
Chapter 9

GENERALIZED METHOD OF
MOMENTS

9.1 Asymptotic Properties of GMM Estimators

9.1.1 Moment Restriction and GMM Estimators

To motivate GMM estimation, consider Hansen and Singleton’s (1982) Consumption-

Based Capital Asset Pricing Model (C-CAPM). A representative agent maximizes

∞∑
t=1

βtE(U(ct)|I0)(9.1)

subject to a budget constraint. Hansen and Singleton (1982) use an isoelastic in-

traperiod utility function

U(ct) =
1

1− α
(c1−α

t − 1),(9.2)

where ct is real consumption at date t, β is a discount factor and α > 0 is the

reciprocal of the intertemporal elasticity of substitution (α is also the relative risk

aversion coefficient for consumption in this model). The standard Euler equation for

the optimization problem is

E[βc−α
t+1Rt+1| It]
c−α
t

= 1,(9.3)
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where Rt+1 is the gross real return of an asset and It is an information set available

at time t. This Euler equation can be rearranged as

E[β(
ct+1

ct
)−αRt+1 − 1| It] = 0.(9.4)

Let zt be a vector of variables whose values are known at time t. Then zt ∈ It and

E[zt{β(
ct+1

ct
)−αRt+1 − 1}| It] = 0.(9.5)

By the law of iterative expectations, we obtain the orthogonality conditions to be

used in GMM estimation,

E[zt{β(
ct+1

ct
)−αRt+1 − 1}] = 0.(9.6)

Let {xt : t = 1, 2, · · · } be a stationary and ergodic vector stochastic process,

b0 be a p-dimensional vector of the parameters to be estimated, and f(xt,b) a q-

dimensional vector of functions. We refer to ut = f(xt,b0) as the disturbance of

GMM. Consider the (unconditional) moment restrictions

E(f(xt,b0)) = 0.(9.7)

For example, in the Hansen and Singleton (1982) case, xt = ( ct+1

ct
, Rt+1, z

′
t)

′, b0 =

(β, α)′, and f(xt,b0) = zt{β( ct+1

ct
)−αRt+1 − 1}.

Suppose that a law of large numbers can be applied to f(xt,b) for all admissible

b, so that the sample mean of f(xt,b) converges to its population mean:

lim
T→∞

1

T

T∑
t=1

f(xt,b) = E(f(xt,b))(9.8)

with probability one (or, in other words, almost surely). The basic idea of GMM

estimation is to mimic the moment restrictions in (9.7) by minimizing a quadratic
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form of the sample means

JT (b) = { 1
T

T∑
t=1

f(xt,b)}′WT{
1

T

T∑
t=1

f(xt,b)}(9.9)

with respect to b, where WT is a positive semidefinite matrix that satisfies

lim
T→∞

WT = W0(9.10)

with probability one for a positive definite matrix W0. The matrices WT and W0

are both referred to as the distance or weighting matrix. The GMM estimator, bT ,

is the solution of the minimization problem in (9.9). Under fairly general regularity

conditions, the GMM estimator bT is a consistent estimator for arbitrary distance

matrices.1 The selection of the distance matrix which yields an (asymptotically)

efficient GMM estimator is discussed below in Section 9.1.3.

9.1.2 Asymptotic Distributions of GMM Estimators

Suppose that a central limit theorem applies to the disturbance of GMM, ut =

f(xt,b0), so that 1√
T

∑T
t=1 ut has an (asymptotic) normal distribution with mean

zero and the covariance matrix Ω in large samples.2 If ut is serially uncorrelated,

Ω = E(utu
′
t). If ut is serially correlated,

Ω = lim
j→∞

j∑
−j

E(utu
′
t−j).(9.11)

Some authors refer to Ω as the long run covariance matrix of ut. Let Γ = E(∂f(xt,b0)
∂b′ )

be the expectation of the q × p matrix of the derivatives of f(xt,b0) with respect

to b and assume that Γ has full column rank. Under suitable regularity conditions,

1Some regularity conditions that are important for applied researchers will be discussed in Section
9.3

2An advantage of the GMM estimation is that a strong distributional assumption such that ut

is normally distributed is not necessary.
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√
T (bT − b0) converges in distribution to a normal distribution with mean zero and

the covariance matrix

Cov(W0) = (Γ′W0Γ)
−1(Γ′W0ΩW0Γ)(Γ

′W0Γ)
′−1.(9.12)

9.1.3 Optimal Choice of the Distance Matrix

When the number of moment conditions (q) is equal to the number of parameters to

be estimated (p), the system is just identified. In the case of a just identified system,

the GMM estimator does not depend on the choice of distance matrix. When q > p,

there exist overidentifying restrictions and different GMM estimators are obtained

for different distance matrices. In this case, one may choose the distance matrix that

results in an (asymptotically) efficient GMM estimator. Hansen (1982) shows that

the covariance matrix (9.12) is minimized when W0 = Ω−1.3 With this choice of the

distance matrix,
√
T (bT − b0) has an approximately normal distribution with mean

zero and the covariance matrix

Cov(Ω−1) = (Γ′Ω−1Γ)−1(9.13)

in large samples.

Let ΩT be a consistent estimator of Ω. Then WT = Ω−1
T is used to obtain bT .

The resulting estimator is called the optimal or efficient GMM estimator. It should

be noted, however, that it is optimal given f(xt,b). In the context of instrumental

variable estimation, this means that instrumental variables are given. The optimal

selection of instrumental variables is discussed below in Section 9.7. Let ΓT be a

consistent estimator of Γ. Then the standard errors of the optimal GMM estimator

3The covariance matrix is minimized in the sense that Cov(W0)−Cov(Ω−1) is a positive semidef-
inite matrix for any positive definite matrix W0.



186 CHAPTER 9. GENERALIZED METHOD OF MOMENTS

bT are calculated as square roots of the diagonal elements of 1
T
(Γ′

TΩ
−1
T ΓT )

−1. The

appropriate method for estimatingΩ depends on the model. This problem is discussed

in Chapter 6. It is usually easier to estimate Γ by ΓT = 1
T

∑T
t=1

∂f(xt,bT )
∂b′ than

to estimate Ω. In linear models, or in some simple nonlinear models, analytical

derivatives are readily available. In nonlinear models, numerical derivatives are often

used.

9.1.4 A Chi-Square Test for the Overidentifying Restrictions

In the case where there are overidentifying restrictions (q > p), a chi-square statistic

can be used to test the overidentifying restrictions. One application of this test is to

test the validity of the moment conditions implied by Euler equations for optimizing

problems of economic agents. This application is discussed in Section 9.5. Hansen

(1982) shows that T times the minimized value of the objective function, TJT (bT ),

has an (asymptotic) chi-square distribution with q−p degrees of freedom ifW0 = Ω−1

in large samples. This test is sometimes called Hansen’s J test.4

If we reject the overidentifying restrictions based on Hansen’s J test, it can

be interpreted in two different ways. If a model implies the moment restrictions,
Kyungho
needs to

check this!
for example, Euler equation approach, rejection of J test means that the model is

rejected. However, if instrumental variables are chosen with common sense, rejection

of J test means that instrumental variables are inappropriately chosen.

9.2 Special Cases

This section shows how linear regressions and nonlinear instrumental variable esti-

mation are embedded in the GMM framework above.

4See Newey (1985) for an analysis of the asymptotic power properties of this chi-square test.
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9.2.1 Ordinary Least Squares

Consider a linear model,

yt = x′
2tb0 + ϵt,(9.14)

where yt and ϵt are stationary and ergodic random variables, x2t is a p-dimensional

stationary and ergodic random vector. OLS estimation can be embedded in the GMM

framework by letting xt = (yt,x
′
2t)

′, f(xt,b) = x2t(yt − x′
2tb), ut = x2tϵt, and p = q.

Thus, the moment conditions (9.7) become the orthogonality conditions:

E(x2tϵt) = 0.(9.15)

Since this is the case in a just identified system, the distance matrix W0

does not matter. Note that the OLS estimator minimizes
∑T

t=1(yt − x′
2tb)

2 while

the GMM estimator minimizes (
∑T

t=1 x2t(yt − x′
2tb))

′(
∑T

t=1 x2t(yt − x′
2tb)). In this

case, the GMM estimator coincides with the OLS estimator. To see this, note

that (
∑T

t=1 x2t(yt − x′
2tb))

′(
∑T

t=1 x2t(yt − x′
2tb)) can be minimized by setting bT

so that
∑T

t=1 f(xt,b) = 0 in the case of a just identified system. This result im-

plies that
∑T

t=1 x2tyt = (
∑T

t=1 x2tx
′
2t)bT . Thus, as long as

∑T
t=1 x2tx

′
2t is invertible,

bT = (
∑T

t=1 x2tx
′
2t)

−1
∑T

t=1 x2tyt. Hence, the GMM estimator bT coincides with the

OLS estimator.

