
Chapter 10

EMPIRICAL APPLICATIONS
OF GMM

GMM estimation has been frequently applied to rational expectations models. This

chapter discusses examples of these applications. The main purpose is not to provide

a survey of the literature but to illustrate applications. Problems that researchers

have encountered in applying GMM are discussed as well as procedures they have

used to address these problems. In this chapter, the notation for the NLIV model of

Section 9.2 will be used.

10.1 Euler Equation Approach

Hansen and Richard (1987) show that virtually all asset pricing models can be written

as

vt = E[mt+1dt+1|It](10.1)

where vt is the asset price at date t, mt+1 is the intertemporal marginal rate of

substitution (IMRS) between date t and date t+1, and dt+1 is the payoff of an asset

at date t+1. Each asset pricing model specifies a different IMRS.
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230 CHAPTER 10. EMPIRICAL APPLICATIONS OF GMM

Hansen and Singleton (1982) specify the IMRS by

mt+1 = β(
ct+1

ct
)−α(10.2)

and measure ct by real nondurable consumption expenditures or real nondurable and

service consumption expenditures. Hansen and Singleton (1984) find that the chi-

square test for the overidentifying restrictions rejects their model especially when

nominal risk free bond returns and stock returns are used simultaneously.1 Their

finding is consistent with the Mehra and Prescott’s (1985) equity premium puzzle.

When the model is rejected, the chi-square test statistic does not provide much guid-

ance as to what causes the rejection. Hansen and Jagannathan (1991) develop a

diagnostic that could provide such guidance.

Brown and Gibbons (1985) use the same specification of the IMRS but propose

to measure it from asset returns data rather than consumption data. An advantage

of this measurement is that asset returns data are measured without measurement

errors and are free from the time aggregation problem in contrast to consumption

data.

They assume that E( ct+1

ct
|It) is a constant that does not depend on It. For

example, this assumption is satisfied if consumption is a martingale, in which case

E( ct+1

ct
|It) = 1. Then E( ct+τ

ct
|It) = E[( ct+τ

ct+τ−1
)( ct+τ−1

ct+τ−2
) · · · ( ct+1

ct
)|It) is a constant that

does not depend on It. Therefore, E[βτ ( ct+τ

ct
)−α( ct+τ

ct
)|It] = kτ is a constant that does

not depend on It.

Now consider a security that pays off ct+τ as its payoff for τ = 1, 2, 3, · · · . Then

1Cochrane (1989) points out that the utility that the representative consumer loses by deviating
from the optimal consumption path is very small in the Hansen-Singleton model and in the Hall’s
(1978) model. In this sense, the Hansen-Singleton test and Hall’s test may be too sensitive to
economically small deviations caused by small costs of information and transactions.
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the price of the security at date t will be

vt = E[
∞∑
τ=1

βτ (
ct+τ

ct
)−αct+τ |It] = (

∞∑
τ=1

kτ )ct.(10.3)

Hence, the gross rate of return from holding this security from date t to date t+1,

Rm
t+1, is

Rm
t+1 =

vt+1 + ct+1

vt
= k

ct+1

ct
(10.4)

where k = (1 +
∑∞

τ=1 kτ )/
∑∞

τ=1 kτ . Hence the IMRS can be measured by Rm
t+1:

mt+1 = β(
ct+1

ct
)−α = β∗(Rm

t+1)
−α.(10.5)

where β∗ = βkα. The Euler equation is

E(β∗(Rm
t+1)

−αRt+1|It) = 1(10.6)

for any asset return Rt+1. To apply GMM, let b = (β∗, α)′, xt = (Rm
t+1, Rt+1)

′, and

g(xt,b) = β∗(Rm
t+1)

−αRt+1 − 1 in the notation for the NLIV model.

Brown and Gibbons (1985) measure Rm
t+1 by the New York Stock Exchange

value weighted return. Even though the value weighted return is precisely measured,

it is not exactly equal to Rm
t+1 in the model because the value weighted average of the

New York Stock Exchange stocks does not pay aggregate consumption as its payoff.

This problem is closely related to the Roll’s (1977) critique for tests of Capital Asset

Pricing Models which use the value weighted returns as the market return.

Even though the Euler equation holds for any asset return, the identification

assumption for GMM fails to hold when we choose Rt+1 in (10.6) to be Rm
t+1. With

this choice, g(xt,b) = 0 when β∗ = 1 and α = 1.
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10.2 Habit Formation and Durability

Many researchers have considered the effects of time-nonseparability in preferences

on asset pricing. Let us replace (9.2) by

U(ct, ct−1, ct−2, · · · ) =
1

1− α
(s1−α

t − 1),(10.7)

where st is the service flow from consumption purchases. Purchases of consumption

and service flows are related by

st = a0ct + a1ct−1 + a2ct−2 + · · · .(10.8)

Depending on the values of the aτ ’s, the model (10.7) leads to a model with habit for-

mation and/or durability. For example, this type of specification for time-nonseparability

has been used to model durability by Mankiw (1985), Hayashi (1982), Dunn and Sin-

gleton (1986), Eichenbaum, Hansen, and Singleton (1988), Eichenbaum and Hansen

(1990), and Ogaki and Reinhart (1998a,b), and used to model habit formation by Fer-

son and Constantinides (1991), Ferson and Harvey (1992), Cooley and Ogaki (1996),

and Ogaki and Park (1997).2 Heaton (1993, 1995) used it to model a combination of

durability and habit formation. Constantinides (1990) argues that habit formation

could help solve the equity premium puzzle. He shows how the intertemporal elastic-

ity of substitution and the relative risk aversion coefficient depend on the parameters

aτ and α in a habit formation model.

In this section, we discuss applications by Ferson and Constantinides (1991),

Cooley and Ogaki (1996), and Ogaki and Park (1997) to illustrate econometric for-

mulations for habit formation models. We will discuss more about applications for

2These papers found evidence in favor of habit formation with aggregate consumption data, but
Dynan (2000) finds no evidence for habit formation in household level panel data for food.
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durable goods in later sections. In their models, it is assumed that aτ = 0 for τ ≥ 2.

Let us normalize a0 to be one, so that b = (β, α, a1)
′. The asset pricing equation

takes the form

E[β(s−α
t+1 + βa1s

−α
t+2)Rt+1|It]

E[s−α
t + βa1s

−α
t+1|It]

= 1.(10.9)

Then let ϵ0t = β(s−α
t+1+βa1s

−α
t+2)Rt+1− (s−α

t +βa1s
−α
t+1). Though Euler equation (10.9)

implies that E(ϵ0t |It) = 0, this property cannot be used as the disturbance for GMM

because both of the two regularity assumptions discussed in Section 9.3 are violated.

