
Chapter 11

EXTREMUM ESTIMATORS

One of the common features across many estimators that are widely used in appli-

cation such as ordinary least squares, instrumental variables, GMM, and maximum

likelihood estimators, is that they are obtained by minimizing or maximizing an ob-

jective function. These estimators are called extremum estimators, or optimization

estimators. This chapter explains a unified framework for this class of estimators.

11.1 Asymptotic Properties of Extremum Estima-

tors

Let {xt : t = 1, 2, · · ·T} be a vector stochastic process, b0 be a p-dimensional vector

of parameters to be estimated, and J(b) be a real-valued objective function. For

notational simplicity, the dependency of J(b) on {xt : t = 1, 2, · · · , T} is suppressed.

An extremum estimator is a vector of parameters, bT, which minimizes the objective

function, JT (b), with respect to b. Under general regularity conditions, an extremum

estimator is consistent and asymptotically normally distributed.1

There are two important assumptions that ensure the consistency and asymp-

totic normality of extremum estimators: convergence and identification.

1See the Appendix of Chapter 9 for a proof of consistency.
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11.1.1 Convergence

The convergence assumption is that JT (b) converges with probability one to some

deterministic function J0(b) as T → ∞ for all admissible values of b. Convergence

may take different forms such as uniform convergence and convergence in probability.

11.1.2 Identification

The identification assumption is that b0 is the unique minimizer of J0(b).

11.2 Two Classes of Extremum Estimators

There are two classes of extremum estimators, classical minimum distance estimators

and M-estimators.

11.2.1 Minimum Distance Estimators

An extremum estimator is a minimum distance estimator if the objective function is

a quadratic function:

JT (b) = fT (b)
′WTfT (b),(11.1)

where f(·) is a q-dimensional vector of functions and WT is a sequence of matrix that

satisfies

lim
T→∞

WT = W0(11.2)

with probability one for a positive definite matrix W0. The matrices WT and W0

are called the distance, or weighting, matrix.

A prominent example of the minimum distance estimator is the GMM estimator.

In the GMM, the sample mean is used for fT (b), and the law of large number for the

sample mean ensures convergence.
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11.2.2 M-Estimators

An extremum estimator is an M-estimator if the objective function is a sample aver-

age:

QT (b) =
1

T

T∑
t=1

m(xt),(11.3)

where m(·) is a real-valued function. The maximum likelihood (ML) estimator is a

leading example of the M-estimator. Suppose {xt} is an i.i.d. process with a known

density function f(xt;b0) where b0 is an unknown true parameter vector. The joint

density of {xt} is given by

f(x1,x2, ...,xT ;b0) =
T∏
t=1

f(xt;b0).(11.4)

If we replace b0 with some arbitrary (random?) value b, and interpret the density

as a function of b, it is called the likelihood function. The ML estimator for b0 is a

parameter vector b that maximizes the likelihood function. Since the log transforma-

tion is a monotone transformation, maximizing the likelihood function is equivalent

to minimizing the following:

− log f(x1,x2, ...,xT ;b0) = −
T∑
t=1

f(xt;b0).(11.5)

11.3 Examples of Minimum Distance Estimators

11.3.1 Two-Step Minimum Distance Estimators

Another example of the minimum distance estimator is a two-step minimum distance

estimator. Suppose c0 is the true values of some parameters of interest. In the first

step, a consistent estimator for c0, cT , is obtained. In the second step, the minimum
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distance method is used to estimate another set of parameters based on cT from the

first step.

One application of the two-step minimum distance estimation has an unre-

stricted estimator as cT and uses the minimum distance estimation to impose restric-

tions on c0. Suppose cT is an unrestricted estimator for a (p+s)-dimensional vector

of parameters c0. Consider nonlinear restrictions

ϕ(b0) = c0,(11.6)

where b0 is a p-dimensional vector of parameters. The minimum distance estimator,

bT , minimizes

JT (b) = {ϕ(b)− cT}′WT{ϕ(b)− cT},(11.7)

whereWT is a positive definite distance matrix and converges to some positive definite

matrix W0 with probability one. As in the GMM, the optimal distance matrix is

W = Ω−1 and TJT (bT ) has an (asymptotic) chi-square distribution with s degrees of

freedom. The null hypothesis (11.6) is rejected when this statistic exceeds the critical

value from a chi-square distribution. See Altug and Miller (1990) and Atkeson and

Ogaki (1996) for empirical applications.