9.2.2 Linear Instrumental Variables Regressions

Consider the linear model (9.14) and let zt be a q-dimensional random vector of

instrumental variables. Then instrumental variable regressions are embedded in the

GMM framework by letting xt = (yt,x
′
2t, z

′
t)

′, f(xt,b) = zt(yt − x′
2tb), and ut = ztϵt.
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Thus, the moment conditions become the orthogonality conditions

E(ztϵt) = 0.(9.16)

In the case of a just identified system (q = p), the instrumental variable regression

estimator (
∑T

t=1 ztx
′
2t)

−1
∑T

t=1 ztyt coincides with the GMM estimator. For the case of

an overidentified system (q > p), the two-stage least-squares estimators and the three-

stage least-squares estimators (for multiple regressions) can be interpreted as optimal

GMM estimators when ϵt is serially uncorrelated and conditionally homoskedastic.5

9.2.3 Linear GMM estimator

Consider the linear regression model (9.14). Let zt be a q-dimensional random vector

of instrumental variables, xt = (yt,x
′
2t, z

′
t)

′, f(xt,b) = zt(yt − x′
2tb), and ut = ztϵt.

For the case of an overidentified system (q > p), the linear GMM estimator, bT ,

is the solution of the minimization problem (9.9), where

1

T

T∑
t=1

f(xt,b) =
1

T

T∑
t=1

zt(yt − x′
2tb)(9.17)

=
1

T

T∑
t=1

ztyt +
1

T

T∑
t=1

(−ztx
′
2t)b

≡ szy + ΓTb,

szy (q×1) is the corresponding vector of sample moments of E(ztyt) and ΓT (q×p) is

the corresponding vector of sample moments of E(∂f(xt,b0)
∂b′ ). The first order condition

for the minimization problem with respect to b is

Γ′
TWTΓTb = −Γ′

TWT szy,(9.18)

5This interpretation can be seen by examining the first order condition for the minimization
problem (9.9).
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where WT is a (q × q) positive semidefinite matrix satisfying equation (11.2). The

linear GMM estimator, bT , can be obtained by multiplying both sides by the inverse

of Γ′
TWTΓT :

bT (WT ) = −(Γ′
TWTΓT )

−1Γ′
TWT szy.(9.19)

When there is a system of multiple linear equations, the multiple-equation

GMM estimator can be obtained. Moreover, under the assumption of conditional

homoskedasticity, the three-stage least-squares estimators can be shown to be a spe-

cial case of multiple-equation GMM estimators. (For more detailed explanation, see

Hayashi, 2000).

9.2.4 Nonlinear Instrumental Variables Estimation

GMM is often used in the context of nonlinear instrumental variable (NLIV) estima-

tion. Chapter 10 presents some examples of applications based on the Euler equation

approach. Let g(x1t,b) be a k-dimensional vector of functions and ϵt = g(x1t,b0).

Suppose that there exist conditional moment restrictions, E[ϵt|It] = 0. Here it is

assumed that It ⊂ It+1 for any t. Let zt be a q × k matrix of random variables that

are in the information set It.
6 By the law of iterative expectations, we obtain the

unconditional moment restrictions:

E[ztg(x1t,b0)] = 0.(9.20)

Thus, we let xt = (x′
1t, z

′
t)

′ and f(xt,b) = ztg(x1t,b) in this case. Hansen (1982)

points out that the NLIV estimators discussed by Amemiya (1974), Jorgenson and

6In some applications, zt is a function of b. This property does not cause any problems as long
as the resulting f(xt,b) can be written as a function of b and a stationary random vector xt.
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Laffont (1974), and Gallant (1977) can be interpreted as optimal GMM estimators

when ϵt is serially uncorrelated and conditionally homoskedastic.

Hansen and Singleton (1982) Consumption-Based Capital Asset Pricing Model

(C-CAPM) can be an example of NLIV interpretation of GMM estimation. The Euler

equation is

E[βc−α
t+1Rt+1|It]
c−α
t

= 1,(9.21)

where Rt+1 is the gross real return of any asset.7 The observed ct they use is obviously

nonstationary, although the specific form of nonstationarity is not clear (difference

stationary or trend stationary, for example). Hansen and Singleton use ct+1

ct
in their

econometric formulation, which is assumed to be stationary.8 Then we let b0 =

(β, α)′, x1t = ( ct+1

ct
, Rt+1)

′, and g(x1t,b0) = β( ct+1

ct
)−αRt+1 − 1.9 Stationary variables

in It, such as the lagged values of xt, are used for instrumental variables zt. In this

case, ut is in It+1, and hence ut is serially uncorrelated.

9.3 Important Assumptions

This section discusses two assumptions under which large sample properties of GMM

estimators are derived. These two assumptions are important in the sense that ap-

plied researchers have encountered cases where, unless special care is taken, these

assumptions are obviously violated.

7This asset pricing equation can be applied to any asset returns. For example, Mark (1985)
applies the Hansen-Singleton model in asset returns in foreign exchange markets.

8In the following, assumptions about trend properties of equilibrium consumption are made. The
simplest model in which these assumptions are satisfied is a pure exchange economy, with the trend
assumptions imposed on endowments.

9When multiple asset returns are used, g(xt,b) becomes a vector of functions.
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9.3.1 Stationarity

In Hansen (1982), xt is assumed to be (strictly) stationary. Among other things,

this assumption implies that when they exist, the unconditional moments E(xt) and

E(xtx
′
t+τ ) cannot depend on t for any τ . Thus, this assumption rules out deterministic

trends, autoregressive unit roots, and unconditional heteroskedasticity. On the other

hand, conditional moments E(xt+τ |It) and E(xt+τx
′
t+τ+s|It) can depend on It. Thus,

the stationarity assumption does not rule out the possibility that xt has conditional

heteroskedasticity. It should be noted that it is not enough for ut = f(xt,b0) to be

stationary. It is required that xt is stationary, so that f(xt,b) is stationary for all

admissible b, not just for b = b0 (see Section ??????????? for an example in which
Masao
needs to
check this!

f(xt,b0) is stationary but f(xt,b) is not for other values of b).

Gallant (1987) and Gallant and White (1988) show that the GMM strict station-

arity assumption can be relaxed to allow for unconditional heteroskedasticity. This

property does not mean that xt can exhibit nonstationarity by having deterministic

trends or autoregressive unit roots. Some of their regularity conditions are violated

by these popular forms of nonstationarity. Recent papers by Andrews and McDer-

mott (1995) and Dwyer (1995) show that the stationarity assumption can be further

relaxed for some forms of nonstationarity. However, the long-run covariance matrix

estimation procedure often needs to be modified to apply their asymptotic theory.

For this reason, the strict stationarity assumption is emphasized in the context of

time series applications rather than the fact that this assumption can be relaxed.

Since many macroeconomic variables exhibit nonstationarity, unless a researcher

is careful this assumption can be easily violated in applications. As will be explained

in Subsection 9.4.2, nonstationarity in the form of trend stationarity can be treated



192 CHAPTER 9. GENERALIZED METHOD OF MOMENTS

with ease. In order to treat another popular form of nonstationarity, unit-root non-

stationarity, researchers have used transformations such as first differences or growth

rates of variables (see Chapter 10 for examples).

9.3.2 Identification

Another important assumption of Hansen (1982) is related to identification. Let

J0(b) = {E[f(xt,b)]}′W0{E[f(xt,b)]}.(9.22)

The identification assumption is that b0 is the unique minimizer of J0(b). Since

J0(b) ≥ 0 and J0(b0) = 0, b0 is a minimizer. Hence, this assumption requires

J0(b) to be strictly positive for any other b. This assumption is obviously violated if

f(xt,b) ≡ 0 for some b that does not have any economic meaning (see Chapter 10

for examples). Even when this assumption is not violated, if values of J0(b) are close

to zero for parameter values around the unique minimizer and for other parameter

values, then we have weak identification problem. This problem will be discussed

later in this chapter.

9.4 Extensions

This section explains econometric methods that are closely related to the basic GMM

framework.

9.4.1 Sequential Estimation

This subsection discusses sequential estimation (or two step estimation). Consider a

system

f(xt,b) =

[
f1(xt,b1)

f2(xt,b1,b2)

]
,(9.23)



9.4. EXTENSIONS 193

where b = (b′
1,b

′
2)

′, bi is a pi-dimensional vector of parameters, and fi is a qi-

dimensional vector of functions. Although it is possible to estimate b1 and b2 si-

multaneously, it may be computationally convenient to estimate b1 from f1(xt,b1)

first, and then estimate b2 from f2(xt,b1,b2) in a second step (see, e.g., Barro, 1976;

Atkeson and Ogaki, 1996, for examples of empirical applications). In general, the

asymptotic distribution of the estimator of b2 is affected by the estimation of b1 (see,

e.g., Newey, 1984; Pagan, 1984, 1986). A GMM computer program for sequential

estimation can be used to calculate the correct standard errors that take into account

these effects from estimating b1. If there are overidentifying restrictions in the sys-

tem, an econometrician may wish to choose the second step distance matrix in an

efficient way. The choice of the second step distance matrix is analyzed by Hansen,

Heaton, and Ogaki (1992).