These violations are caused by the nonstationarity of ct and by the three sets of trivial

solutions, α = 0 and 1 + βa1 = 0; β = 0 and α = ∞; and β = 0 and a1 = ∞ with

α > 0. Ferson and Constantinides (1991) solve both of these problems by defining

ϵt =
ϵ0t
s−α
t

. Since s−α
t is in It, E(ϵt|It) = 0. The disturbance is a function of st+τ

st

(τ = 1, 2) and Rt+1. When ct+1

ct
and Rt are assumed to be stationary, st+τ

st
and the

disturbance can be written as a function of stationary variables.

One problem that researchers have encountered in these applications is that

ct+1 + a1ct may be negative when a1 is close to minus one. In a nonlinear search for

bT or in calculating numerical derivatives, a GMM computer program will stall if it

tries a value of a1 that makes ct+1+a1ct negative for any t. Atkeson and Ogaki (1996)

have encountered similar problems in estimating fixed subsistence levels from panel

data. One way to avoid this problem is to program the function f(xt,b), so that the

program returns very large numbers as the values of f(xt,b) when non-admissible

parameter values are used. However, it is necessary to ignore these large values of

f(xt,b) when calculating numerical derivatives. This process can be done by suitably

modifying programs that calculate numerical derivatives.3

3A GMM User Guide (see Ogaki, 1993b) explains these modifications for Hansen/Heaton/Ogaki
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The model presented in this section is the linear specification of habit formation.

More recent theoretical work often adopts the nonlinear specification of habit forma-

tion as in Campbell and Cochrane (1999, 2000) and Menzly, Santos, and Veronesi

(2004), among others. The model presented in this section is also a model of inter-

nal habit formation. In models of external habit formation, the habit depends on the

consumption of some exterior reference group. In the Abel’s (1990) model of catching

up with Jones, the habit depends on per capita aggregate consumption. Campbell

and Cochrane (1999, 2000), Li (2001), and Menzly, Santos, and Veronesi (2004) study

models of external habit formation. Chen and Ludvigson (2004) use the sieve min-

imum distance estimator developed by Newey and Powell (2003) and Ai and Chen

(2003) for approximating an unknown function to empirically evaluate various specifi-

cations of habit including linear/nonlinear and internal/external habit formation.The

sieve minimum distance estimator is implemented in the GMM framework.

10.3 State-Nonseparable Preferences

Epstein and Zin (1991) estimate a model with state-nonseparable preference specifi-

cation in which the life-time utility level vt at period t is defined recursively by

Vt = {c1−α
t + βE[V 1−α

t+1 |It]}
1−ρ
1−α ,(10.10)

where α > 0 and ρ > 0. The asset pricing equation for this model is

E[β∗(Rm
t+1)

η(
ct+1

ct
)θRt+1] = 1,(10.11)

for any asset return Rt+1, where β∗ = β
1−α
1−ρ , η = ρ−α

1−ρ
, θ = −ρ1−α

1−ρ
, and Rm

t+1 is the

(gross) return of the optimal portfolio (Rm
t+1 is the return from period t to t+1 of

GMM package.
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a security that pays ct every period forever). They use the value-weighted return

of shares traded on the New York Stock Exchange as Rm
t+1. Thus, the Roll’s (1977)

critique of CAPM is relevant here as discussed.

Even though (10.11) holds for Rt+1 = Rm
t+1, the identification assumption dis-

cussed in Section 9.3 is violated for this choice of Rt+1 because there exists a trivial

solution,(β∗, η, θ) = (1,−1, 0), for g(xt,b) = 0. When multiple returns that include

Rm
t+1 are used simultaneously, then the whole system can satisfy the identification

assumption, but the GMM estimators for this partially unidentified system are likely

to have bad small sample properties. A similar problem arises when Rt+1 does not

include Rm
t+1 but includes multiple equity returns whose linear combination is close

to Rm
t+1. It should be noted that Epstein and Zin avoid these problems by carefully

choosing returns to be included as Rt+1 in their system.

10.4 Time Aggregation

The use of consumption data for C-CAPM is subject to a time aggregation problem

(see, e.g., Hansen and Sargent, 1983a,b) because consumers can make decisions at

intervals much finer than the observed frequency of the data and because the observed

data consist of average consumption over a period of time.

In linear models for which the disturbance before time aggregation is a martin-

gale difference, time aggregation means that the disturbance has an MA(1) structure

and the instrumental variables need to be lagged an additional period. See, e.g,

Grossman, Melino, and Shiller (1987), Hall (1988), and Hansen and Singleton (1996)

for applications to C-CAPM and Heaton (1993) and Christiano, Eichenbaum, and

Marshall (1991) for applications to Hall (1978) type permanent income models.
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In nonlinear models for which the disturbance before time aggregation is a

martingale difference, time aggregation has more complicated effects. Allowing the

disturbance to have an MA(1) structure and letting instrumental variables lagged an

additional period do not completely eliminate the effects caused by time aggregation.

Nevertheless, these methods are often used to mitigate time aggregation problems in

applications (see, e.g., Epstein and Zin, 1991; Ogaki and Reinhart, 1998b).

For nonlinear models, one way to use GMM to take into account the full effects

of time aggregation is to combine GMM with simulations. For example, Heaton

(1995) uses the method of simulated moments (MSM) for his nonlinear asset pricing

model with time-nonseparable preferences in taking time aggregation into account.

Bossaerts (1988), Duffie and Singleton (1993), McFadden (1989), Pakes and Pollard

(1989), Lee and Ingram (1991), and Pearson (1991), among others, have studied

asymptotic properties of MSM.

10.5 Multiple-Goods Models

Mankiw, Rotemberg, and Summers (1985), Dunn and Singleton (1986), Eichenbaum,

Hansen, and Singleton (1988), Eichenbaum and Hansen (1990), and Osano and Inoue

(1991), among others, have estimated versions of multiple-good C-CAPM. Basic eco-

nomic formulations of these multiple-good models will be illustrated in the context

of a simple model with one durable good and one nondurable good.

Let us replace (9.2) by Houthakker’s (1960) addilog utility function that Miron

(1986), Ogaki (1988, 1989), and Osano and Inoue (1991) among others have estimated:

U(ct, dt) =
1

1− α
(c1−α

t − 1) +
θ

1− η
(k1−η

t − 1),(10.12)

where ct is nondurable consumption and kt is household capital stock from purchases
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of durable consumption good dt.
4 The stock of durables is assumed to depreciate at

a constant rate 1− a, where 0 ≤ a < 1:

kt = akt−1 + dt.(10.13)

Alternatively, kt can be considered as a service flow in (10.8) with aτ = aτ . When

α ̸= η, preferences are not quasi homothetic. In practice, the data for kt is con-

structed from data for an initial stock k0, and for dt for t = 1, · · · , T . Let pt be

the intratemporal relative price of durable and nondurable consumption. Then the

intraperiod first order condition that equates the relative price with the marginal rate

of substitution is

pt =
θE(

∑∞
τ=1 β

τaτk−η
t+τ |It)

c−α
t

.(10.14)

Assume that dt+1

dt
is stationary. Then kt+τ

dt
is stationary for any τ because kt+τ

dt
=∑∞

i=0 a
i dt+τ−i

dt
. From (10.14),

ptc
−α
t

d−η
t

= θE[
∞∑
τ=1

βτaτ (
kt+τ

dt
)−η|It].(10.15)

Assume that the variables in It are stationary.5 Then (10.15) implies that the pt
c−α
t

d−η
t

is stationary because the right hand side of (10.15) is stationary. Taking natural logs,

we conclude that ln(pt)−α ln(ct)+η ln(dt) is stationary. This restriction is called the

stationarity restriction.