11.3.2 Two-Step MinimumDistance Estimation with Impulse
Responses

Another application of the two-step minimum distance estimator is the estimation

of parameters in a theoretical model by matching the model’s theoretical impulse

response functions with empirical impulse response functions estimated by vector

autoregressions (VAR). Denoting a vector of model parameters by β, the optimal
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estimators are chosen so as to minimize the quadratic distance between empirical

impulse responses, denoted by Ψ̂, and the model-implied impulse responses:

(11.8) min
β

[
Ψ̂−Ψ(β)

]′
Σ−1

[
Ψ̂−Ψ(β)

]
,

where Ψ(β) denotes the mapping from β to the model impulse response functions,

and Σ is a diagonal matrix whose diagonal elements are sample variances of the Ψ̂’s.

Sbordone (2002) and Sbordone (2005) apply this method to estimate the degree

of price stickiness from the NKPC. The so-called Calvo (1983) parameter measures

the probability that a firm does not change its price in a given period. Letting θ

denote this probability, the average number of periods for which a price remains

unchanged is (1 − θ)
∑∞

k=0 kθ
k−1 = 1/(1 − θ). Magnusson and Mavroeidis (2009)

develop the identification robust minimum distance estimator with similar ideas as

the identification robust GMM estimator. However, their confidence sets indicate

that the minimum distance estimation applied to the NKPC is subject to the weak

identification problem. For example, their 95% confidence interval for the average

price duration has a lower bound of around 3.3 quarters and an upper bound of

infinity.

A classic method to estimate θ is the single-equation GMM using the NKPC

(see, for example, Gaĺı and Gertler (1999) and Eichenbaum and Fisher (2007)). In

Gaĺı and Gertler (1999), θ is estimated to be around 0.8, implying the average price

duration of 5 quarters. However, as surveyed by Kleibergen and Mavroeidis (2009),

this estimation method is also subject to the weak identification problem. The 95%

confidence interval for the average price duration using their recommended method

has a lower bound of two quarters and an upper bound of infinity. Since the lower

bound obtained from the minimum distance method is sharper than that from the
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GMM, the minimum distance method outperforms the GMM when applied to a single

equation using the NKPC.

Christiano, Eichenbaum, and Evans (2005) apply the two-step minimum dis-

tance method to a system of equations from their DSGE model to investigate the role

of nominal rigidities in generating the observed persistent responses of inflation and

output to a monetary policy shock. They first estimate the VAR impulse responses

of 8 key macroeconomic variables using the post-war U.S. data. Let Y1t be a vector

of observations on real GDP, real consumption, GDP deflator, real investment, and

real wage, Rt denote the federal funds rate, and Y2t be a vector of real profits and

the growth rate of M2. These variables are stacked as Yt = [ Y
′
1t Rt Y

′
2t ]′. This

ordering ensures that the monetary policy shock is identified by two identifying as-

sumptions. First, the variables in Y1t are assumed not to respond contemporaneously

to the monetary policy shock, and second, the federal funds rate does not depend on

the current values of the variables in Y2t. Using the first 25 estimated coefficients of

each impulse response as elements of Ψ̂ in (16.11), model parameters are estimated as

a solution to (16.11). Their estimate of θ is 0.6 in the benchmark model, implying the

average price duration of 2.5 quarters. Because they apply the method to a system

of equations rather than a single equation, their system may be well identified. This

is an important topic for further research.2

2Kim and Ogaki (2009) estimate the Calvo parameter in an exchange rate model with the Taylor
rule without the NKPC. In their estimation for θ, there is a substantial efficiency gain by applying
the GMM to a system of equations rather than to a single equation. We expect an analogous
substantial efficiency gain for the minimum distance estimation.
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11.3.3 Minimum Distance to Estimate Data Statistics

Another application of the minimum distance method in the DSGE literature is to

estimate various statistics of model variables such as mean, standard deviation, cor-

relation, and autocorrelation. Although the GMM may be used, minimum distance

may be more convenient.

Consider two stationary variables, xt and yt. Suppose we want to their estimate

population moments, b0 = (E(xt), E(x2
t ), E(yt), E(y2t ), E(xtyt), E(xtxt−1)). Let xt =

(xt, yt) and f(xt,b) = (xt, x
2
t , yt, y

2
t , xtyt, xtxt−1)

′ − b, where f(xt,b) is a disturbance

defined at time t. The GMM minimizes a quadratic form of the sample average of

f(xt,b), to obtain an estimate of b0, bT , and an estimate of covariance matrix of

T
1
2 (bT − b0).