Suppose that the first step estimator b1
T minimizes

J1T (b1) = { 1
T

T∑
t=1

f1(xt,b1)}′W1T{
1

T

T∑
t=1

f1(xt,b1)}(9.24)

and that the second step estimator minimizes

J2T (b2) = { 1
T

T∑
t=1

f2(xt,b1T ,b2)}′W2T{
1

T

T∑
t=1

f2(xt,b1T ,b2)},(9.25)

where WiT is a positive definite matrix that converges to Wi0 with probability one.

Let Γij be the qi × pj matrix E( ∂fi
∂b′

j
) for i = 1, 2 and j = 1, 2.

Given an arbitrary W10, the optimal choice of the second step distance matrix

is W20 = Ω∗−1, where

Ω∗ = [−Γ21(Γ11W10Γ11)
−1Γ11W10, I] Ω

[
−Γ21(Γ11W10Γ11)

−1Γ11W10

I

]
.(9.26)

With this choice of W20,
1√
T

∑T
t=1(b2T −b20) has an (asymptotic) normal distribution
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with mean zero and the covariance matrix

(Γ′
22Ω

∗−1Γ22)
−1(9.27)

and TJ2T (b2T ) has an (asymptotic) chi-square distribution with q2 − p2 degrees of

freedom. It should be noted that if Γ21 = 0, then the effect of the first step estimation

can be ignored because Ω∗ = Ω22 = E(f2(xt,b0)f2(xt,b0)
′).

9.4.2 GMM with Deterministic Trends

This subsection discusses how GMM can be applied to time series with deterministic

trends (see Eichenbaum and Hansen, 1990; Ogaki, 1988, 1989, for empirical examples).

Suppose that xt is trend stationary rather than stationary. In particular, let

xt = d(t,b10) + x∗
t ,(9.28)

where d(t,b10) is a function of deterministic trends such as time polynomials and x∗
t

is detrended xt. Assume that x∗
t is stationary with E(x∗

t ) = 0 and that there are q2

moment conditions

E(f2(x
∗
t ,b10,b20)) = 0.(9.29)

Let b = (b′
1,b

′
2)

′, f1(xt,b1) = xt−d(t,b1) and f(xt,b) = [f1(xt,b1)
′, f2(x

∗
t ,b1,b2)

′]′.

Then GMM can be applied to f(xt,b) to estimate b1 and b2 simultaneously.

9.4.3 Other GMM Estimators

Several alternative estimators have been developed to deal with the poor small sample

performance and weak identification problem of GMM.

One of them is the continuous-updating estimator provided by Hansen, Heaton,

and Yaron (1996). It is obtained from changing the weighting matrix with each choice
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of the parameter instead of taking it as given in each step of GMM estimation. An

advantage of this estimator is that it is invariant to how the moment conditions are

scaled.

Others use the information theoretic approach to circumvent the need for es-

timating a weighting matrix in a two step GMM. They include the empirical likeli-

hood estimator (see, e.g., Kitamura and Stutzer, 1997; Imbens, 1997, 2002; Imbens

and Spady, 2002) and exponential tilting estimator (see, e.g., Imbens, Spady, and

Johnson, 1998). These estimators are based on minimization of the Kullback-Leibler

Information Criterion distance to estimate parameters and to test the over-identifying

restrictions (see, e.g., Golan, 2002 for a recent explanation of information economet-

rics).

9.5 Hypothesis Testing and Specification Tests

This section discusses specification tests and Wald, Lagrange Multiplier (LM), and

likelihood ratio type statistics for hypothesis testing. Gallant (1987), Newey and West

(1987), and Gallant and White (1988) have considered these three test statistics, and

Eichenbaum, Hansen, and Singleton (1988) considered the likelihood ratio type test

for GMM (or a more general estimation method that includes GMM as a special

case).

Consider s nonlinear restrictions

H0 : R(b0) = r,(9.30)

where R is a s × 1 vector of functions. The null hypothesis H0 is tested against the

alternative of R(b0) ̸= r. Let Λ = ∂R
∂b′ |b0 and ΛT be a consistent estimator for Λ. It

is assumed that Λ is of rank s. If the restrictions are linear, then R(b0) = Λb0 and
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Λ is known. Let bu
T be an unrestricted GMM estimator and br

T be a GMM estimator

that is restricted by (9.30). It is assumed that W0 = Ω−1 is used for both estimators.

The Wald test statistic is

T (R(bu
T )− r)′[ΛT (Γ

′
TΩ

−1
T ΓT )

−1Λ′
T ]

−1(R(bu
T )− r),(9.31)

where ΩT ,ΓT , and ΛT are estimated from bu
T . The Lagrange multiplier test statistic

is

LMT =
1

T

T∑
t=1

f(xt,b
r
T )

′Ω−1
T ΓTΛ

′
T (ΛTΛ

′
T )

−1[ΛT (Γ
′
TΩ

−1
T ΓT )

−1Λ′
T ]

−1(9.32)

(ΛTΛ
′
T )

−1ΛTΓ
′
TΩ

−1
T

T∑
t=1

f(xt,b
r
T ),

where ΩT ,ΓT , and ΛT are estimated from br
T . Note that in linear models LMT is

equal to (9.31), where ΩT ,ΓT , and ΛT are estimated from br
T rather than bu

T . (?????

Need to reword) The likelihood ratio type test statistic is
Masao

needs to
check this!

T (JT (b
r
T )− JT (b

u
T )),(9.33)

which is T times the difference between the minimized value of the objective function

when the parameters are restricted and the minimized value of the objective function

when the parameters are unrestricted. It is important that the same estimator for

Ω is used for both unrestricted and restricted estimation for the likelihood ratio

type test statistic. Under a set of regularity conditions, all three test statistics have

asymptotic chi-square distributions with s degrees of freedom. The null hypothesis

is rejected when these statistics are larger than the critical values obtained from

chi-square distributions.

Existing Monte Carlo evidence suggests that the small sample distributions of

the Lagrange multiplier test and the likelihood ratio type test are better approxi-
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mated by their asymptotic distributions than those of the Wald test (see Gallant,

1987). Another disadvantage of the Wald test is that in general, the test result for

nonlinear restrictions depends on the parameterization (see, e.g., Gregory and Veall,

1985; Phillips and Park, 1988).

Though the chi-square test for the overidentifying restrictions discussed in Sec-

tion 9.1 has been frequently used as a specification test in applications of GMM, other

specification tests applicable to GMM are available. These include tests developed

by Singleton (1985), Andrews and Fair (1988), Hoffman and Pagan (1989), Andrews

(1991), Ghysels and Hall (1990a,b,c), Hansen (1990), and Dufour, Ghysels, and Hall

(1994). Some of these tests are discussed by Hall (1993).

9.6 Numerical Optimization

For nonlinear models, it is usually necessary to apply a numerical optimization method

to compute a GMM estimator by numerically minimizing the criterion function,

JT (b). The Newton-Raphson method (see, e.g., Hamilton, 1994, Chapter 5) is often

used with an approximation method to calculate the Hessian matrix. A problem with

the Newton-Raphson method and other practical numerical optimization methods is

that global optimization is not guaranteed. The GMM estimator is defined as a global

minimizer of a GMM criterion function, and the proof of its asymptotic properties

depends on this assumption. Therefore, the use of a local optimization method can

result in an estimator that is not necessarily consistent and asymptotically normal.

If the criterion function and parameter space are convex, then the criterion

function has a unique local minimum, which is also the global minimum. In this

case, a local optimization algorithm started at any parameter values should be able
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to reach an approximate global minimum.

For nonconvex problems, however, there can be many local minima. For such

problems, an algorithm called multi-start is often used for GMM applications. In this

algorithm, one starts a local optimization algorithm from initial values of the param-

eters to converge to a local minimum, and then one repeats the process a number of

times with different initial values. The estimator is taken to be the parameter values

that correspond to the smallest value of the criterion function obtained during the

multi-start process.

It should be noted that this multi-start algorithm is used for a given distance ma-

trix. When the two stage or iterative GMM estimators are used, a different distance

matrix is used in each stage, and hence a different criterion function is minimized.

In most GMM programs, one needs to save the distance matrix in a file in order to

apply the multi-start algorithm in each stage.

A problem with the multi-start algorithm, however, is that it does not neces-

sarily find the global optimum. Therefore, the estimator it delivers is not necessarily

consistent and asymptotically normal. Andrews (1997) proposes a simple stopping-

rule procedure that overcomes this difficulty.