From (10.14), define

ϵ0t = ptc
−α
t − (1− βaF )−1θk−η

t ,(10.16)

4Since the addilog utility function is not quasi-homothetic in general, the distribution of initial
wealth affects the utility function of the representative consumer. The existence of a representative
consumer under complete markets is discussed by Ogaki (1990) for general concave utility functions
and by Atkeson and Ogaki (1996) for extended addilog utility functions.

5If It includes nonstationary variables, assume that the right hand side of (10.14) is the same as
the expectation conditioned on the stationary variables in It.
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where F is the forward operator. The first order condition (10.14) implies that

E(ϵ0t |It) = 0. One problem is that ϵ0t involves kt+τ for τ from 0 to infinity, so

that ϵ0t cannot be used as the disturbance for GMM. To solve this problem, de-

fine ϵt = (1 − βaF )ϵ0t . Note that ϵt involves only ct, ct+1, pt, pt+1, and kt and that

E[ϵt|It] = 0. Hence ϵt forms the basis of GMM. The only remaining problem is at-

taining stationarity. One might think it is enough to divide ϵt by k−η
t , so that the

resulting ϵt is stationary as implied by the stationarity restriction. It should be noted

that it is not enough for ϵt = g(xt,b0) to be stationary, rather it is also necessary for

g(xt,b) to be stationary for b ̸= b0. Hence if α and η are unknown and ct or dt is

difference stationary, GMM cannot be applied to the first order condition (10.14).6

Ogaki (1988, 1989) assumes that ct and dt are trend stationary and applies the method

of Section 10.2 above to utilize the detrended version of ϵt. In these applications, the

restrictions on the trend coefficients and the curvature parameters α and η implied

by the stationarity restriction are imposed on the GMM estimators. Imposing the

stationarity restrictions also lead to more reasonable point estimates for α and η.

Eichenbaum, Hansen, and Singleton (1988) and Eichenbaum and Hansen (1990)

use the Cobb-Douglas utility function, so that α and η are known to be one.7 They

allow preferences to be nonseparable across goods and time-nonseparable, but the

stationarity restriction is shown to hold. In this case, the stationarity restriction

implies that pt
c−1
t

k−1
t

is stationary. This transformation does not involve any unknown

parameters. Hence, this transformation is used to apply GMM to their intraperiod

first order conditions.

6Cointegrating regressions can be used for this case as explained below.
7Also see Ogaki (1988) for a discussion of the stationarity restriction implied by the Cobb-Douglas

utility function.
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10.6 Seasonality

Miron (1986) augments the Hansen and Singleton’s (1982) model by including deter-

ministic seasonal taste shifters and argues that the empirical rejection of C-CAPM by

Hansen and Singleton (1982) and others might be attributable to the use of seasonally

adjusted data.8 Although this is theoretically possible, English, Miron, and Wilcox

(1989) find that seasonally unadjusted quarterly data reject asset pricing equations

at least as strongly as seasonally adjusted data.9 Ogaki (1988) also finds similar em-

pirical results for seasonally unadjusted and adjusted data in the system that involves

both asset pricing equations and intraperiod first order conditions.

Singleton (1988) argues that the inclusion of taste shifters in C-CAPM is essen-

tially equivalent to directly studying consumption data with deterministic seasonality

removed. This finding results because we do not obtain much identifying information

from seasonal fluctuations about preferences if most of the seasonal fluctuations come

from seasonal taste shifts.10 On the other hand, seasonal fluctuations may contain
Masao
needs to
check this!

useful identifying information about the production functions if production functions

are relatively stable over the seasonal cycle. Braun and Evans (1998) utilize such

identifying information.

Ferson and Harvey (1992) construct seasonally unadjusted monthly data and

estimate a C-CAPM with time nonseparable preferences. They find that seasonal

habit persistence is empirically significant. Heaton (1993) also finds evidence for

8It should be noted that a deterministic seasonal dummy can be viewed as an artificial stationary
and ergodic stochastic process (see, e.g., Ogaki, 1988, pp. 26–27). Hence, GMM can be applied to
models with deterministic seasonal taste shifts.

9Hoffman and Pagan (1989) also obtain similar results.
10Beaulieu and Miron (1991) cast doubt on the view that negative output growth in the first

quarter (see, e.g., Barsky and Miron, 1989) is caused by negative technology seasonal by observing
negative output growth in the Southern Hemisphere.
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seasonal habit formation in Hall (1978) type permanent income models.11

10.7 Monetary Models

In some applications, monetary models are estimated by applying GMM to Euler

equations and/or intratemporal first order conditions. Singleton (1985), Ogaki (1988),

Finn, Hoffman, and Schlagenhauf (1990), Bohn (1991), and Sil (1992) estimate cash-

in-advance models, Poterba and Rotemberg (1987), Eckstein and Leiderman (1989),

and Finn, Hoffman, and Schlagenhauf (1990), Imrohoroglu (1991) estimate money-

in-the-utility-function (MIUF) models, and Marshall (1992) estimates a transactions-

cost monetary model.

Cash-in-advance models involve only minor variations on the asset pricing equa-

tion (10.1) as long as the cash-in-advance constraints are binding and ct is a cash

good (in the terminology of Lucas and Stokey, 1987). However, nominal prices of

consumption, nominal consumption, and nominal asset returns are aligned over time

in a different way in monetary models than they are in the Hansen and Singleton’s

(1982) model. Information available to agents at time t is also considered in a dif-

ferent way. As a result, instrumental variables are lagged one period more than in

the Hansen-Singleton model, and ut has an MA(1) structure (time aggregation has

the same effects in linear models as discussed above). There is some tendency for

the chi-square test statistics for the overidentifying restrictions to be more favorable

for the timing conventions suggested by cash-in-advance models (see Finn, Hoffman,

and Schlagenhauf, 1990; Ogaki, 1988). Ogaki (1988) focuses on monetary distortions

in relative prices for a cash good and a credit good and does not find monetary

11See Ghysels (1990, especially Section I.3) for a survey of the economic and econometric issues
of seasonality.
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distortions in the U.S. data he examines.