To obtain the standard errors of estimated statistics that are nonlinear func-

tions of b0 such as standard deviations, correlations, and autocorrelations, one can

use the delta method explained in Proposition 5.8. For example, let a(b0) denote the

standard deviation of xt, a(b0) =
√

var(xt) = (E(x2
t ) − E(xt)

2)
1
2 , and a(bT ) be a

consistent estimator of a(b0). By the delta method,
√
T (a(bT ) − a(b0)) has an ap-

proximate normal distribution with variance d(b0)Cov(Ω−1)d(b0)
′ in a large sample

where d(b0) is the derivative of a(·) evaluated at b0.

In the GMM, while parameters may enter moment conditions nonlinearly, sam-

ple moments may not because the moment conditions may not be equal to zero in

that case. For example, in order to estimate the variance of xt in the above example,

the moment condition would be b− (xt − x̄)2 where b is the variance to be estimated

and x̄ is the sample mean. However, because the sample mean enters the moment

condition in a nonlinear way, E(b− (xt− x̄)2) is not equal to zero, which prevents the
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GMM estimation.

By contrast, in the minimum distance estimation, sample moments may enter

moment conditions in nonlinear ways. For example, Ambler, Cardia, and Zimmer-

mann (2004) (section 3) estimate a pair of correlations

ρ̄1t =
(x1 − x̄1)(x2 − x̄2)

σ̄1σ̄2

(11.9)

and

ρ̄2t =
(x3 − x̄3)(x4 − x̄4)

σ̄3σ̄4

,(11.10)

where x̄i and σ̄i are the sample mean and variance of xi. The optimal estimators are

obtained by minimizing

{ 1
T

T∑
t=1

(ρ− ρ̄t)}′WT{
1

T

T∑
t=1

(ρ− ρ̄t)}(11.11)

where ρ is a (2 × 1) vector of population correlations of xit for i = 1, 2, 3, 4 and

ρ̄t = [ ρ̄1t ρ̄2t ]′.

Although this setup resembles the GMM, it cannot be embedded in the standard

GMM framework because the sample mean and variance enter the moment conditions

nonlinearly. Instead, this is a minimum distance estimator.

The minimum distance estimator can be used to estimate a DSGE model by

matching the model-implied moments with empirical moments in a similar way as

GMM while allowing the sample mean to enter moment conditions nonlinearly. An

application can be found in Garćıa-Cicco, Pancrazi, and Uribe (2009).

11.4 The Kalman Filter

We introduced the ML estimator for an i.i.d. process. However, this i.i.d. assumption

rarely holds in time series data. In linear models with time dependence, the likelihood
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function can be evaluated using a recursive linear algorithm called the Kalman filter

(Kalman, 1960). The Kalman filter estimates an evolution of unobserved variable(s) of

interest in a discrete-time dynamic system by sequentially updating a linear projection

using current observations. Because this filtering process minimizes the mean squared

prediction error, it yields an optimal estimator among the class of linear projections.

Due to its accuracy and practicality, various extensions of the Kalman filter have been

developed and applied in a broad area of study. In econometric, it is used to construct

exact finite-sample forecasting, evaluate the exact likelihood function, and estimate

parameters in ARMA models or time-varying parameters in linear regressions, just

to name a few examples.

In order to formulate the Kalman filter algorithm, the process of interest is

modeled in a set of linear equations called the state-space representation. This equa-

tion system characterizes the relationship between observed and unobserved variables.

Let xt be an r-dimensional vector of unobserved variables, yt be an n-dimensional

vector of observed variables, and zt be a k-dimensional vector of exogenous variables.

Suppose yt depends linearly on xt and zt:

(11.12) yt = A′ · zt +H′ · xt + et,

where et is (n × 1) vector white noise with E(ete
′
j) = R for t = j and 0 otherwise,

and A′ and H′ are (n× k) and (n× r) matrices of parameters, respectively.

The unobserved vector xt, called the state vector, is assumed to evolve according

to a linear stochastic difference equation

(11.13) xt+1 = F · xt + ut+1,

where ut+1 is also (r × 1) vector white noise with E(utu
′
j) = Q for t = j and 0



11.4. THE KALMAN FILTER 279

otherwise, and F is an (r × r) matrix of parameters. The disturbances et and ut are

assumed to be independent of each other at all lags, E(etu
′
j) = 0 for all t and j, and

the initial state z1 is uncorrelated with any realizations of et and ut, E(etz
′
1) = 0

and E(utz
′
1) = 0 for t = 1, · · · , T . Together with the state equation (11.13), the

latter assumption implies that et and ut are uncorrelated with all lagged values of xt:

E(etx
′
j) = 0 and E(utx

′
j) = 0 for j = t− 1, t− 2, · · · , 1.