9.7 The Optimal Choice of Instrumental Variables

In the NLIV model discussed in Section 9.2, there are infinitely many possible instru-

mental variables because any variable in It can be used as an instrument. Hansen

(1985) characterizes an efficiency bound (that is, a greatest lower bound) for the

asymptotic covariance matrices of the alternative GMM estimators and optimal in-

struments that attain the bound. Since it can be time consuming to obtain op-
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timal instruments, an econometrician may wish to compute an estimate of the ef-

ficiency bound to assess efficiency losses from using ad hoc instruments. Hansen

(1985) also provides a method for calculating this bound for models with condi-

tionally homoskedastic disturbance terms with an invertible MA representation.10

Hansen, Heaton, and Ogaki (1988) extend this method to models with condition-

ally heteroskedastic disturbances and models with an MA representation that is not

invertible.11 Hansen and Singleton (1996) calculate these bounds and optimal instru-

ments for a continuous time financial economic model.

9.8 Small Sample Properties

In most cases, the exact small sample properties cannot be derived for GMM esti-

mators. Monte Carlo simulations have been conducted to study them for various

nonlinear and linear models. Tauchen (1986) shows that GMM estimators and test

statistics have reasonable small sample properties for data produced by simulations

for a C-CAPM. Ferson and Foerster (1994) find similar results for a model of expected

returns of assets as long as GMM is iterated for estimation of Ω. Kocherlakota (1990)

uses preference parameter values of β = 1.139 and α = 13.7 (in Section 9.1) in his

simulations for a C- CAPM that is similar to the Tauchen’s (1986) model. While

these parameter values do not violate any theoretical restrictions for existence of an

equilibrium, they are much larger than the estimates of these preference parameters

by Hansen and Singleton (1982) and others. Kocherlakota (1990) shows that GMM

estimators for these parameters are biased downward and the chi-square test for the

10Hayashi and Sims’ (1983) estimator is applicable to this example.
11Heaton and Ogaki (1991) provide an algorithm to calculate efficiency bounds for a continuous

time financial economic model based on the Hansen, Heaton, and Ogaki’s (1988) method.
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overidentifying restrictions tends to reject the null too frequently compared with its

asymptotic size. Mao (1990) reports that the chi-square test overrejects for more

conventional values of these preference parameters in his Monte Carlo simulations.

Tauchen (1986) investigates small sample properties of Hansen’s (1985) optimal

instrumental variable GMM estimators. He finds that the optimal estimators do

not perform well in small samples as compared to GMM estimators with ad hoc

instruments. Tauchen (1986) and Kocherlakota (1990) recommend a small number

of instruments rather than a large number of instruments when ad hoc instruments

are used.

In some applications, scaling factors are another factor to affect finite sample

GMM estimates. For example, Ni (1997) demonstrates that finite sample estimates

are sensitive to scaling factors, and some seemingly reasonable scaling factors system-

atically lead to spurious estimates. However, Hansen, Heaton, and Yaron’s (1996)

continuous updating estimator is not affected by scaling factors.

Arellano and Bond (1991) report Monte Carlo results on GMM estimators for

dynamic panel data models. They report that the GMM estimators have substantially

smaller variances than commonly used Anderson and Hsiao’s (1981) estimators in

their Monte Carlo experiments. They also report that the small sample distributions

of the serial-correlation tests they study are well approximated by their asymptotic

distributions.

A very important small sample problem is weak identification, which we will

discuss in the next section.



9.9. WEAK IDENTIFICATION 201

9.9 Weak Identification

In many applications, the identification condition holds but is almost violated in the

sense that the values of the objective function evaluated at certain parameter values

other than the true values are very close to the minimized value. In such applications,

we have a weak problem. In the context of linear IV or NLIV estimation, this is called

the weak instrument variables problem.

Nelson and Startz (1990) perform Monte Carlo simulations to investigate small

sample properties of linear instrumental variables regressions. They show that in-

strumental variables estimators have poor sample properties when the instruments

are weakly correlated with explanatory variables. In particular, they find that the

chi-square test tends to reject the null too frequently compared with its asymptotic

distribution, and that t-ratios tend to be too large when the instrument is poor.

Their results for t-ratios may seem counterintuitive because one might expect that

the consequence of having a poor instrument would be a large standard error and a

low t-ratio. Staiger and Stock (1997) show that when the instruments are weakly cor-

related with the endogenous regressors, conventional asymptotic distribution theory

fails even if the sample size is large. These results may be expected to carry over to

NLIV estimation.

In the context of two stage least squares, Staiger and Stock (1997) suggest that

first stage F-statistics, which tests the hypothesis that the instruments do not enter

the first stage regression, should be reported at a minimum. Stock and Yogo (2005)

advocates a pre-test rule to only use two stage least squares t statistics when the first

stage F statistic exceeds ten. One strategy which continually changes the instruments

until the F-statistics is significant is criticized by Hall, Rudebusch, and Wilcox (1996)
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as it tends to make matters worse in the Monte Carlo simulations.

9.10 Identification Robust Methods

When GMM has a weak identification problem, the conventional GMM asymptotics

fails to provide reliable inferences. One solution is to use identification robust meth-

ods, which does not rely on the identification assumption. These methods can be

applied without using a pre-test rule such as Stock and Yogo’s (2005). If confidence

intervals or regions of parameters generated by identification robust methods are

large, that indicates the presence of the weak identification problem.

Let θ denote a p-dimensional vector of parameters to be estimated. Consider

the k dimensional vector of moment restrictions

(9.34) E(ft(θ)) = 0

for t = 1, · · · , T which is assumed to be uniquely satisfied at θ0. The objective

function for the CUE is:

(9.35) Q(θ) =

(
1√
T

T∑
t=1

ft(θ)

)′

V̂ff (θ)
−1

(
1√
T

T∑
t=1

ft(θ)

)
where V̂ff (θ) is a consistent estimator of the k × k covariance matrix Vff (θ) of the

moment vector.

In addition to the moment vector ft(θ), consider also its derivative with respect

to θ:

qt(θ) = vec

(
∂ft(θ)

∂θ′

)
and qT = 1

T

∑T
t=1 qt(θ).

We assume that in the large sample, ft(θ) and qt(θ) satisfy

1√
T

T∑
t=1

(
ft(θ)− E(ft(θ))
qt(θ)− E(qt(θ))

)
d→
(

ϕf (θ)
ϕθ(θ)

)
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where ( ϕf (θ)
′ ϕθ(θ)

′ )′ is a k(p+ 1) dimensional normally distributed random pro-

cess with mean zero and positive semi-definite k(p+1)×k(p+1) dimensional covari-

ance matrix

V (θ) = lim
T→∞

var

(
1√
T

∑T
t=1 ft(θ)

1√
T

∑T
t=1 qt(θ)

)
=

(
Vff (θ) Vfθ(θ)
Vθf (θ) Vθθ(θ)

)
,

with Vθf (θ) = Vfθ(θ)
′ = (Vθf,1(θ)

′ · · ·Vθf,p(θ)
′)′, Vθθ(θ) = Vθθ,ij(θ), i, j = 1, · · · , p and

Vff (θ), Vθf,i(θ), Vθθ,ij(θ) are k × k dimensional matrices for i, j = 1, · · · , p.

The derivative estimator qT (θ) is correlated with the average moment vector

fT (θ) since Vθf (θ) ̸= 0. The weak instrument robust statistics therefore use an alter-

native estimator of the derivative of the unconditional expectation of the Jacobian

that is asymptotically uncorrelated with fT (θ):

D̂T (θ0) = [q1,T (θ0)− V̂θf,1(θ0)V̂ff (θ0)
−1fT (θ0) · · ·

qp,T (θ0)− V̂θf,p(θ0)V̂ff (θ0)
−1fT (θ0)],

where V̂θf,i(θ) are kf × kf estimators of the covariance matrices Vθf,i(θ), i = 1, · · · , p,

V̂θf (θ) = (V̂θf,1(θ)
′ · · · V̂θf,p(θ)

′)′ and qT (θ0) = (1′1,T (θ0) · · · q
′
p,T (θ0))

′.

The weak instrument robust statistics can be used for hypothesis testing on

both subsets and the entire vector of the parameters. Let θ = (α′ : β′)′, with α and

β being pα and pβ dimensional vectors, respectively, such that pα + pβ = p. For tests

on the entire set of parameters, consider β = θ. Below, we introduce four statistics

that test the hypothesis H0 : β = β0.

• The S-statistic of Stock and Wright (2000):

S(β0) = Q(α̃(β0), β0),
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where α̃(β0) is the CUE of α given that β = β0. This is the CUE objective

function (16.64).

• The score or Lagrange Multiplier statistic:

LM(β0) = fT (α̃(β0), β0)
′V̂ff (α̃(β0), β0)

− 1
2P

V̂ff (α̃(β0).β0)
− 1

2 D̂T (α̃(β0),β0)
V̂ff (α̃(β0), β0)

− 1
2fT (α̃(β0), β0)

where PA ≡ A(A′A)−1A′ for a full rank matrix A. This can be considered as

the inverse of the conditional information matrix (Kleibergen, 2007).