10.8 Calculating Standard Errors for Estimates of

Standard Deviation, Correlation, and Auto-

correlation

In many macroeconomic applications, researchers report estimates of standard devi-

ations, correlations, and autocorrelations of economic variables. It is possible to use

a GMM program to calculate standard errors for these estimates, in which the serial

correlation of the economic variables is taken into account (see, e.g., Backus, Gregory,

and Zin, 1989; Backus and Kehoe, 1992).

For example, let xt and yt be economic variables of interest that are assumed

to be stationary. Let xt = (xt, yt) and f(xt,b) = (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ − b,

where f(xt,b) is a disturbance defined at time t and a quadratic form of its sam-

ple average is the objective function to be minimized in GMM estimation. Then

the parameters to be estimated are the population moments; b0 = (E(xt), E(x2
t ),

E(yt), E(y2t ), E(xtyt), E(xtxt−1)). Applying GMM to f(xt,b), one can obtain an es-

timate of b0, bT , and an estimate of covariance matrix of T
1
2 (bT − b0).

12 In most

applications, the order of serial correlation of (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ is unknown,

and its long-run covariance matrix, Ω, can be estimated by any method in Chapter

6 (such as Andrews and Monahan’s prewhitened QS kernel estimation method).

Standard deviations, correlations, and autocorrelations are nonlinear functions

of b0. Hence, one can use the delta method to calculate the standard errors of the

12The covariance matrix Cov(Ω−1) is defined in (9.13). In this particular example, Cov(Ω−1) co-
incides with the long-run variance of f(xt,b0) because the derivative of f(xt,b0) is an identity. More
generally, if more moment conditions are added to make the system overidentified, then Cov(Ω−1)
will be different from the long-run covariance matrix.
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estimates of these statistics. Let a(b0) be the statistic of interest. Continuing the

example above, imagine that a researcher is estimating the standard deviation of xt.

Then a(b0) =
√
var(xt) = (E(x2

t ) − E(xt)
2)

1
2 = (b02 − b201)

1
2 , where b01 = E(xt),

b02 = E(x2
t ) and a(bT ) is a consistent estimator of a(b0). If we apply the delta

method explained in Proposition 5.8,
√
T (a(bT )− a(b0)) has an approximate normal

distribution with the variance d(b0)Cov(Ω−1)d(b0)
′ in large samples, where d(b0) is

the derivative of a(·) evaluated at b0.

There is a pitfall that should be avoided in setting the GMM momment condi-

tions in these applications. The parameters can enter the GMM moment conditions

in nonlinear ways, but the sample moments should not. For example, it may be

tempting to estiamte the variance of xt in the above example by setting the moment

condition to be b − (xt − x̄)2 where b is the variance to be estiamted and overvarx

is the sample mean. However, because the sample mean enters the GMM moment

condition in a nonlinear way, E(b − (xt − x̄)2) is not equal to zero. This pitfall can

be easily avoided by estimating E(x) and E(x2) as in the example above.

An example of a problematic application with this type of the pitfall can be

found in Section 5 of Ambler, Cardia, and Zimmermann (2004). In estimating a pair

of correlations, their estimate is a solution to the problem of minimizing

{ 1
T

T∑
t=1

(ρ− ρ̄t)}′WT{
1

T

T∑
t=1

(ρ− ρ̄t)}(10.17)

where the parameter ρ is a 2x1 vector of the population correlations of four

varaibles (say xit for i = 1, 2, 3, 4), and ρ̄t is a 2x1 vector whose first element is given

by
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ρ̄1t =
(x1 − x̄1)(x2 − x̄2)

σ̄1σ̄2

(10.18)

and whose second element is given by

ρ̄2t =
(x3 − x̄3)(x4 − x̄4)

σ̄3σ̄4

.(10.19)

Here x̄i is the sammple mean and σ̄i is the sample variance of xi. This set-up

resembles that of GMM, but cannot be embedded in the standard GMM framework.

This is because the sample mean dna the sample variance enter the moment conditions

in nonlinear ways.

10.9 Dynamic Stochastic General EquilibriumMod-

els and GMM Estimation

Real Business Cycle Models and other Dynamic Stochastic General Equilibrium

(DSGE) models can be estimated and tested by GMM. These models are often simu-

lated and the results are evaluated without considering sampling errors. GMM gives

a simple method to take into account sampling errors. Such a method was originally

developed by Christiano and Eichenbaum (1992). A survey by Burnside (1999) de-

scribes how GMM estimation is used for real business cycle models and explains how

to use the programs written by the author. Recent applications of GMM to DSGE

models include Alexopoulos (2004) and Aguiar and Gopinath (2007). In this section,

we explain a method used by Burnside, Eichenbaum, and Rebelo (1993) using a sim-

pler model than these authors used. This method uses results in King, Plosser, and
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Rebelo (1988a,b) that show how the model parameters are related to the moments of

economic variables.

Consider a social planner’s problem:

max
Ct,Kt

E0

∞∑
t=0

βtU(Ct)(10.20)

s.t Yt = AtK
α
t−1 = Ct + It

It = Kt − (1− δ)Kt−1

lnAt = ρ lnAt−1 + ϵt,

where Ct is consumption, Kt is a capital stock, Yt is output, It is investment, 1 − δ

is a depreciation rate, and At represents the level of technology. We do not include

labor to simplify the model for the pedagogical purpose. Using the budget constraint

given by

Ct = AtK
α
t−1 −Kt + (1− δ)Kt−1(10.21)

the first order condition becomes

−U ′(Ct) + βEtU
′(Ct+1)(αAt+1K

α−1
t + 1− δ) = 0.(10.22)

In a steady state, we have ϵt = 0 so that At = 1. We can also take out the expectation

as Ct, Kt, and Yt are constants. Thus, (10.22) implies

β(αKα−1 + 1− δ) = 1.(10.23)

From (10.23) we can calculate the steady state solutions

K∗ = (
1

α
(
1

β
− (1− δ)))

1
α−1(10.24)

C∗ = K∗α − δK∗

Y ∗ = K∗α .
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For solutions in other states, we need to take a log linearization using y = ln x and

f(x) = f(ey)(10.25)

= f(ey0) +
∂f(ey0)

∂y
(y − y0)

= f(x0) +
∂f(x0)

∂x

1

∂ lnx0/∂x
(lnx− lnx0)

= f(x0) + f ′(x0)x0(lnx− lnx0)

Plug (10.25) into (10.22), then

U ′(C0) + U ′′(C0)C0Ĉt = βU ′(C0)(αA0K
α−1
0 + 1− δ)(10.26)