Equation (11.12) is called the observation equation, and equation (11.13) the

state equation. Together, they comprise the state-space representation of the dynam-

ics of y.

The Kalman filter recursively generates least square forecasts of the unobserved

state vector xt as a linear function of the observed data yt and zt. Let x̂t+1|t ≡

Ê(xt+1|Ωt) denote the best forecasts of xt+1 based on the data available at time t,

Ωt ≡ (y
′
t,y

′
t−1, · · · ,y

′
1, z

′
t, z

′
t−1, · · · , z

′
1). The accuracy of each forecast is measured by

an associated (r×r) error covariance matrix, Pt+1|t ≡ E[(xt+1−x̂t+1|t)(xt+1−x̂t+1|t)
′].

In order to initiate the recursive process, the unconditional mean of the initial

state x̂1|0 and its covariance P1|0 must be chosen. If the eigenvalues of F are inside

the unit circle, x̂1|0 is simply set equal to 0 with an associated covariance matrix

whose column vectors are given by vec(P1|0) = [Ir2 − (F×F)]−1 · vec(Q). Otherwise,

the researcher’s best guess of x1|0 can be used as x̂1|0, and a positive definite matrix

that summarizes the confidence in this guess is used as P1|0.

Suppose we have data on (y1,y2, · · · ,yT , z1, z2, · · · , zT ). For simple illustration,

assume that the matrices F, Q, A, H, and R are known and constant. Given x̂1|0 and

P1|0, the linear projection of x̂t+1|t and associated covariance of this forecast Pt+1|t
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are iterated on

x̂t+1|t = Fx̂t|t−1 +Kt(yt −A′zt −H′x̂t|t−1),
Pt+1|t = F[Pt|t−1 −Pt|t−1H(H′Pt|t−1H+R)−1H′Pt|t−1]F

′ +Q,
(11.14)

for t = 1, 2, · · · , T , where Kt ≡ FPt|t−1H(H′Pt|t−1H + R)−1 is called the Kalman

gain. That Kt depends negatively on R implies that, when computing the projection

for next period, the Kalman filter attaches a smaller (larger) weight to the observation

the larger (smaller) the noise in the observed data is (and hence the larger (smaller)

R is).

The previous period’s projections are updated based on the current realization

of the observable as follows:

x̂t|t = x̂t|t−1 + F−1K(yt −A′zt −H′x̂t|t−1),
Pt|t = Pt|t−1 −Pt|t−1H(H′Pt|t−1H+R)−1H′Pt|t−1.

(11.15)

Notice that equations (16.61) and (16.62) are related by:

x̂t+1|t = Fx̂t|t,

Pt+1|t = FPt|tF
′ +Q.

Thus, the Kalman filter repeats a project-and-update cycle in which it makes projec-

tions x̂t|t−1, updates these projections based on the current observations to get x̂t|t,

and uses them to obtain next projections x̂t+1|t. This recursive nature implies that all

the necessary information is contained in previous forecasts and information sets, and

hence the filtering does not require all the previous data to be stored and re-processed

in each estimation step. This is one of the appealing features of the Kalman filter for

practical implementations.

Finally, the forecast of yt+1 is obtained as follows. The exogeneity assumption

of zt implies that it contains no information about xt beyond what is contained in



11.4. THE KALMAN FILTER 281

the t− 1 information set Ωt−1 ≡ (y
′
t−1,y

′
t−2, · · · ,y

′
1, z

′
t−1, z

′
t−2, · · · , z

′
1). Hence,

Ê(xt|zt,Ωt−1) = Ê(xt|Ωt−1) = x̂t|t−1.

From the observation equation (11.12) and by the law of iterated projections, the

forecast of yt+1 is given by

ŷt+1|t ≡ Ê(yt+1|zt+1,Ωt)

= A′zt+1 +H′Ê(xt+1|zt+1,Ωt)

= A′zt+1 +H′x̂t+1|t,

with error covariance

E[(yt+1 − ŷt+1|t)(yt+1 − ŷt+1|t)
′] = H′Pt+1|tH+R.