• The over-identification statistic:

SL(β0) = S(β0)− LM(β0)

• The conditional likelihood ratio statistic:

CLR(β0) =
1

2

[
S(β0)− rk(β0) +

√
{S(β0) + rk(β0)}2 − 4SL(β0)rk(β0)

]
where rk(β0) is a statistic that tests for a lower rank value of J(α̃(β0), β0) and is a

function of D̂T (α̃(β0), β0) and V̂θθ.f (α̃(β0), β0) = V̂θθ(α̃(β0), β0)−V̂θf (α̃(β0), β0)V̂ff (α̃(β0), β0)
−1V̂fθ(α̃(β0), β0):

rk(β0) = min
ϕ∈Rp−1

T ( 1 ϕ )D̂T (α̃(β0), β0)
′
[
W ′V̂θθ.f (α̃(β0), β0)W

]−1

D̂T (α̃(β0), β0)( 1 ϕ )′

where W = ( Ipα ϕ′ )′ ⊗ Ik. The CLR statistic is a GMM extension of the

conditional likelihood ratio statistic of Moreira (2003) for the linear instrumental

variables regression model with one included endogenous variable.

Confidence sets for the parameter(s) β are obtained by inverting each of the

identification-robust statistics (Zivot, Startz, and Nelson, 1998). The (1 − α)100%

confidence bounds coincide with the intersection of the 1-α value of the test statistic

with the (1 − α) line. A (1 − α)100% level confidence set thus constructed contains
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all the values of β0 for which the corresponding test of the hypothesis H0 : β = β0

does not reject H0 at the α% level of significance. When testing for more than one

parameter jointly, these are the 1− α contours of the graph of the function 1− p(θ)

where p(θ) is the p-value of a test of a joint null hypothesis on a vector of parameters θ.

Projection based confidence sets for an element of θ can be obtained from these joint

confidence sets by projecting the widest range of the contours to the corresponding

axis.

Kleibergen and Mavroeidis (2009) use the four test statistics to conduct infer-

ence on the parameters of the New Keynesian Phillips Curve (NKPC). They find evi-

dence that forward-looking dynamics in inflation are statistically significant and domi-

nate backward-looking dynamics. However, the confidence intervals for the backward-

looking dynamics are too wide to draw any conclusion on its significance. Moreover,

even though the slope of the NKPC is estimated to be positive, it is not significantly

different from zero in any of the tests. These results confirm those of several authors

who have reported empirical evidence that the NKPC is relatively flat and that its

GMM estimation suffers from the weak identification problem (Mavroeidis, 2005; Na-

son and Smith, 2008). Kleibergen and Mavroeidis (2009) also find that, overall, the

LR statistic is at least as powerful as other tests in the Monte Carlo simulations, and

that it also yields the smallest confidence sets in their empirical applications.

Appendix

9.A Asymptotic Theory for GMM

This Appendix reviews proofs for the asymptotic properties of GMM.
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9.A.1 Asymptotic Properties of Extremum Estimators

Many estimators are formed by minimizing or maximizing objective functions. These

estimators are called extremum estimators, or optimization estimators. A GMM

estimator is a special case of an extremum estimator. In this section, we prove

the consistency of extremum estimators. The next section applies the results to

GMM. Given (S,F, P r), let x be a m-vector of random variables, b be a p-vector of

parameters, and JT (x,b) be a sequence of real valued functions. We will often denote

JT (x,b) by JT (b). For GMM, x will be taken as x = (x′
1,x

′
2, · · ·x′

T )
′, so that m is T

times the dimension of xt. Thus, we allow m to be a function of T . The parameter

b is a member of a set B ⊂ Rp, and B is called the parameter space.

An important condition for the consistency of extremum estimators relies on

the concept of almost sure uniform convergence. Consider a sequence of functions

gT : Rr × B 7−→ Rq, such that gT : (·,b) is measurable for each b in B and f(z,b)

is continuous on B for each z in Rr. Then gT converges to a nonstochastic function

g0(b) almost surely uniformly in b ∈ B if there exists F ∈ F with Pr(F ) = 1, such

that given any ϵ > 0, for each s in F there exists an integer T (s, ϵ) such that for all

T > T (s, ϵ), supB|gT (x(s),b) − g0(b)| < ϵ. Here | · | denotes the Euclidean norm.

In this section, we will require that the sequence of real-valued functions JT (x,b)

converges to a nonstochastic function J0(b) almost surely uniformly in b ∈ B. In the

next section, we will require a sequence of vector-valued functions converges almost

surely uniformly.

Consider the following set of assumptions:

Assumption 9.A.1 The parameter space B is a compact set in Rp.
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Assumption 9.A.2 JT (x,b) is continuous in b ∈ B for all x and is a measurable

function of x for all b ∈ B.

Assumption 9.A.3 JT (x,b) converges to a nonstochastic function J0(b) almost

surely uniformly in b ∈ B.

Assumption 9.A.4 J0(b) attains a unique global minimum at b0.

Since B is a subset in Rk, Assumption 9.A.1 is equivalent to assuming that B

is closed and bounded. Define an extreme estimator, bT , as a value that satisfies

JT (bT ) = min
b∈B

JT (b).

A complication is that the minimizer may not be unique, and it is not easy to prove

that bT can be chosen in such a way that bT (x) is measurable. Different solutions

to this problem are possible. Here, we have adopted a set of assumptions that are

stronger than the assumptions in Theorem 4.1.1 of Amemiya (1985) for the weak

consistency of extremum estimators. Amemiya (1985) states that if bT is not unique,

it is possible to choose a value in such a way that bT (x) is a measurable function of

x. Assuming that bT (x) is chosen this way, we can prove the strong consistency of

extremum estimators.

Theorem 9.A.1 (Strong consistency of extremum estimators) If Assumptions 9.A.1

- 9.A.4 are satisfied, then bT converges almost surely to b0.

Proof Given any ϵ > 0, let η(ϵ) an open ball with the center b0 and the radius ϵ. If η(ϵ)c ∩ B is
empty for all ϵ, the result is trivial. Suppose that η(ϵ)c ∩B is nonempty. Since η(ϵ)c ∩B is compact
and J0(b) is continuous under our assumptions, minb∈η(ϵ)c∩B J0(b) exits. Denote

δ(ϵ) = min
b∈η(ϵ)c∩B

J0(b)− J0(b0).

Since JT (x,b) converges almost surely uniformly to J0(b), there exists F ∈ F, P r(F ) = 1

such that for each s in F and all T > T (s, δ(ϵ)), |JT (b) − J0(b)| < δ(ϵ)
2 . For b = bT , we have
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|JT (bT )−J0(bT )| < δ(ϵ)
2 , and hence J0(bT ) < JT (bT )+

δ(ϵ)
2 . For b = b0, we have |JT (b0)−J0(b0)| <

δ(ϵ)
2 or JT (b0) < J0(b0)+

δ(ϵ)
2 . Since bT minimizes JT (b) on B, JT (bT ) < J0(b0)+

δ(ϵ)
2 . Therefore,

J0(bT ) < J0(b0) + δ(ϵ) for each s in F and all T > T (s, δ(ϵ)). It follows that bT ∈ η(ϵ) for each s
in F and all T > T (s, δ(ϵ)). Since ϵ is arbitrary and Pr(F ) = 1, it follows that bT converges to b0

almost surely.

9.A.2 Consistency of GMM Estimators

In this section, we apply Theorem 9.A.1 to GMM estimators. We construct the

objective function JT (x,b) from a stationary ergodic stochastic process xt and a

function f : Rr×B 7−→ Rq where q is greater than or equal to p. We will often denote

f(xt,b) by ft(b) or f(b). We retain Assumption 9.A.1, and impose conditions on xt

and f to ensure Assumptions 9.A.2 - 9.A.4 are satisfied.

Assumption 9.A.5 {xt : t ≥ 1} is an r-vector stationary and ergodic process.

Assumption 9.A.6 f(·,b) is measurable for each b in B and f(z,b) is continuous

on B for each z in Rr.

Assumption 9.A.7 E(|f(x1,b)|) exists and is finite for all b ∈ B and E(f(x1,b0)) =

0.

Since xt is stationary and ergodic, f(xt,b) is also stationary and ergodic for each b.

Therefore, Assumption 9.A.7 can be stated with any xt instead of x1.

Consider the following set of assumptions:

Assumption 9.A.8 1
T

∑T
t=1 f(xt,b) converges almost surely uniformly to E(f(b))

in B.

Since f(xt,b) is stationary and ergodic with finite first moments for each b, 1
T

∑T
t=1 f(xt,b)

converges almost surely to E(f(b)) for each b in B. Assumption 9.A.8 assumes that
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this convergence is uniform. A sufficient condition for this assumption will be given

in the next section.

Assumption 9.A.9 E(f(b)) has a unique zero value at b0.

Assumption 9.A.10 The sequence of random positive semidefinite matrices {WT :

T ≥ 1} converges almost surely to a nonstochastic positive definite matrix W0.