+ βEtU
′′(C0)C0(αA0K

α−1
0 + 1− δ)Ĉt+1

+ βEtU
′(C0)αA0K

α−1
0 Ât+1

+ βEtU
′′(C0)α(α− 1)A0K

α−1
0 K̂t

where Ĉt = lnCt− lnC0, Ât = lnAt− lnA0, and K̂t = lnKt− lnK0. By the property

of the steady state, constant terms are cancelled out so that

U ′′(C0)C0Ĉt = βEtU
′′(C0)C0(αA0K

α−1
0 + 1− δ)Ĉt+1(10.27)

+ βEtU
′(C0)αA0K

α−1
0 Ât+1 + βEtU

′′(C0)α(α− 1)A0K
α−1
0 K̂t,

where EtÂt+1 = ρÂt. Thus, this equation can be simplified by

Ĉt = ÃcEtĈt+1 + ÃkK̂t + ÃaÂt.(10.28)

Since this equation contains two control variables, we further simplify it by replacing

Ĉt with the following log linearization of (10.21):

Ĉt = A0K
α
0 Ât + αA0K

α
0 K̂t−1 −K0K̂t + (1− δ)K0K̂t−1.(10.29)
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and finally we get

EtK̂t+1 + A1K̂t + A2K̂t−1 = A3Ât.(10.30)

Let L−1xt denote Etxt+1, then (10.30) can be expressed by

(1−B1L
−1)(1−B2L)K̂t = B3Ât(10.31)

or

(1−B2L)K̂t = (1−B1L
−1)B3Ât(10.32)

= B3

∞∑
i=0

EtB
i
1Ât+i

= B3

∞∑
i=0

Bi
1ρ

iÂt

= B3

∞∑
i=0

Bi
1ρ

iÂt.

Thus, the solution of the model is given by

K̂t = C11K̂t−1 + C12Ât.(10.33)

We can also get the solution for Ct by plugging (10.33) into (10.29):

Ĉt = C21K̂t−1 + C22Ât.(10.34)

In general, we can always express the solutions of the model by

xt+1 = γxxxt + γxzzt(10.35)

λt = γλxxt + γλzzt

ut = γuxxt + γuzzt,

where xt is a vector of state variables (Kt−1), λt is a costate variable, ut is a vector

of control variables (Ct), and zt is a vector of exogenous variables (At). Let the law
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of motion for the exogenous variables be

zt = πzt−1 + ϵt,(10.36)

then we get [
xt+1

zt+1

]
=

[
γxx γxz
0 π

] [
xt

zt

]
+

[
0

ϵt+1

]
(10.37)

= Mst + ϵ̂t+1

or

st+1 = Mst + ϵ̂t+1,(10.38)

where st = (xt, zt)
′. Let ft be other variables of interest characterized by ft =

Fcut + Fxxt + Fzzt, then λt

ut

ft

 =

 γλx γλz
γux γuz

Fcγux + Fx Fcγuz + Fz

 st(10.39)

= Hst.

Therefore, provided with the parameters in the first order conditions and those in the

law of motion for the exogenous variables, we can compute M and H. GMM is used

to estimate the parameters. Once M and H are derived, we can compute the impulse

response function and the autocovariance implied by the model. By taking an MA

representation of (10.38), the h-step impulse response function of the i− th variable

of (λt, ut, ft)
′ on the j − th shock of ϵ̂t is given by

(HMh)(i,j).(10.40)

The autocovariance is computed by

Γi = E(sts
′
t−i)(10.41)

= M iΓ0,
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where Γ0 = E(sts
′
t) that is computed as follows. Let M = V DV −1 where D is a

diagonal matrix that consists of eigen-values ofM , and V is a matrix of corresponding

eigen-vectors. By pre-multiplying V −1 on the both sides of (10.38), we get

V −1st+1 = DV −1st + V −1ϵ̂t+1(10.42)

or

s̃t+1 = Ds̃t + ϵ̃t+1.(10.43)

Thus, we can compute the transformed autocovariance by

Γ̃0,ij = E(sits
′
jt)(10.44)

=
1

1− didj
Σ̃i,j

and

Γ0 = V Γ̃0V
′.(10.45)

We can also compute the autocovariance of other variables using

E(stw
′
t−i) = E(st(Hst−i)

′) = M iΓ0H
′(10.46)

E(wtw
′
t−i) = E(Hst(Hst−i)

′) = HM iΓ0H
′.

10.10 GMM and an ARCH Process

As explained in Chapter 2, an autoregressive conditional heteroskedastic (ARCH)

process is frequently employed to model conditional heteroskedasticity. A typical

estimation method for an ARCH model is the Maximum Likelihood (ML) estimator

with the assumption that the conditional distribution of the error term follows normal
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or t-distribution (see Bollerslev, Chou, and Kroner, 1992, for survey). However,

ARCH models can also be estimated by GMM, which produces consistent estimates

of the parameters without a specific distributional assumption (see, e.g., Mark, 1988;

Simon, 1989). Further, as Rich, Raymond, and Butler (1991) point out, the GMM

estimation directly allows for the specification test introduced by Hansen (1982).

An ARCH process is modeled as an innovation in the mean for some other

stochastic process in most applications. Consider a regression model with ARCH(q)

disturbances.

yt = x′
2,tβ + ϵt(10.47)

E(ϵt | It−1) = 0(10.48)

E(ϵ2t | It−1) = ht(10.49)

ht = α +

q∑
i=1

γiϵ
2
t−i; α > 0,

q∑
i=1

γi < 1, γi ≥ 0(10.50)

where yt is the dependent variable, x2,t is a vector of explanatory variables in the

information set It−1 which is assumed to be It−1 ⊂ It for any t and β, α and γ are

fixed parameters.

To apply GMM, Rich, Raymond, and Butler (1991) rewrite equations (10.47)

and (10.49) as:

yt = x′
2,tβ + ϵt(10.51)

ϵ2t = α +

q∑
i=1

γiϵ
2
t−i + ηt(10.52)
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where

ηt = ϵ2t − ht, E(ηt | It−1) = 0(10.53)

From these, we can obtain a system of two equations describing the innovations to

the mean and variance of the ARCH(q) process, respectively,

ϵt = yt − x′
2,tβ(10.54)

ηt = (yt − x′
2,tβ)

2 − α−
q∑

i=1

γi(yt−i − x′
2,t−iβ)

2(10.55)

Let b̃ be the n-dimensional vector of parameters (β̃
′
, α̃, γ̃ ′)′ of the ARCH model and

xt = (yt,x
′
2,t)

′. Let g(xt, b̃) be a 2-dimensional vector of functions, then

g(xt,b0) =

[
ϵt(β)

ηt(β, α,γ)

]
(10.56)

E(g(xt,b0) | It−1) = 0(10.57)

where b0 = (β′, α,γ ′)′ is the true parameter.