The Kalman filter minimizes the error covariance of the estimated objects; there-

fore, the forecasts x̂t+1|t and ŷt+1|t are best estimators within the class of linear filters

(i.e. forecasts that are linear functions of (zt,Ωt−1)). If we further assume that initial

state x1|0 and innovations {et,ut}Tt=1 are multivariate Gaussian, then the forecasts

are optimal among any functions of (zt,Ωt−1).

11.4.1 Evaluation of the Likelihood Function using the Kalman
Filter

One of the applications of the Kalman filter is the evaluation of unconditional likeli-

hood for a DSGE model. Consider a state-space representation of the solution of the

DSGE model:

xt = F(µ)xt−1 + ut

ut = G(µ)vt,
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where xt is an (r×1) vector of model variables, and E(utu
′
t) = G(µ)E(vtv

′
t)G(µ)

′
=

Q(µ). A measurement equation maps xt into the n× 1 vector of observable variables

yt:

yt = H(µ)
′
xt + et,

where et is an n× 1 vector of measurement errors with E(ete
′
j) = R for t = j and 0

otherwise. Given time-series data and the model’s parameter values µ (so that F (µ),

G(µ), Q(µ), and H(µ) are known), the Kalman filter infers a sequence of conditional

distribution for xt given xt−1 and evaluate the likelihood.

In order to implement the Kalman filter, assume that et, ut, and vt are normally

distributed. The initial unconditional values are given by

x̂1|0 = 0, P1|0 = FP1|0F
′ +Q

where vec(P1|0) = (I− F⊗ F′)−1vec(Q).

Given the initial values, the projection x̂t|t−1 and its associated covariance ma-

trix Pt|t−1 are iterated on:

x̂t|t−1 = Fx̂t−1|t−1

Pt|t−1 = FPt−1|t−1F
′ +Q,

where vec(Pt|t−1) = (I−F⊗F′)−1vec(Q). These projections are then used to construct

the conditional distribution of yt, N(ŷt|t−1,Σt|t−1), where the conditional mean ŷt|t−1

and conditional variance matrix Σt|t−1 are given by

ŷt|t−1 = H′x̂t|t−1

Σt|t−1 = E[(yt − ŷt|t−1)(yt − ŷt|t−1)
′]

= H′Pt|t−1H+R.
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The likelihood function for yt is thus given by:

L(yt|µ) = (2π)−m/2|Σ−1
t|t−1|

1/2 exp

[
−1

2
(yt − ŷt|t−1)

′Σ−1
t|t−1(yt − ŷt|t−1)

]
.

The next iteration is initiated by updating x̂t|t−1 and Pt|t−1:

xt|t = xt|t−1 +Pt|t−1HΣ−1
t|t−1(yt − yt|t−1)

Pt|t = Pt|t−1 −Pt|t−1HΣ−1
t|t−1H

′Pt|t−1.

Finally, the likelihood from each iteration is multiplied to yield the sample likelihood:

L(y|µ) =
T∏
t=1

L(yt|µ).

This likelihood function is maximized to yield the ML estimator of linearized DSGE

models.

Appendix

11.A Examples of State-Space Representations

This appendix contains examples of the state-space representation for AR(p) and

MA(p) processes. There are several ways of representing a given process in state-

space form. For more examples, see Hamilton (1994, Ch. 13).

Example 1: Univariate AR(p) Process Consider a univariate AR(p) process:

yt+1 − µ = ϕ1(yt − µ) + ϕ2(yt−1 − µ) + · · ·+ ϕP (yt−p+1 − µ) + εt+1,

where E(εtεj) = σ2 for j ̸= t and 0 otherwise. One example of the state-space repre-

sentation for this process is
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xt =


yt − µ
yt−1 − µ

...
yt−p+1 − µ

, F =


ϕ1 ϕ2 · · · ϕp−1 ϕp

1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0

 , ut+1 =


εt+1

0
...
0

, Q =


σ2 0 · · · 0
0 0 · · · 0
...

... · · · ...
0 0 · · · 0

 ,

yt = yt, A
′ = µ, zt = 1, H′ = [ 1 0 · · · 0 ], et = 0,R = 0.

Example 2: Univariate MA(1) Process

For a univariate MA(1) process

yt = µ+ εt + θεt−1

where E(εtεj) = σ2 for j ̸= t and 0 otherwise, the state-space representation is given

by

xt =

[
εt
εt−1

]
, F =

[
0 0
1 0

]
, ut+1 =

[
εt+1

0

]
, Q =

[
σ2 0
0 0

]
,

yt = yt, A
′ = µ, zt = 1, H′ = [1 θ] , et = 0,R = 0.
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