Let x = (x′
1,x

′
2, · · · ,x′

T )
′, JT (x,b) = { 1

T

∑T
t=1 f(xt,b)}′WT{ 1

T

∑T
t=1 f(xt,b)}, and

J0(b) = E(f(x1))
′W0E(f(x1)). Define a GMM, bT , as a value that satisfies

JT (bT ) = min
b∈B

JT (b).

As in Section 9.A.1, it is understood that if bT is not unique, we appropriately choose

a value in such a way that bT (x) is a measurable function of x.

Theorem 9.A.2 (Strong consistency of GMM estimators) If Assumption 9.A.1, 9.A.5

- 9.A.10 are satisfied, bT converges almost surely to b0.

It is easy to verify that Assumptions 9.A.5 - 9.A.10 imply Assumptions 9.A.2 - 9.A.4.

Therefore, Theorem 9.A.1 implies Theorem 9.A.2.

9.A.3 A Sufficient Condition for the Almost Sure Uniform
Convergence

We directly assumed the uniform convergence in Assumption 9.A.8. It is very difficult

to confirm that this assumption is satisfied in most econometric models. Hence, it

is important to investigate sufficient conditions for Assumption 9.A.8 Hansen (1982)

provides an important sufficient condition based on a concept called the first mo-

ment continuity of f . This section proves that the first moment continuity implies

Assumption 9.A.8.
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The following notation is used for our continuity restriction:

Modf (δ,b) = sup{|f(b)− f(b∗)| : b∗ ∈ B and |b− b∗| < δ}.(9.A.1)

where | · | denotes the Euclidean norm. Since B is separable, a dense sequence {bj :

j ≥ 1} can be used in place of B in evaluating the supremum. In this case, Modf (δ,b)

is a random variable for each positive value of δ and each b in B. Also, Modf (δ,b) ≥

Modf (δ
∗,b) if δ is greater than δ∗. Since f(·,b) is continuous,

lim
δ→0

Modf (δ,b) = 0 for all s ∈ S and all b ∈ B.(9.A.2)

A function f is first-moment continuous if for each b ∈ B,

lim
δ→0

E[Modf (δ,b)] = 0.(9.A.3)

A necessary and sufficient condition for f to be first-moment continuous is that for

each b ∈ B, there exists δ > 0 such that

E[Modf (δ,b)] < ∞.

It is trivial to see that this condition is necessary. This condition is sufficient because

Modf (δ, p) is decreasing in δ: the Dominated Convergence Theorem and (9.A.2) imply

the first-moment continuity of f .

Assumption 9.A.8′ f is first-moment continuous.

Proposition 9.A.1 Under Assumptions 9.A.1, 9.A.5 - 9.A.7, Assumption 9.A.8′ im-

plies that Assumption 9.A.8 is satisfied. Therefore, Assumption 9.A.8 for Theorem

9.A.2 can be replaced by Assumption 9.A.8′.
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The proof of this proposition given here is a modified version of the proof of

a closely related theorem in Hansen, Heaton, and Ogaki (1992). The proof is long

and technical but is presented here for the econometric theory-oriented readers. We

prepare for the proof by proving three lemmas. To prove this proposition, we use (i)

pointwise continuity of E(f), (ii) a pointwise Law of Large Numbers for 1
T

∑
ft(b)

for each b in B, and (iii) a pointwise Law of Large Numbers for 1
T

∑
t Modf (δ,b)

for each b in B and positive δ. As will be established in Lemma 9.A.1, (i) yields an

approximation of the form:

Approximation 9.A.1 There is positive-valued function δ∗(b, j) satisfying

|E[f(b∗)]− E[f(b)]| < 1

j
(9.A.4)

for all b∗ ∈ B such that |b− b∗| < δ∗(b, j).

As will be demonstrated in Lemma 9.A.2, (ii) provides an approximation of the form:

Approximation 9.A.2 There is an integer-valued function T ∗(s,b, j) and an in-

dexed set Λ∗(b) ∈ F such that Pr{Λ∗(b)} = 1 and

| 1
T

T∑
t=1

[ft(s,b)]− E[f(b)]| < 1

j
(9.A.5)

for all T ≥ T ∗(s,b, j), and s ∈ Λ∗(b).

As will be shown in Lemma 9.A.3, (iii) yields an approximation of the form:

Approximation 9.A.3 There exists an integer-valued function T+(s,b, j), a pos-

itive function δ+(b, j), and an indexed set Λ+(b) ∈ F such that Pr{Λ+(b)} = 1

and

| 1
T
[f(b)− f(b∗)]| < 1

j
(9.A.6)

for all b∗ ∈ B such that |b− b∗| < δ+(b, j), T ≥ T+(s,b, j), and s ∈ Λ+(b).
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Although the statements of these approximations require some cumbersome notation,

we use this notation to monitor when sets and numbers depend on the underlying

parameter values and approximation criteria (b and j). We will prove this theorem

by showing that the assumption of a compact parameter space can be used to obtain

an approximation that is uniform over the parameter space.

We now consider formally these inequalities. Lemma 9.A.1 establishes the con-

tinuity of E(f).

Lemma 9.A.1 If Assumptions 9.A.1, 9.A.6, 9.A.7, 9.A.8′ are satisfied, then so is

inequality (9.A.4).

Proof Since f is first-moment continuous, there is a function δ∗(b, j) such that

E[Modf [δ
∗(b, j),b]] <

1

j
.(9.A.7)

Note, however, that

|Ef(b∗)− Ef(b)| ≤ E|f(b∗)− f(b)|(9.A.8)

≤ E{Modf [δ
∗(b, j),b]}

<
1

j

for all b∗ ∈ B such that |b− b∗| < δ∗(b, j).

For each element b in B, f(b) is a random variable with a finite absolute first

moment. Thus the Law of Large Numbers applies pointwise as stated in the following

lemma.

Lemma 9.A.2 If Assumptions 9.A.1, 9.A.6, and 9.A.7 are satisfied, then so is in-

equality (9.A.5).

Proof Since xt is stationary and ergodic, { 1
T

∑T
t=1[f(b)] : T ≥ 1} converges to E[f(b)] on a set

Λ∗(b) ∈ F satisfying Pr{Λ∗(b)} = 1.
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The Law of Large Numbers also applies to time series averages of Modf (δ,b).

Since the mean of Modf (δ,b) can be made arbitrarily small by choosing δ to be small,

we can control the local variation of time series averages of the random function f .

Lemma 9.A.3 If Assumptions 9.A.1, 9.A.5, 9.A.6, and 9.A.8′ are satisfied, then so

is inequality (9.A.5).

Proof Since f is first-moment continuous, Modf (
1
n ,b) has a finite first moment for some posi-

tive integer n. Since xt is stationary and ergodic, { 1
T

∑T
t=1[Modf (

1
j ,b)] : T ≥ 1} converges to

E[Modf (
1
j ,b)] on a set Λ+(b, j) satisfying Pr{Λ+(b, j)} = 1 for j ≥ n. Let

Λ+(b) =
∩
j≥n

Λ+(b, j).

Then Λ+(b) is measurable and Pr{Λ+(b)} = 1.
For each j, choose 1

δ+(b,j) to equal some integer greater than or equal to n such that

E{Modf [δ
+(b, j),b]} <

1

2j
.(9.A.9)

Since { 1
T

∑T
t=1{Modf [δ

+(b, j),b]} : T ≥ 1} converges almost surely to E{Modf [δ
+(b, j),b]} on

Λ+(b), there exists an integer-valued function T+(s,b, j) such that

| 1
T

T∑
t=1

{Modf [δ
+(b, j),b]} − E{Modf [δ

+(b, j),b]}| < 1

2j
(9.A.10)

for T ≥ T+(s,b, j). Therefore, 1
T

∑T
t=1{Modf [δ

+(b, j),b]} < 1
j . Since 1

T |
∑T

t=1[ft(b) − ft(b
∗)]| ≤

1
T

∑T
t=1{Modf [δ

+(b, j),b]},

1

T
|

T∑
t=1

[ft(b)− ft(b
∗)]| < 1

j
(9.A.11)

for all b∗ ∈ B such that |b− b∗| < δ+(b, j), T ≥ T+(s,b, j), s ∈ Λ+(b), and j ≥ 1.

We now combine the conclusions from Lemmas 9.A.1 - 9.A.3 to prove Proposi-

tion 9.A.1. The idea is to exploit that fact that B is compact to move from pointwise

to uniform convergence. Notice that in inequalities (9.A.4) - (9.A.6), Λ+,Λ∗, T+ and

T ∗ all depend on b. In the following proof, we will use compactness to show how the

dependence on the parameter value can be eliminated.
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Proof of Proposition 9.A.1 In the proof of this proposition, we use notation given in (9.A.4) -
(9.A.6). Let

O(b, n) = {b∗ ∈ B : |b− b∗| < min{δ∗(b, n), δ+(b, n)}}.(9.A.12)

Then for each n ≥ 1,

B =
∪
b∈B

O(b, n).(9.A.13)

Since B is compact

B =

N(n)∪
J≥1

O(bj , n),(9.A.14)

where N(n) is integer-valued and {bj : j ≥ 1} is a sequence in B. Let

Λ ≡
∩
j≥1

[Λ∗(bj) ∩Λ+(bj)].(9.A.15)

Then Λ ∈ B and Pr(Λ) = 1. Let

T (s, n) ≡ max{T ∗(s,b1, n), T
∗(s,b2, n), · · · , T ∗[s,bN(n), n],(9.A.16)

T+(s,b1, n), T
+(s,b2, n), · · · , T+[s,bN(n), n]}.