Suppose z1t−1 and z2t−1 are an (m1 x 1) and an (m2 x 1) vector of random

variables in the information set It−1, uncorrelated with ϵt and ηt, respectively, to

serve as instrumental variables. Let zt−1 be (m x 2) block diagonal matrix where

m = m1 +m2,

zt−1 =

[
z1t−1 0
0 z2t−1

]
(10.58)

By the law of iterative expectations, we obtain unconditional moment restrictions:

E(zt−1 g(xt,b0)) = 0(10.59)
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Equation (10.59) represents a set of m orthogonality conditions which are used to

estimate b0 with zt−1 serving instruments in the ARCH model. Based on this pro-

cedure, Rich, Raymond, and Butler (1991) obtain results similar to ML estimates of

Engle and Kraft’s (1983) ARCH model of U.S. inflation.

This GMM framework can be extended to the generalized ARCHmodel, GARCH(p,q),

where equation (10.50) allows for autoregressive components in the heteroskedastic

variance:

ht = α +

q∑
i=1

γiϵ
2
t−i +

p∑
j=1

δjht−j(10.60)

where α > 0,
∑q

i=1 γi < 1, γi ≥ 0,
∑p

j=1 δj < 1, δj ≥ 0. In this case, we can still

get the same moment conditions, equation (10.59), where b0 = (β′, α,γ ′, δ′)′ is the

true parameter.

10.11 Estimation and Testing of Linear Rational

Expectations Models

In this section, econometric methods that impose and test the restrictions implied by

linear rational expectations models are described. Many linear rational expectations

models imply that an economic variable depends on a geometrically declining weighted

sum of expected future values of another variable

yt = aE(
∞∑
i=1

βixt+i|It) + c′zt,(10.61)

where a and β are constants, c is a vector of constants, yt and xt are random variables,

and zt is a random vector. This implication imposes nonlinear restrictions on the

VAR representation of yt, xt, and zt as shown by Hansen and Sargent (1980). In
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Section 10.11.1, these nonlinear restrictions are discussed. Section 10.11.2 describes

econometric methods to utilize these restrictions.

10.11.1 The Nonlinear Restrictions

Consider West’s (1987) model as an example of linear rational expectations model.

Let pt be the real stock price (after the dividend is paid) in period t and dt be the

real dividend paid to the owner of the stock at the beginning of period t. Then the

arbitrage condition is

pt = E[β(pt+1 + dt+1)|It],(10.62)

where β is the constant real discount rate, It is the information set available to

economic agents in period t. Solving (10.62) forward and imposing the no bubble

condition, we obtain the present value formula:

pt = E(
∞∑
i=1

βidt+i|It).(10.63)

We now derive restrictions for pt and dt implied by (10.63). Many linear rational

expectations models imply that a variable is the expectation of a discounted infinite

sum conditional on an information set. Hence similar restrictions can be derived for

these rational expectations models. We consider two cases, depending on whether dt

is assumed to be covariance stationary or is unit root nonstationary.

Assume that dt is covariance stationary with mean zero (imagine that data are

demeaned), so that it has a Wold moving average representation

dt = α(L)νt,(10.64)

where α(L) = 1 + α1L+ α2L
2 + · · · and where

νt = dt − Ê(dt|Ht−1).(10.65)
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Here, Ê(·|Ht) is the linear projection operator onto the information set Ht = {dt, dt−1, dt−2, · · · }.

We assume that the econometrician uses the information set Ht, which may be much

smaller than the economic agents’ information set, It. Assuming that α(L) is invert-

ible,

ϕ(L)dt = νt,(10.66)

where ϕ(L) = 1− ϕ1L− ϕ2L
2 − · · · .

Using (10.63) and the law of iterated projections, we obtain

pt = Ê(
∞∑
i=1

βidt+i|Ht) + wt,(10.67)

where

wt = E(
∞∑
i=1

βidt+i|It)− Ê(
∞∑
i=1

βidt+i|Ht),(10.68)

and Ê(wt|Ht) = 0. Since Ê(·|Ht) is the linear projection operator onto Ht,

Ê(
∞∑
i=1

βidt+i|Ht) = δ(L)dt,(10.69)

where δ(L) = δ1 + δ2L+ · · · . Following Hansen and Sargent (1980, Appendix A), we

obtain the restrictions imposed by (10.69) on δ(L) and ϕ(L). The left-hand side of

(10.69) can be written

Ê(
∞∑
i=1

βidt+i|Ht) = Ê

(
βL−1

1− βL−1
dt|Ht

)
(10.70)

=

[
βL−1α(L)

1− βL−1

]
+

νt

where [B(L)]+ is an annihilator that removes negative power of the lag polynomial

B(L). The second equality holds because νt is fundamental. Then by replacing L

with z in (10.70), we have

βz−1α(z)

1− βz−1
=

βz−1(α(z)− α(β))

1− βz−1
+

βz−1α(β)

1− βz−1
.(10.71)
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Note that the first term in the right-hand side is removable singularity and the sec-

ond term has only negative power of lag polynomial that is to be removed by the

annihilator. Therefore we can write (10.70) as[
βL−1α(L)

1− βL−1

]
+

νt =

[
βz−1(α(z)− α(β))

1− βL−1
+

βL−1α(β)

1− βL−1

]
+

νt(10.72)

=
βL−1(α(L)− α(β))

1− βL−1
νt.

Since νt = ϕ(L)dt as in (10.64), we have the following restriction

δ(L) =
βL−1(α(L)− α(β))

1− βL−1
ϕ(L)(10.73)

=
βL−1(1− ϕ−1(β)ϕ(L))

1− βL−1
.(10.74)

We now parameterize ϕ(L) as a q-th order polynomial:

dt = ϕ1dt−1 + · · ·+ ϕqdt−q + νt.(10.75)

Then, by using state space representation, (10.75) can be written as

Dt = ADt−1 + Vt(10.76)

where Dt = (dt, dt−1, . . . , dt−q+1)
′ and

A =


ϕ1 . . . . . . ϕq

1 0
. . .

...
1 0

(10.77)

Then (10.67) can be written as

pt = Ê(
∞∑
i=1

βidt+i|Ht) + wt(10.78)

= e1βA(I − βA)−1Dt + wt

where e1 = (1, 0, . . . , 0)′.
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Also (10.73) is used to show that δ(L) is a finite order polynomial and to give

a explicit formula for the coefficients for δ(L).13 Thus

pt = δ1dt + · · ·+ δqdt−q+1 + wt,(10.79)

where δi’s are functions of β and ϕi’s. Comparing (10.78) and (10.79) yields the

following nonlinear restriction

δ1 = {1− ϕ(β)}−1(10.80)

δj = δγ(β){1− δϕ(β)}−1(ϕj+1 + βϕj+2 + · · ·+ βpϕj+p+1) for j = 2, · · · , p.

(?????γ(β)?) These are the nonlinear restrictions which (10.63) implies.
Masao
needs to
check this!

