

strap after bootstrap) method:

1. Estimate the VAR(p) in equation (8.2) and generate 1000 bootstrap replications

â∗ from

Â(L)y∗
t = δ̂ϵ + ϵ∗t ,
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using standard nonparametric bootstrap techniques.

2. Approximate the bias term λ = E(â− a) by λ∗ = E∗(â∗ − â), which suggests

λ̂ = ā∗ − â for the bias estimate where ā∗ is the mean of the bootstrap sample

of â∗.

3. Adjust â for stationarity correction to avoid pushing stationary impulse re-

sponses into the nonstationary region.

(i) Compute m(â), the modulus of the largest root of the companion matrix

associated with â.

(ii) If m(â) ≥ 1, set ã = â without any adjustments.

(iii) Otherwise, construct the bias-corrected coefficient estimate ã = â− λ̂. If

m(ã) ≥ 1, let λ̂1 = λ̂ and ν1 = 1. Define λ̂j+1 = νjλ̂j and νj+1 = νj−0.01.

Set ã = ãj after iterating on ãj = â− λ̂j for j = 1, 2, · · · until m(â) < 1.

4. Substitute ã for â and generate 2000 new bootstrap replications â∗ from

Ã(L)y∗
t = δ̃ϵ + ϵ∗t ,

using standard nonparametric bootstrap techniques.

5. Compute ã∗ from â∗ and λ̂
∗
with the adjustment of â∗ for stationarity correction

as described in Step 3.

6. Compute the α and 1 − α percentile intervals of impulse responses generated

with ã∗ and σ̂∗.
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8.C Monte Carlo Integration

Consider the VAR system in the form of (8.5). Assuming that ut is i.i.d. and normally

distributed, Zellner (1971) finds that Σϵ follows the Normal-inverse Wishart posterior

distribution, with the prior, f(b,Σϵ) ∼ |Σϵ|−
n+1
2 :

Σ−1
ϵ ∼ Wishart((T Σ̂ϵ)

−1, T ) with given Σ̂ϵ(8.C.1)

and

b ∼ N(b̂,Σϵ ⊗ (X′X)−1).(8.C.2)

Doan (1992) and Sims and Zha (1999) suggest the following parametric Monte

Carlo integration method for computing impulse responses:

1. Estimate (16.17) and let b̂ and Σ̂ be these estimates.

2. Let A be a lower triangular matrix of Choleski decomposition of (X′X)−1.

3. Let S−1 be a lower triangular matrix of Choleski decomposition of Σ̂
−1

ϵ .

4. Generate n× T random numbers, wb, from the normal distribution, N(0, 1
T
).

5. Generate (n(p− 1)+ r+1)×n random numbers, ub, from the standard normal

distribution, N(0, 1).

6. Let rb = w′
bS

−1, and get Σ−1
b = r′brb.

7. Let Sb be a lower triangular matrix of Choleski decomposition of Σb.

8. Let b = b̂+ eb, in which eb = AubS
′
b. Then, b ∼ N(b̂,Σb ⊗ (X′X)−1).

9. Draw impulse responses, irb, as described in Section 16.3.3.
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10. Repeat 4 ∼ 9, B times, and calculate 95% upper and lower bands of impulse

responses using

Upper =
1

B

B∑
b=1

irb + 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2(8.C.3)

and

Lower =
1

B

B∑
b=1

irb − 2(
1

B

B∑
b=1

ir2b − (
1

B

B∑
b=1

irb)
2))

1
2 .(8.C.4)

Exercises

8.1 Let yt and mt be detrended log GDP and log money supply, respectively. As-

sume that zt = (yt,mt)
′ is a covariance stationary process with a p-th order VAR

representation.

(a) Define the concept, “y fails to Granger-cause m”.

(b) How do you test the hypothesis that log GDP fails to Granger-cause log money

supply?

(c) Imagine that you find empirical evidence that y fails to Granger-cause m, and

m Granger-causes y. Discuss why this evidence can be consistent with a model

in which money is neutral in the short run (money is neutral when changes in

the level of money supply cannot affect any real economic variable such as real

GDP).

(d) Define the orthogonalized impulse response function. Let

B0zt = δ +B1zt−1 +B2zt−2 + · · ·+Bpzt−p + et(8.E.1)
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be a structural model for zt, where Bi is a n×n matrix, and δ is a n×1 vector.

Here B0 is a nonsingular matrix of real numbers with 1’s along its principal di-

agonal, and et is a stationary n-dimensional vector of normally distributed i.i.d.

random variables. Discuss conditions for B0 under which the orthogonalized

impulse response function represents the effects of each element of et on zt+s.

8.2 True or False. Briefly explain your answers.

(a) OLS estimation is equivalent to SUR estimation for a reduced-form VAR model

because the regressors are identical.

(b) OLS estimation is equivalent to SUR estimation for a structural-form VAR

model because structural disturbances are uncorrelated.

(c) In a recursive VAR model, e1 = ϵ1.

(d) In a recursive VAR model, impulse responses to e1 are the same as those of ϵ1.

(e) In a recursive VAR model, en = ϵn.

(f) In a recursive VAR model, impulse responses to en are the same as those of ϵn.
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