For T ≥ T (s, n), inequalities (9.A.4)-(9.A.6) imply that

| 1
T

T∑
t=1

[ft(b)]− E[f(b)]|(9.A.17)

≤ 1

T
|

T∑
t=1

[ft(bj)]−
T∑

t=1

[f(bj)]|+ | 1
T

T∑
t=1

[ft(bj)]− E[f(bj)]|+ |E[f(bj)]− E[f(b)]|

<
3

n
,

where bj is chosen so that b ∈ O(bj , n) for some 1 ≤ j ≤ N(n). Therefore, 1
T

∑T
t=1 ft converges

almost surely uniformly to E(f).

9.A.4 Asymptotic Distributions of GMM Estimators

This section proves the asymptotic normality of GMM estimators and then discusses

the optimal GMM estimators. It is possible to utilize the asymptotic normality

results for general extremum estimators such as Amemiya’s (1985) Theorem 4.1.3

here. However, unlike with the consistency results, it is more convenient to exploit

the particular structure of the GMM objective function for this proof.

Consider the following set of assumptions:
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Assumption 9.A.11 {bT : T ≥ 1} converges almost surely to b0.

Assumption 9.A.12 b0 ∈ Bo ⊂ B ⊂ Rp.

Assumption 9.A.13 f(·,b) is continuously differentiable with respect to b on Bo

and the derivative Df(·,b) has finite first moments and is first moment continuous

on Bo.

Assumption 9.A.14 {WT : T ≥ 1} converges almost surely to a nonsingular matrix

W0 of real numbers.

Assumption 9.A.15 {xt : t ≥ 1} is stationary and ergodic.

Assumption 9.A.16 1√
T

∑T
t=1 ft(b0)

D→ N(0,Ω), whereΩ =
∑∞

j=−∞E(ft(xt,b0)ft−j(xt,b0)
′).

Assumption 9.A.17 E(Df(xt,b0)) has rank p.

We denote E(Df(x1,b0)) by Γ and 1
T

∑T
t=1Df(xt,bT ) by ΓT .

Theorem 9.A.3 (Asymptotic normality of GMM estimators) If Assumptions 9.A.11

- 9.A.17 are satisfied, then

√
T (bT − b0)

D→ N(0, (Γ′W0Γ)
−1Γ′W0ΩW0Γ(Γ

′W0Γ)
−1).

Proof Assumptions 9.A.11 and 9.A.12 imply there exists F ∈ F, Pr(F ) = 1 such that for any s in
F there exists an integer T (s) such that bT ∈ Bo for all T ≥ T (s). Going forward, we assume that
bT ∈ Bo. The first order condition for the minimization of the objective function is

Γ′
TWT {

1

T

T∑
t=1

f(xt,bT )} = 0.(9.A.18)

Given xt, applying the Mean Value Theorem to each row of 1
T

∑T
t=1 f(xt,bT ), we obtain

1

T

T∑
t=1

f(xt,bT ) =
1

T

T∑
t=1

f(xt,b0) + Γ∗
T (bT − b0),(9.A.19)
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where Γ∗
T is formed by evaluating each row of 1

T

∑T
t=1 Df(xt,b) at an intermediate vector between

bT and b0. Assumptions 9.A.11 - 9.A.13, and 9.A.15 imply that Γ∗
T converges almost surely to Γ.

Combining (9.A.18) and (9.A.19), we obtain

Γ′
TWTΓ

∗
T (bT − b0) = −Γ′

TWT {
1

T

T∑
t=1

f(xt,b0)}.(9.A.20)

Γ′
TWTΓ

∗
T converges almost surely to Γ′W0Γ, which is nonsingular. Hence, for sufficiently large T ,

Γ′
TWTΓ

∗
T is nonsingular with probability one. When Γ′

TWTΓ
∗
T is nonsingular

√
T (bT − b0) = −(Γ′

TWTΓ
∗
T )

−1Γ′
TWT {

1√
T

T∑
t=1

f(xt,b0)}.(9.A.21)

Since (Γ′
TWTΓ

∗
T )

−1Γ′
TWT converges almost surely to (Γ′W0Γ)

−1Γ′W0, Assumption 9.A.16 im-
plies the conclusion.

We use the following two propositions to prove that the GMM estimator with

W0 = Ω−1 is the optimal GMM estimator when Ω is nonsingular.

Proposition 9.A.2 Let A be a q× p matrix of rank p, then M = Iq −A(A′A)−1A′

is idempotent with rank q − p.

Proposition 9.A.3 Let A and C be symmetric nonsingular matrices of the same

size. Then A ≥ C ≥ 0 implies A−1 ≤ C−1.

Note that Proposition 9.A.2 implies that M is positive semidefinite.

Assumption 9.A.18 Ω is nonsingular.

Let Cov(W0) = (Γ′W0Γ)
−1Γ′W0ΩW0Γ(Γ

′W0Γ)
−1. Cov(W0) is the covariance

matrix of the GMM estimator associated with W0. In particular, Cov(Ω−1) =

(Γ′Ω−1Γ)−1.

Theorem 9.A.4 (Optimal GMM Estimators) Suppose that Assumptions 9.A.11 -

9.A.18 are satisfied. Then Cov(Ω−1) ≤ Cov(W0) for any p × p positive definite

matrix W0.
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Proof SinceΩ−1 is positive definite, there exists a nonsingular p×pmatrixΛ such thatΩ−1 = Λ′Λ.
Then Ω = Λ−1(Λ′)−1. Let A1 = ΛΓ and A2 = Λ′−1W0Γ. Since I −A2(A

′
2A2)

−1A′
2 is positive

semidefinite by Proposition 9.A.2, we have

A′
1A1 ≥ A′

1A2(A
′
2A2)

−1A′
2A1.(9.A.22)

From Proposition 9.A.3, we obtain

(A′
1A1)

−1 ≤ (A′
1A2)

−1A′
2A2(A

′
2A1)

−1.(9.A.23)

Since Cov(Ω−1) = (Γ′Ω−1Γ)−1 = (A′
1A1)

−1 and Cov(W0) = (A′
1A2)

−1A′
2A2(A

′
2A1)

−1, the
conclusion follows from this inequality.

The next theorem gives the asymptotic distribution of Hansen’s J test statistic

for the overidentifying restrictions.

Theorem 9.A.5 (Hansen’s J test) Suppose that Assumptions 9.A.11 - 9.A.18 are

satisfied and that W0 = Ω−1. Then TJT converges in distribution to a chi-square

random variable with q − p degrees of freedom.

Proof From (9.A.19), and Theorem 9.A.2,

1√
T

T∑
t=1

f(xt,bT )
D→ N(0,V)(9.A.24)

where V = [Iq −Γ(Γ′Ω−1Γ)−1Γ′]Ω[I− (Γ′Ω−1Γ)−1Γ′]. As in the proof of Theorem 9.A.4, let Λ be
a nonsingular p× p matrix such that Ω−1 = Λ′Λ. Then Ω = Λ−1(Λ′)−1, and

1√
T
Λ

T∑
t=1

f(xt,bT )
D→ N(0,M)(9.A.25)

where M = Λ[Ω − Γ(Γ′Ω−1Γ)−1Γ′]Λ′ = I − ΛΓ(Γ′Ω−1Γ)−1Γ′Λ′] is a symmetric, idempotent
matrix. The trace of M is q − p because tr(M) = tr(Iq) − tr{ΛΓ(Γ′Ω−1Γ)−1 Γ′Λ′} = tr(Iq) −
tr{Γ′Λ′ΛΓ(Γ′Ω−1Γ)−1} = tr(Iq) − tr(Ip) = q − p. Therefore, there exists a matrix F such that
F′F = FF′ = I, and

M = F

[
Iq−p 0
0 0

]
F′.(9.A.26)

Hence, if y ∼ N(0,M), then y′y = y′FF′y ∼ χ2(q−p). Since y′y is a continuous function mapping
Rq into R,

{ 1√
T

T∑
t=1

f(xt,bT )
′}Ω−1

T { 1√
T

T∑
t=1

f(xt,bT )}
D→ χ2(q − p)(9.A.27)

where ΩT is a weakly consistent estimator for Ω.
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9.B The Conditional Likelihood Ratio Statistic

The conditional likelihood ratio (CLR) statistic can be used for an identification

robust method to solve weak identification problems as explained in the text. The

CLR statistic was proposed by Moreira (2003) for the linear IV regression models and

later extended to GMM by Kleibergen (2005).