Example 10.1 Consider the case where dt is an AR(1) process, so that dt = ϕ1dt−1+

νt where |ϕ1| < 1. Then Ê(dt+i|Ht) = ϕi
1dt, and hence Ê(

∑∞
i=1 β

idt+i|Ht) =
∑∞

i=1 β
iϕi

1dt =

βϕ1

1−βϕ1
dt. Hence pt = δ1dt + wt where δ1 =

βϕ1

1−βϕ1
.

10.11.2 Econometric Methods

We focus on Hansen and Sargent’s (1982) method which applies Hansen’s (1982)

Generalized Method of Moments (GMM) to linear rational expectations models.

Let z1t be a vector of random variables in Ht. For example, z1t = (dt, · · · , dt−q+1)
′.

The unknown parameters β and ϕi’s can be estimated by applying the GMM to or-

thogonality conditions E(z1tνt+1) = 0 and E(z1twt) = 0 in the econometric system

consisting of (10.75) and (10.79).

Let z2t be a random variable in It, say dt, and

pt = β(pt+1 + dt+1) + ut+1.(10.14)

13See West (1987), for the formula, which is based on Hansen and Sargent (1980), and on West
(1988), for deterministic terms when dt has a nonzero mean.
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Then (10.62) implies another orthogonality condition E(z2tut+1) = 0. This orthogo-

nality condition can be used to estimate β. West (1987) forms a specification test a

la Hausman (1978) by comparing the estimate of β from (10.14) with the estimate of

β from (10.75) and (10.79). For this purpose, West forms a Wald test in the system

consisting of (10.75), (10.79), and (10.14) without the restrictions (10.80) imposed.

Another method to form West’s specification test is to form a Lagrange Multiplier

test or a likelihood ratio type test, which will require estimation constrained by the

restrictions (10.80). This method may be preferable because of small sample prob-

lems with the Wald test for nonlinear restrictions (see Chapter 9 for discussions about

these tests).

Some remarks are in order.

(A) Hansen and Sargent’s method described above does not require an assumption

that dt is exogenous. Relation (10.75) or (??) is obtained from the assumption

that dt is covariance stationary and that its Wold representation is invertible.

(B) For the econometric system consisting of (10.75) and (10.79) (or (??) and (??)),

random variables in Ht can be used as instruments, but the variables in It that

are not in Ht are not valid instruments by construction.

(C) Since ut+1 in (10.14) is in It+1 and νt+1 in (10.75) is in Ht+1, ut+1 and νt+1 are

serially uncorrelated (see, e.g., Ogaki, 1993a, Section 6, for related discussions).

However, wt in (10.79) is not necessarily in Ht+1. Hence wt has unknown order

of serial correlation.
Masao

needs to
check this!



10.12. GMMFOR CONSUMPTION EULER EQUATIONSWITHMEASUREMENT ERROR257

10.12 GMM for Consumption Euler Equations with

Measurement Error

When data are contaminated by measurement error, the standard non-linear GMM

yields inconsistent estimates (Garber and King, 1983; Amemiya, 1985). Such problem

arises, for instance, in estimation of structural parameters in a non-linear consumption

Euler equation when the consumption data contain measurement error.

To remedy this problem, Alan, Attanasio, and Browning (2005) propose two

GMM estimators for consumption Euler equations in the presence of measurement

error in data. Consider a simple life-cycle model with intertemporally additive and

instantaneously iso-elastic utility. Under the assumption of rational expectations, a

consumer’s utility maximization yields the Euler equation,

(10.15) Et

[
β

(
C∗

t+1

C∗
t

)−α

Rt+1

]
= 1,

where C∗
t is true consumption, Rt+1 the gross real interest rate, α the coefficient of

relative risk aversion, and β < 1 the discount factor. Call β
(
C∗

t+1/C
∗
t

)−α
Rt+1 an

expectational error uncorrelated with the time t information. We wish to estimate

the preference parameters α and β. Suppose consumption data are observed with

multiplicative error ϵt:

Ct = C∗
t ϵt,

where Ct is the observed consumption. Assume that the measurement error is sta-

tionary, serially uncorrelated, and uncorrelated with C∗
t , Rt, and the expectational

error for all t. Then, taking the expectations conditional on the time t information,
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we can write

(10.16)

Et

[
β

(
Ct+1

Ct

)−α

Rt+1|It

]
= Et

[
β

(
C∗

t+1

C∗
t

)−α

Rt+1|It

]
Et

[(
ϵt+1

ϵt

)−α

|It

]
= κ,

where κ is a constant. The first equality follows from the assumption that the mea-

surement error is independent of the expectational error, and the second equality

follows from the Euler equation (16.11) and the stationarity assumption of the mea-

surement error. For κ ̸= 1, equation (16.57) implies that the standard GMM without

consideration for the measurement error would result in inconsistent estimates of α

and β. Similarly, consider the Euler equation representing the change in marginal

utility between time t and t+ 2:

Et

[
β2

(
Ct+2

Ct

)−α

Rt+1Rt+2|It

]
= κ.

Now define

(10.17)

u1
t+1 ≡

[
β
(

Ct+1

Ct

)−α

Rt+1 − κ

]
,

u2
t+2 ≡

[
β2

(
Ct+2

Ct

)−α

Rt+1Rt+2 − κ

]
,

where, by definition, u1
t+1 and u2

t+2 are uncorrelated with the time t information and

Et(u
1
t+1) = Et(u

2
t+2) = 0.

The first estimator, the GMM-LN estimator, additionally assumes that the

measurement error is log-normally distributed with mean µ and variance σ2. Let

ut+2 = [ u1
t+1 u2

t+2 ]′ and zt = [ c z1t ]′ where c is a constant and z1t is an instru-

ment such as the lagged interest rate. Estimates of the parameters, α, β, and κ are

obtained from four orthogonality conditions:

(10.18) E{ut+2 ⊗ zt} = 0.
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Under the assumption of log-normality, κ can be written as

(10.19) κ = exp(α2σ2).

Once α and κ are estimated using the orthogonality conditions (16.61), the estimate

of the variance of measurement error σ2 can be obtained from equation (16.58).

The second estimator, the GMM-D estimator, simply assumes stationarity and

does not require any distributional assumption. Subtracting u2
t+2 from u1

t+1 in equa-

tions (16.60) yields

(10.20) vt+2 =

[
β

(
Ct+1

Ct

)−α

Rt+1

]
−

[
β2

(
Ct+2

Ct

)−α

Rt+1Rt+2

]
,

where vt+2 has zero mean and is independent of the time t − 1 information. The

orthogonality conditions for the GMM-D estimator are derived using equation (16.62)

and a vector of instruments zt. Note that because equation (16.62) takes the difference

of the consumption growth (double-differencing), the GMM-D estimator is expected

to be less precise than the GMM-LN estimator.14

Results from the Monte Carlo simulation in Alan, Attanasio, and Browning

(2005) suggest that both proposed methods perform significantly better than conven-

tional GMM estimators based on the log-linearized Euler equation or the exact Euler

equation that ignores measurement error, especially when the panel length is short.