Kleibergen (2005) proposes a GMM Lagrange multiplier statistic (the K statis-

tic) whose asymptotic χ2 distribution holds in a wider set of circumstances such as the

presence of weak identification problem. The K statistic replaces the sample average

of the derivatives of the moments in the Newey and West’s (1987) GMM LM statis-

tic with a Jacobian estimator based on the continuous updating estimator (CUE) of

Hansen, Heaton, and Yaron (1996). The CUE, θ̂, is obtained by minimizing the objec-

tive function, Q(θ), and continuously altering the covariance matrix as θ̂ is changed in

the minimization. Because of the correlation between the Jacobian estimator and the

average moment vector, the limiting behavior of the Newey-West GMM LM statistic

depends on nuisance parameters when, for example, the expected Jacobian is zero.

The Jacobian estimator based on the CUE in the K statistic avoids this problem for

it is asymptotically uncorrelated with the average moment vector (Brown and Newey,

1998; Donald and Newey, 2000). Give the dataset Y = [Y1 . . . YT ]
′, the K statistic for

testing H0 : θ = θ0 is

K(θ0) =
1

4T

(
∂Q(θ)

∂θ′

∣∣∣∣θ0)[D̂T (θ0, Y )′V̂ff (θ0)
−1D̂T (θ0, Y )

]−1
(
∂Q(θ)

∂θ′

∣∣∣∣θ0)′

where D̂T (θ0, Y ) is the CUE Jacobian estimator, and V̂ff the positive definite covari-

ance matrix of the vector function fT (θ, Y ), and has a χ2(m) limiting distribution
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under H0 and necessary assumptions.

By construction, the K statistic is equal to zero around the values of θ for which

the objective function attains its minimum, maximum, or is at an inflection point.

While the moment conditions are satisfied for the values of θ where the objective

function is minimal and the CUE is obtained, they are not satisfied at the maximal

value and inflection points, and thus the K statistic suffers from a spurious decline

in power for such values of θ. In order to appropriately account for this spurious

behavior of the K statistic, Kleibergen suggests applying a GMM extension of Mor-

eira’s (2003) conditional likelihood ratio statistic for linear instrumental variables

regressions (Kleibergen, 2004). The K statistic is combined with a J statistic,

J(θ0) =
1

T
fT (θ0, Y )′V̂ff (θ0)

−1/2MV̂ff (θ0)−1/2D̂T (θ0,Y )V̂ff (θ0)
−1/2fT (θ0, Y )

which tests the validity of the moment equations and is asymptotically independent of

the K statistic.12 For these values of θ where the objective function is at its maxima

or a reflection point, the J statistic has discriminatory power because it tests the

validity of the moment equations, Hm : E(ft(θ0)) = 0, while the K statistic tests

H0 : θ = θ0 given that the moment equations hold (Kleibergen, 2004).

The resulting test statistic (the GMM-M statistic) which accounts for the spu-

rious power decline is

GMM-M(θ0) =
1

2

{
K(θ0) + J(θ0)− rk(θ0) +

√
[K(θ0) + J(θ0) + rk(θ0)]2 − 4J(θ0)rk(θ0)

}
where rk(θ0) is a statistic for testing the hypothesis of a lower rank value of Jθ(θ0),

Hr : rank(Jθ(θ0)) = m− 1 as in Cragg and Donald (1996), Cragg and Donald (1997),

Kleibergen and Paap (2006), and Robin and Smith (2000). The GMM-M(θ0) leads

12MA = IT − PA where PA = A(A′A)−1A′ for a full rank matrix A.
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to inference that is centered around θ̂ when GMM-M(θ̂) = 0. This occurs when rk(θ̂)

exceeds J(θ̂) which puts a condition on the rank statistic rk(θ0) to be used in the

GMM-M statistic.

A confidence set for θ can be obtained by specifying sequences of n increasing

values for every element of θ and creating an m-dimensional grid that contains nm

different values of θ0. The statistic of interest (i.e., the J, K, or GMM-M statistic)

can then be computed for each of these nm different values of θ0. All elements in the

specified grid for which the asymptotic p-value of the statistic of interest exceeds α

are in the (1− α)100% asymptotic confidence set.

9.C A Procedure for Hansen’s J Test (GMM.EXP)

Hansen’s J test proceeds as follows:

(i) Check whether the number of moment restrictions is greater than that of the es-

timated parameters (the corresponding condition in the program is NMR > KGM).

(ii) Choose an appropriate method to estimate the long-run covariance matrix, ΩT .

See chapter 6 for details (the corresponding variable to specify the method is

CALWFLAG).

(iii) Set the maximum number of iterations to estimate the optimal weighting matrix,

WT = Ω−1
T (the default is MAXITEGM =5).

(iv) Define the objective function (the corresponding part in the program to define

the GMM disturbance is the HU procedure.)

(v) If the test statistic value (CHI in the output) is greater than the critical value for
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the significance level you have in mind, say 5%, then reject the null hypothesis

that the over-identification restrictions are satisfied.

Exercises

The following problems are on econometric theory and require materials in Appendix

9.A.

9.1 (The Minimum Distance Estimation) Assume that the following set of assump-

tions is satisfied.

(A1) pT converges almost surely to a k-dimensional vector p0 of real numbers.

(A2)
√
T (pT −p0) converges in distribution to a normally distributed random vector

with mean zero and a nonsingular covariance matrix Σ.

(A3) ΣT converges almost surely to Σ.

(A4) p0 = ϕ(q0) where ϕ is a continuously differentiable function that maps Q ⊂ Rh

into Rk. The parameter space Q is assumed to be compact. Let Dϕ(q) be the

k×h matrix of the derivative of ϕ, then D0 = Dϕ(q0) is assumed to be of rank

h.

(A5) p0 ̸= ϕ(q) for all q in Q except for q = q0.

Consider estimating q0 by minimizing

JT (q) = {[ϕ(q)− pT ]}′WT{[ϕ(q)− pT ]}(9.E.1)

over Q, whereWT is a positive semidefinite k×k random matrix that converges almost

surely to a positive definite matrix of real numbers W. Let qT be the minimizer. The
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estimator qT is called the minimum distance estimator. Suppose that the sequence

of minimizers converges almost surely to q0.

(a) Prove that qT is strongly consistent for q0 by applying Theorem 9.A.1 attached

at the end. Hint: (i) You do not need the first moment continuity to prove

the almost sure uniform convergence. (ii) Define a norm for a matrix w by

|w| = |vec(w)|. Then |wz| ≤ |w||z| for two conformable matrices w and z.

(b) Derive the asymptotic distribution of the estimators as a function of W.

(c) Derive the greatest lower bound for the asymptotic covariance matrices of mem-

bers of this family of estimators, using Propositions 9.A.2 and 9.A.3 attached

at the end. What is the optimal W?

(d) Let qT be the minimum distance estimator associated with the optimum dis-

tance matrix W in B. Show that the minimized value of TJT (qT ) converges in

distribution to a χ2 random variable. What is the degree of freedom of this χ2

test statistic?

(e) Consider the model

yt = x′
tp0 + ϵt,(9.E.2)

where yt, xt are a stationary and ergodic random variable and a 2-dimensional

random vector with finite second moments, respectively. Suppose that E(xtϵt) =

0, and 1√
T

∑T
t=1 xtϵt converges in distribution to N(0,Ω). Suppose that eco-

nomic theory imposes the restriction p02 = (p01)
3, where p0i is the i-th element

of p0. Discuss how you estimate this model, imposing the restriction using the

minimum distance procedure you studied in the earlier parts of this problem,
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assuming that you get the initial estimator, pT , by unconstrained OLS. In par-

ticular, discuss how do you obtain an estimator for Σ, ΣT , and how you attain

the bound you derived.

(f) Derive the asymptotic variance of your efficient minimum distance estimator

you studied in (e) in terms of Ω and p01.

9.2 In the case of a just identified system (q = p), show that the instrumental

variable regression estimator (
∑T

t=1 ztx
′
2t)

−1
∑T

t=1 ztyt coincides with the GMM esti-

mator.

9.3 All files needed for this problem are in the GMM-CCR package. You need to

use GMM and KPRGMM. Modify INDIVIS.G program (you will need to make minor

modifications to the bgm, nw, the nf, fc, fx, fe in PROC INDIVIS, mm in PROC

MOMETNTS, dm in PROC DATAMOM, and PROC HU procedures) as follows:

Use ft = it only.

Estimate only 9 parameters (θ, Aa, ρa, σa, Ay, log γ, δ, α, and σi).

(a) Compute GMM estimates and standard errors of the above nine parameters.

(b) Compute the model moment of investment (σi) with its standard errors, and

the data moment of investment (σi) with its standard errors

(c) Report the Wald test statistics and p-value to compare these two numbers.
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