In particular, both capture the true value of β remarkably well. They also report

that when the measurement error is lognormally distributed, the distribution of α is

more dispersed under the GMM-D estimator than under the GMM-LN estimator.

14In the presence of measurement error, the lagged consumption growth rate - a common choice for
an instrument in estimation of consumption Euler equations - would be invalid since it is correlated
with ut+2. Instead, one should use the consumption growth rate with two-period lags. On the other
hand, a one-period lag is sufficient for the interest rates since they are unlikely to be correlated with
the measurement error (Alan, Attanasio, and Browning, 2005).
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Exercises

10.1 (Computer Exercise) In the text we considered four alternative measures of

the intertemporal marginal rate of substitution, mt:

(i) mt = β( ct+1

ct
)−γ (Hansen and Singleton)

(ii) mt = β∗(Rm
t+1)

−γ (Brown and Gibbons)

(iii) mt = β+(Rm
t+1)

η( ct+1

ct
)θ (Epstein and Zin)

(iv) mt =
β{S−γ

t+1+βa1s
−γ
t+2}

E(S−γ
t +βa1s

−γ
t+1|It)

where st = ct + a1ct−1 (Ferson and Constantinides).

(a) For each of the four alternative measures, estimate the unknown parameters

and test the overidentifying restrictions implied by the asset pricing relation

E(mtRt+1) = 1. Use quarterly data on nondurables and services for consump-

tion ct, real value-weighted returns from the New York Stock exchange for Rm
t ,

and ex post real returns on Treasury Bill returns for Rt. Use a constant, one-

period and two-period lagged values of ct+1

ct
, and one-period and two-period

lagged values of Rt+1 for instrumental variables. You can modify the GMM.EXP

file for models (i), (ii), and (iii), and GMMHF.EXP for model (iv). Note that

GMM.EXP uses monthly data and GMMHF.EXP uses quarterly data. You will need

to modify GMM.EXP to use the quarterly data used by GMMHF.EXP. For Ferson

and Constantinides’s, report results for both the truncated kernel and the non-

prewhitened QS kernel.

For each measure, state what value “mas” should take in the GMM program

and explain why. Comment on the relative strengths and weaknesses of the four

measures of mt from both a theoretical and an empirical perspective.



10.12. GMMFOR CONSUMPTION EULER EQUATIONSWITHMEASUREMENT ERROR261

Print out the “hu” procedure part of your program and the final GMM iteration

output for each model and submit them.

(b) Repeat the analysis in question (a) for the model (iii) using simultaneously

the additional moment restrictions obtained by letting Rt = Rm
t . There is a

difficulty in interpreting the empirical result for this case of multiple returns.

What is the difficulty?

10.2 Let pt be the real stock price, dt be the real dividend, and β be the constant ex

ante discount rate. Assume that pt and dt are stationary with zero mean and finite

second moments. The stock price satisfies

pt = βE(pt+1 + dt+1|It),(10.E.1)

where It is the information set available at period t. We assume that It is generated

from xt,xt−1, . . ., where xt is a random vector that includes pt and dt as its compo-

nents. Solving (10.E.1) forward with the no bubble condition imposed, we obtain the

present value formula:

pt =
∞∑
τ=1

βτE(dt+τ |It)(10.E.2)

Suppose that dt is stationary with zero mean and finite second moments and

let Ht be the information set generated by the linear functions of {dt, dt−1, dt−2, · · · }.

Assume

Ê(dt|Ht−1) = ϕdt−1,(10.E.3)

where |ϕ| < 1, and Ê(·|Ht−1) is the linear projection operator on Ht. Answer the

following questions.
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(a) Suppose that you run a regression

pt = δdt + wt.(10.E.4)

Your estimator for δ will converge to a number that can be expressed in terms

of ϕ, and β. Derive this expression for δ. Show that Ê(wt|Ht) = 0. Is it possible

to prove that E(wt|It) = 0? Explain.

(b) Discuss whether or not wt is serially correlated in general. If we make an

additional assumption that pt is in Ht+1, can you show that wt is serially un-

correlated? Is this additional assumption realistic? Why?

(c) Explain how to use (10.E.4),

dt+1 = ϕdt + vt+1,(10.E.5)

and

pt = β(pt+1 + dt+1) + ut(10.E.6)

to estimate β and ϕ in the framework of the Generalized Method of Moments,

imposing the restriction on δ you derived. In particular, discuss the parame-

terized disturbances, valid instrumental variables, and appropriate methods to

estimate the weighting matrix.

(d) List three tests that can be used to test the restriction on δ you derived. Discuss

which tests may be better.

10.3 Let pt be the log price level and mt be the log money supply. A version of the

Cagan’s hyperinflation model assume that the demand for real money balance is

mt − pt = α(E(pt+1|It)− pt),(10.E.7)
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where It is the information set of the consumer, α is a negative number, and −α is

the interest semi-elasticity of money demand when the real interest rate is assumed

to be zero. Solving (10.E.7) as a difference equation for E(pt+i) for a fixed t, and

imposing the stability condition that the solution for pt is bounded for all bounded

sequences of mt, we obtain

pt =
1

1− α
E(

∞∑
i=0

(
α

α− 1
)imt+i|It).(10.E.8)

Suppose that mt is stationary with zero mean and finite second moments (imag-

ine that the data are already demeaned and detrended) and let Ht be the information

set generated by the linear functions of {mt,mt−1,mt−2, · · · }. Assume

Ê(mt+1|Ht) = ϕmt,(10.E.9)

where |ϕ| < 1, and Ê(·|Ht) is the linear projection operator on Ht. Answer the

following questions.

(a) Suppose that you run a regression

pt = δmt + wt(10.E.10)

Your estimator for δ will converge to a number that can be expressed in terms

of ϕ, and α. Derive this expression for δ (note that the summation in (10.E.8)

starts from i = 0 unlike West’s present value model of the stock price in which

the summation starts from i = 1).

(b) Discuss whether or not wt is serially correlated in general. If we make an

additional assumption that pt is in Ht+1, can you show that wt is serially un-

correlated? Is this additional assumption realistic? Why?
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(c) Explain how to estimate α from the equation (10.E.7) with a time series data

set on mt and pt.

(d) Explain how to use (10.E.9), (10.E.10), and

mt+1 = ϕmt + vt+1(10.E.11)

to estimate α and ϕ in the framework of the Generalized Method of Moments,

imposing the restriction on δ you derived in (i). In particular, discuss the param-

eterized disturbances, valid instrumental variables, and appropriate methods to

estimate the weighting matrix.

(e) List three tests that can be used to test the restrictions on δ you derived in (i).

Discuss which tests may be better.
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